Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than
2	lutein in lipopolysaccharides induced inflammation in rats.
3	
4	Bhatiwada Nidhi, Gurunathan Sharavana, Talahalli R Ramaprasad and Baskaran
5	Vallikannan [*]
6	
7	Department of Molecular Nutrition
8	CSIR - Central Food Technological Research Institute
9	Mysore – 570020
10	Karnataka, India
11	
12	Running title: Anti-inflammation properties of oxidative derivatives of lutein
13	
14	*Corresponding Author:
15	Dr. V. Baskaran
16	Senior Principal Scientist and Head
17	Department of Molecular Nutrition
18	CSIR – Central Food Technological Research Institute
19	Mysore – 570020,
20	Karnataka, India
21	Tel: +91-821 2514876
22	Fax: +91-821 2515333
23	Email: <u>baskaranv@cftri.res.in</u>
24	
25	

26 Abbreviations:

- 27 AcN Acetonitrile; CAT Catalase; COX-2 Cyclooxygenases-2; DCM Dichloromethane;
- 28 GSH Glutathione; GPx Glutathione peroxidase; GR Glutathione reductase; GST -
- 29 Glutathione-S-transferase; GNO Groundnut oil; HPLC High performance liquid
- 30 chromatography; IL-6 -Interleukins-6; LC-MS Liquid chromatography-mass spectroscopy;
- 31 LPS Lipopolysaccharides; MDA Malondialdehyde; MeOH Methanol; NO Nitric
- 32 oxide; PGE₂ Prostaglandin E₂; SOD Superoxide dismutase; TNF- α Tumor necrosis
- 33 factor- α ; UV Ultra violet.
- 34
- 35

36	Abstract

37	In the present study, we appraised the anti- inflammatory efficacy of the lutein
38	oxidative degradation derivatives mediated through UV- irradiation over lutein in
39	counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n=5/group).
40	UV- irradiated lutein fragments were identified as anhydrolutein (B, C ₄₀ H ₅₄ 0), 2,6,6-
41	trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-
42	trimethylcyclohex-1-1en-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-
43	[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3,
44	$C_{21}H_{30}O$) and zeaxanthin (M4, $C_{40}H_{56}O$) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein,
45	all-trans zeaxanthin, 9-Z lutein. Induction of inflammation by LPS significantly increased the
46	productions of nitrites (3.3 fold in serum and 2.6 fold in liver), prostaglandin E_2 (26 fold in
47	serum), and pro-inflammatory cytokines like tumor necrosis factor- α (6.6 fold in serum), and
48	interleukins-6 (4.8 fold in serum). Oxidative derivatives of lutein especially M1, M2 and M3,
49	ameliorated acute inflammation in rats by inhibiting the production of nitrites,
50	malondialdehyde (MDA), PGE ₂ , TNF- α , and IL-6 cytokines more efficiently than lutein in
51	rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of
52	inflammatory cytokine and increase of antioxidant enzymes (superoxide dismutase, catalase,
53	glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result
54	in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.
55	
56	Keywords: Inflammation, Lipopolysaccharide, Lutein, Oxidative derivatives, UV-
57	irradiation.

58

60 Introduction

61 Lutein is an important xanthophyll present in many leafy vegetables and certain fruits 62 and has been proven to be helpful in combating against several lifestyle complications including cancer, cardiovascular diseases and age related macular degeneration.¹⁻³ Lutein is 63 64 oxidatively metabolized by cleavage enzymes (beta-carotene monooxygenase (BCO1)) in the 65 body to produce physiologically active compounds that may exhibit their own antioxidant 66 and anti-inflammatory properties. Reports have clearly shown the presence of fourteen 67 different carotenoids in human plasma including, four oxidative metabolites of lutein.⁴ Earlier studies focused on the metabolic fate of lutein and the subsequent metabolites formed.^{5,6} 68 69 Studies have also suggested that biological activities of carotenoids may be intervened by its ability to form metabolites and/or oxidation products.^{7–9} Carotenoid oxidation/degradation 70 71 products may possess either improved or diminished bioactivity than parent lutein molecule. 72 In vitro chemical oxidation (2,2' azobis dihydrochloride-mediated) of lutein leads to 73 the formation of apocarotenoids which have been reported to inhibit cancer cell proliferation of HeLa cells.^{10,11} Studies have also shown that carotenoids oxidative products have higher 74 antioxidant potential when compared to their parent molecules. Catalano et al.⁹ synthesized 75 76 apo-14'-lycopenoic acid which showed potent antioxidant against H₂O₂ and cigarette smoke 77 in human macrophages. Oxygenated cleavage product of lycopene, (E, E, E)-4-methy-8-oxo-2,4,6-nonatrienal induced apoptosis in HL-60 cells.¹² Diapocarotenoid oxidative product of 78 lycopene stimulates the gap junction communication.¹³ However, not much scientific 79 80 evidence is available on the beneficial properties and oxidation/ degradation products of 81 lutein. 82 Antioxidant lutein down regulate the production of inflammatory cytokines such as TNF- α , interleukins- 1 β , and IL-6, and inflammatory eicosanoid like PGE₂.¹⁴⁻¹⁷ Lutein is 83

reported to inhibit LPS induced systemic inflammation in animals and RAW 264.7

Food & Function Accepted Manuscript

85	macrophages ^{14,15} and also attenuate interleukins (IL) -1β . Studies have shown that Nrf2 and
86	NF-κB DNA binding activity in the liver of turkey and guinea pig are significantly modulated
87	by lutein. ^{16,17} However, the mechanism by which lutein oxidative metabolites modulate
88	inflammatory responses has not been thoroughly investigated. We hypothesize that the lutein
89	and its oxidative derivatives may show different effects than lutein on antioxidant defense
90	mechanism; thus modulate the inflammatory cytokine and eicosanoid production. It is
91	imperative to elucidate the structural characterization of lutein oxidation products before
92	looking into its biological functions. Hence, the objectives of the present study are to
93	characterize ultra-violet (UV) mediated lutein oxidative/photolyzed products, and further
94	evaluate and compare its potential against LPS induced inflammation in rats.
95	Materials and Methods
96	Chemicals
97	Lipopolysaccharide (LPS, Escherichia coli-0111-B4, phenol extracted), standard
98	lutein (99 %), bovine albumin (BSA), butylated hydroxyl toluene, glutathione reductase
99	(GR), cytochrome C, xanthine oxidase, β -nicotinamide adenine dinucleotide phosphate
100	monohydrate (NADPH ⁺), dinitro- 5-thiobenzoic acid, thiobarbituric acid, 1-chloro-dinitro-
101	benezene (CDNB), 1,1,3,3-tetramethoxypropane (TMP) and glutathione (reduced and
102	oxidized) were obtained from Sigma - Aldrich (St. Louis, USA). Analytical high-
103	performance liquid chromatography (HPLC) - grade solvents like acetonitrile (AcN),
104	methanol (MeOH), dichloromethane (DCM) and other chemicals mentioned elsewhere in this
105	study were purchased from Sisco Research Laboratories (Mumbai, India). Rat feed pellets
106	were procured from Sai Durga feeds (Bangalore, India). Refined groundnut (GNO) oil
107	(peanut oil) was obtained from a local supermarket.
108	Preparation of lutein oxidation products/ derivatives from UV- irradiated reaction
109	mixtures

110	Lutein oxidation products were prepared using liposome model proposed by Kim et
111	al. ¹⁸ , where phosphatidylcholine (PC, 20 μ mol) and lutein (600 nmol) are dispersed in 5 ml of
112	Tris-HCl buffer (pH 7.4). Briefly, lutein in DCM/MeOH was mixed with PC dissolved in
113	chloroform, and the mixture was evaporated to dryness and re-suspended in Tris-HCl buffer
114	with vigorous mixing (2 min) and sonication (5 min at 42kHz/80W). To obtain UV-
115	oxidation products, lutein liposomes in quartz test tubes were exposed to UVC 254 nm TUV
116	T5 lamp (Philips, India) for 48 hrs and then 0.1% BHT (w/v) in ethanol was added to
117	terminate oxidation.
118	Separation and purification of lutein oxidized products
119	UV- irradiated lutein oxidized products were separated by preparative HPLC (LC-8A;
120	Shimadzu, Kyoto, Japan) equipped with photodiode array detector (SPD-M20A, Shimadzu)
121	and Varian Pursuit C-18 semi preparative column (250 x 21.2 mm; 10 μ m) with a mobile
122	phase containing AcN: DCM: MeOH (9:0.5:0.5; $v/v/v$) under isocratic condition with a flow
123	rate of 5 ml/ min at 445 nm. The column temperature was maintained at 25 \pm 2 °C and the
124	injection volume was 3 ml. Yellow coloured oxidized lutein rich fraction was further purified
125	by reverse phase HPLC (LC-10 Avp, Shimadzu, Japan) on C-30 (4.6 mm×250 mm; 5 μ m,
126	Princeton, USA) column with the column temperature maintained at 25 ± 2 °C and the
127	injection volume was 20 μ l. The purification was achieved using a mixture of AcN: DCM:
128	MeOH (6:2:2; v/v/v) containing 0.1% ammonium acetate as a mobile phase at a flow rate of
129	1 ml/ min. The fractionation and isolation procedures were carried out under dim yellow light
130	to prevent isomerization and degradation by light irradiation. Lutein oxidized products were
131	identified by UV-vis spectrum using an LC-10 Avp HPLC system (similar to analytical
132	HPLC conditions mentioned above using C-30 column) equipped with a photodiode array
133	detector (Shimadzu, Japan) and mass spectrum using an HPLC system (Alliance 2695,
134	Waters, UK) connected to a Q-Tof Ultima mass spectrometer (Waters 2996 modular HPLC

Food & Function

135	system, UK) equipped with atmospheric pressure chemical ionization (APCI ⁺) module. ¹⁹ The
136	APCI source was heated at 130 °C, and the probe was kept at 500 °C. The corona (5 kV), HV
137	lens (0.5 kV), and cone (30 V) voltage were optimized. Nitrogen was used as sheath and
138	drying gas at 100 and 300 l/h, respectively. The spectrometer was calibrated in the positive
139	ion mode, and $(M+H)^+$ ion signals were recorded. Mass spectra of lutein and its oxidized
140	products/ metabolites were acquired with a m/z 0-1000 scan range at 445 nm by a diode array
141	detector. Purified lutein oxidation products (\geq 98%) were stored at -80 °C for further
142	experiments. Further, NMR studies of these compounds were not carried out because of the
143	quantitative limitations, which is the potential limitation in the present investigation. Lutein
144	and UV- oxidized lutein products were used to study the anti-inflammation properties against
145	LPS induced inflammation.
146	Animals and treatments
147	The Institutional Animal Ethical Committee approved all the procedures for the use
148	and care of animals. Male rats [OUTB-Wistar, IND-CFT (2c)] were bred at animal house
149	facility of Central Food Technological Research Institute, Mysore, India and housed in steel
150	cages at room temperature (28 \pm 2 °C) with 12-h dark-light cycles. The animals had free
151	access to feed and water <i>ad libitum</i> . After 2 weeks of the adaptation period, the rats (200-250
152	g) were randomly assigned to seven groups ($n = 5/group$). The rats were gavaged with 200
153	mg of groundnut oil as a carrier of lutein or its oxidized/photolyzed derivatives. The
154	concentration of lutein or its oxidized derivative administered to rats was 200 $\mu M/day/rat$ and
155	the control group received only GNO for 15 days. On the fifteenth day, inflammation was
156	induced by intraperitoneal (i.p.) injection of LPS (10 mg/kg BW) in saline and control group
157	received only saline. Rats were anaesthetized 24 h after LPS injection, and blood was
158	collected by cardiac puncture. Serum was isolated by centrifuging the clotted blood at 3000 g
159	for 20 min at 4 °C. Serum and tissue samples were stored at -80 °C until use. Liver samples (1

Food & Function Accepted Manuscript

160	g) were homogenized at 4 °C in buffered saline and centrifuged at 10000 g for 15 min at 4 °C
161	to remove nuclei and cell debris. The supernatant was used to assay antioxidant enzymes.
162	Measurement of nitrites and malondialdehyde levels
163	Nitrite levels in the serum and liver homogenate were measured by the Griess
164	method. ²⁰ Liver samples were homogenized and deproteinized by adding zinc sulfate, and the
165	supernatant was obtained after centrifugation at 4000 g for 10 min at 4 °C. Subsequently, 100
166	μ l of serum or liver supernatant were applied into a microtiter plate and mixed with the same
167	volume of Griess reagent (1% sulfanilamide, 0.1% napththyl ethylenediamine
168	dihydrochloride and 5% phosphoric acid), incubated at room temperature for 10 min and
169	absorbance was measured at 540 nm with Micro-plate reader (BIO-RAD Model 680). The
170	concentration of nitrites was determined according to the regression equation of the standard
171	curve of sodium nitrite. Malondialdehyde (MDA) levels in serum, liver and retina
172	homogenates were evaluated by the thiobarbituric acid reacting substance (TBARS). ²¹
173	Briefly, the reaction mixture contains biological sample (200 μ l), 1.5 ml acetic acid (pH 3.5,
174	20 %, v/v), 1.5 ml of thiobarbituric acid (0.8 %, v/v) and 200 μl of sodium dodecyl sulphate
175	(8 %, v/v). The mixture was incubated for 1 h in a boiling water bath and extracted with 5 ml $$
176	of n-butanol, and the upper n-butanol phase containing TBARS (pink complex) was read
177	spectro-fluorometrically (Hitachi, F-2000, Japan) with an excitation at 515 nm and emission
178	at 553 nm and quantified as malondialdehyde equivalents using 1,1,3,3-tetramethoxypropane
179	(TMP) as a standard.
180	Measurement of serum cytokines and PGE ₂
181	Serum levels of TNF- α and IL-6 were determined using a commercially available

- 182 ELISA kits purchased from Abcam Inc. (Cambridge, UK), whereas PGE₂ EIA kit was
- 183 procured from Cayman Chemical (Michigan, USA). The concentration of serum TNF-α, IL-6

and PGE₂ levels were presented as pg/ml and established according to the regression equation
of the standard curve.

186 Measurement of antioxidant enzymes activity

187 Antioxidant enzymes were analyzed in serum and liver homogenates of rats. Total 188 superoxide dismutase (SOD) activity was determined by the inhibition of cytochrome c 189 reduction by superoxide anions generated by the xanthine/xanthine oxidase system and monitored at 550 nm.²² One unit of SOD was defined as the amount of enzyme required to 190 191 inhibit cytochrome c reduction by 50%. Solution A was prepared by mixing xanthine (5 192 umol) in 0.001N NaOH and cytochrome C (20 umol) in 100 ml 50 mM phosphate buffer 193 (containing 0.1 mM disodium EDTA). Solution B containing xanthine oxidase in 0.01 M 194 disodium EDTA was freshly made and kept on ice. For the assay, serum (50 µl) or liver 195 homogenate (50 μ l) and solution A (2.9 ml) are taken in a cuvette, and the reaction was 196 started by the addition of solution B (50 μ l) and absorbance was read for every 60 seconds for 197 a period of 300 seconds at 550 nm. Total catalase (CAT) activity was measured with 198 reduction of 10 mM hydrogen peroxide in phosphate buffer (pH 7.0) was monitored at 240 199 nm.²³ In brief, 50 μ l of sample containing the enzyme were added to the reaction mixture 200 containing 900 µl phosphate buffer (0.1 mM, pH 7.0), and 50 µl of hydrogen peroxide (8.8 201 mM) and decrease in absorbance was monitored for 5 min at 240 nm. One CAT unit is 202 defined as the amount of enzyme required to decompose 1 μ M of H₂O₂/min. Glutathione 203 peroxidase (GPx) activities were determined in the reaction mixture consisted of 500 µl of 204 0.1 M phosphate buffer (pH 7.0), 50 µl of sample, 100 µl of glutathione reductase (0.24 U) 205 and 100 µl of glutathione (GSH, 10mM) and pre-incubated for 10 min at 37 °C. Thereafter, 206 100 μ l of NADPH(1.5 mM) and 100 μ l of the pre-warmed t-butyl hydroperoxide solution 207 (12 mM) were added, and decrease in absorbance was monitored at 340 nm for 5 min, and the activity was expressed as micromoles of oxidized NADPH/min/mg protein.²⁴ Glutathione 208

209	reductase (GR) activity was determined by measuring the decrease in absorbance in a
210	reaction mixture of 750 μl of potassium phosphate buffer (pH 7.2, 0.1 M) and 50 μl of the
211	enzyme source and incubated at 37 °C for 10 min and later 50 μl of 2 mM NADPH (in 1 $\%$
212	NaHCO ₃), and 50 μ l of oxidized glutathione were added and the absorbance at 340 nm was
213	monitored using spectrophotometer. ²⁵ Glutathione-S-transferase (GST) activity in liver
214	homogenates was determined following the formation of a conjugate of GSH and CDNB at
215	340 nm in a reaction mixture containing 50 µl GSH (20 mM), 50 µl CDNB (20 mM), sample
216	(50 $\mu l)$ and 880 μl phosphate buffer (0.1 mM, pH 6.5) containing 1mM EDTA. The increase
217	in absorbance was monitored for 5 min using spectrophotometer. ²⁶ Glutathione (GSH) level
218	was measured by monitoring the rate of 5-thio-2-nitrobenzoic acid formation at 412 nm.^{27} In
219	brief, samples were deproteinized with trichloroacetic acid solution (5%) and mixed with
220	4.75 ml of sodium phosphate buffer (0.1M, pH 8.0) and 50 μl of 10mM dithionitrobenzoic
221	acid (DTNB) in buffer (pH 8.0) and allowed to stand for 5 min, and absorbance was read
222	spectrophotometrically at 412 nm and was quantified from the standard curve of reduced
223	glutathione.
224	Statistical analysis
225	The experimental data obtained for different parameters were subjected to
226	homogeneity of variances by the Bartlett test. When homogenous variances were confirmed,
227	the data were tested by analysis of variance and significant differences between the groups

- 228 were assessed by Tukey's test using SPSS Software (v. 10.0). The percent differences among
- 229 groups were calculated and considered significant at p < 0.05.

230 Results

231 Purification and characterization of UV- irradiated lutein oxidation products

Lutein, when exposed to UV- irradiation, leads to oxidation and slacking of its
chemical structure. This may result in the formation of lutein oxidation/ photolyzed products

234	and also other derivatives formed due to lutein cleavage. The tentative structures established
235	using LCMS results of the purified lutein metabolites were designated as A, B, M1, M2 and
236	M3, and scan range was 0-1000 m/z (Table 1 and Fig. 1). Lutein isomers (13'-Z zeaxanthin,
237	13'-Z lutein, all-trans zeaxanthin, 9-Z lutein), which were well separated and identified by
238	HPLC were not seen in MS profile of the same sample, that may be due to similar molecular
239	mass. Protonation of lutein/ zeaxanthin during MS analysis leads to the formation of
240	anhydrolutein (peak B) at 551.5 which corresponds to $(M+H^+-H_2O)$ ion, formed due to the
241	loss of H ₂ O molecule from allylic hydroxyl group of lutein. The plausible pathway for the
242	formation of these oxidative/ photolyzed products from lutein has been demonstrated in Fig.
243	2. The UV- exposure of lutein (A or $M+H^+$) lead to the formation of fragments M1 (m/z
244	121.19, M+H ⁺ - C ₃₁ H ₄₆ O); M2 (m/z 285.44, M+H ⁺ /2); M3 (m/z 298.46, M+H ⁺ - C ₁₉ H ₂₇ O) and
245	its isomer zeaxanthin/M4 (m/z 551.8, M+H ⁺ -H ₂ O), which were further purified by
246	preparatory HPLC and reverse phase HPLC and used for anti-inflammatory studies. The
247	purity of concentrated oxidative/ photolyzed products (or metabolites) was ascertained by
248	HPLC and LC-MS (APCI ⁺) analysis and found to be \geq 98 %, which is illustrated in Fig. 3
249	and Fig. 4 respectively.
250	Nitrites and malondialdehyde levels as modulated by lutein and its metabolites
251	In this study, we have determined the effect of lutein metabolites on the production of
252	nitrites and MDA in LPS challenged rats. The serum and liver accumulated nitrite (p <
253	0.001), as a stable oxidized product of NO when stimulated with LPS and pretreatment with
254	lutein and lutein metabolites significantly ($p < 0.05$) inhibited nitrite production (Fig. 5).
255	Among the experimental groups, significant reduction of nitrites levels were observed in
256	serum and liver of M1 + LPS (55 % and 69 %), M2 + LPS (44 % and 58 %), M3 + LPS (37
257	% and 46 %), M4+ LPS (30 % and 50 %) and lutein + LPS (35 % and 40 %) fed groups,
258	respectively, compared with the LPS group. Treatment of lutein caused a reduction in LPS

Food & Function Accepted Manuscript

259	induced nitrites production, which was remarkably (p < 0.05) less effective than M1 (30 $\%$
260	and 48 %) and M2 (13 % and 28 %) in serum and liver, respectively. On the contrary, there
261	was no significant difference between M3, M4 and lutein in reducing levels of nitrites.
262	Similarly, LPS induced inflammation resulted in elevated levels of MDA in serum, liver and
263	retina compared to control (Fig. 6). However, sharp decline ($p < 0.05$) in the MDA levels in
264	serum, liver and retina was observed in M1+ LPS (56 %, 60 % and 69 %), M2 + LPS (51 %,
265	57 % and 47 %), M3 + LPS (34 %, 51 % and 38 %), M4 + LPS (34 %, 44 % and 41 %),
266	lutein + LPS (44 %, 34 % and 33 %), respectively, when compared to LPS group.
267	Effectiveness ($p < 0.05$) in reducing MDA levels in serum, liver and retina over lutein was
268	found in M1 (22 %, 43 % and 53 %) and M2 (13 %, 34 % and 20 %), respectively, unlike M3
269	and M4. These results of nitrites and MDA levels in serum and tissues clearly show that the
270	lutein metabolites, particularly M1 and M2 are more potent antioxidant, than lutein and other
271	oxidative derivates (M3 and M4) in inhibiting the production of nitrites and MDA levels
272	under LPS induced inflammation.
273	Serum cytokines and PGE_2 levels as modulated by lutein and its metabolites
274	TNF- α , IL-6, PGE ₂ are critical mediators of the inflammatory process and organ
275	injury in endotoxemia and sepsis. In Fig. 7A, the TNF- α levels increased significantly (p <
276	0.001) in the serum after LPS injection, which was markedly $(p < 0.05)$ reversed by
277	pretreatment of lutein (43 %), M1 (70 %), M2 (66 %), M3 (69 %) and M4 (36 %) when
278	compared to LPS group. However, efficient reduction in comparison with lutein was found in
279	M1 (47 %), M2 (39 %) and M3 (44 %). Likewise, both IL-6 (Fig. 7B) and PGE ₂ (Fig. 7C)
280	levels were increased significantly ($p < 0.001$) in the serum after LPS injection, and this
281	effect decreased significantly by the pretreatment with lutein (33 %, 28 %), M1 (60 %, 52 %),
282	M2 (54 %, 49 %), M3 (57 %, 54 %) and M4 (39 %, 17 %), respectively. But, when treatment
283	groups were compared to lutein, oxidation products M1 (41 % and 33 %), M2 (31 % and 29

284 %) and M3 (36 % and 35 %) were more potent in reducing IL-6 and PGE₂. Results clearly

showed that lutein oxidative products (M1, M2 and M3) inhibited the production of

- 286 inflammatory mediators more efficiently than lutein.
- 287 Effect on antioxidant enzymes by lutein and its metabolites
- The activities of radical scavenger enzymes like SOD, CAT, GPx, GST and GR were investigated after challenging rats with LPS and are illustrated in Table 2. In serum and liver, LPS treatment resulted in decreased (p < 0.05) activity of SOD (73 % and 64 %), CAT (67 % and 78 %), GPx (56 % and 59 %), and GR (25 % and 55 %), respectively, when compared to control. Similarly, activity of GST was also lowered significantly in liver (46 %) of the LPS group over the control. In addition to antioxidant enzymes, GSH levels in serum (55 %) and liver (59 %) was found to reduce (p < 0.05) in LPS group, when compared to control.
- However, pretreatment of lutein and lutein metabolites increased (p < 0.05) the activity of
- antioxidant enzymes and GSH levels in both serum and liver. Moreover, lutein metabolite
- 297 groups (M1, M2 and M3) significantly increased the activities of SOD (35 % to 90 % and 19
- 298 % to 28 %), CAT (24 % to 82 % and 13 % to 38 %), GPx (45 % to 109 % and 12 % to 29 %),
- 299 GR (10 % to 25 % and 50 % to 79 %) and GSH (47 % to 59 % and 37 % to 64 %) in serum
- 300 and liver, respectively, more efficiently than lutein. Similarly, the percentage increase in GST
- 301 activity in liver of lutein metabolite groups (M1, M2 and M3) ranged from 28 % to 57 % over
- 302 lutein. In contrast, M4 was less effective than other lutein metabolites and showed no
- 303 significant difference in comparison with lutein group. These results clearly show that the
- 304 lutein metabolites (M1, M2 and M3) are more superior to lutein in upregulating the
- antioxidant enzymes in inflammation conditions caused by LPS.
- 306 **Discussion**

307 UV irradiation of lutein results in the formation of fragments with different chemical
 308 identity. These fragments may exhibit potential of anti-oxidant or anti-inflammatory activity

309 as they are derived from a physiologically potent lutein molecule. Tissues like retina gets 310 exposed to light and the lutein present in the retina may undergo photo-oxidation to provide 311 lutein derivatives. In the present investigation, the lutein products derived upon UV- exposure 312 were characterized as 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, m/z 121), 313 (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6 trimethylcyclohex-1-en-1-yl)-3,7-dimethylnona-2,4,6,8-314 tetraen-1-ylium (M2, m/z 285), 4-[(1E,3E,5E,7E)-3,7-dimethyldeca-1,3,5,7-tetraen-1-yl]-315 3,5,5-methylcyclohex-3-en-1-ol (M3, m/z 298) and its isomer zeaxanthin (M4, m/z 551.8). 316 These oxidative/ photolyzed derivatives were studied for their antioxidant and anti-317 inflammatory properties (Table 1 and Fig. 1). Formation of shorter polyene chain cleavage 318 products from lutein possibly because of light exposure through a number of the reaction 319 mechanism are given in Fig. 2. Systematic LC-MS (APCI⁺) studies have been done, and the 320 fragmentation pattern with molecular ion peak was evaluated and characterized. Samples 321 were handled carefully, taking all precautions to avoid the possibility of further oxidation. 322 Based on the results (Table 1), we speculate that formation of lutein oxidation/ photolyzed 323 products *in vitro* may possibly be due to oxidative degradation of lutein, as in the case of M1 324 or by central cleavage of the lutein to form M2, which indicates the action of high excitation 325 energies generated by UV- light, which on oxidation forms M3, which is also reported earlier by Nagao⁷, where β -carotene cleaves on excitation to retinol and retinoid. Even though the 326 327 molecular weights of M2 and M3 resembles that of retinol and 4-oxo retinoic acid, they do 328 not have any spectral similarity. 329 Increasing evidence suggests that many of the biological actions of lutein may be

ascribed to its ability to form metabolites and/ or oxidation products. It has been reported that lutein may be metabolized by eccentric cleavage, catalyzed by carotene-9',10'-dioxygenase²⁸, *in vitro*^{10,11} and *in vivo*^{5,6} resulting in the generation of lutein oxidation products. Sharoni et al.²⁹ reported that these oxidation products involved in various physiological functions

334 including signal transduction, modulation of various transcriptional factors (Nrf2 and NF-335 kB), or as photosensitizer in vision. Thus, it is worth evaluating the biological effects of 336 lutein oxidation/ photolyzed products in comparison to parent molecule lutein. The results of 337 the present study showed that UV- oxidative metabolites of lutein (M1, M2, and M3) are 338 more potent than lutein in attenuating the inflammation induced by LPS, thus indicating the 339 superior anti-inflammatory properties, which may be due to the presence of the hydroxyl 340 group at C-3 position and/or higher absorption of these oxidation products in vivo. UV-341 degradation products of β -carotene and lycopene suppressed the immune function of human peripheral blood mononuclear cells.³⁰ Catalano et al.⁹ reported that the apo-14'-lycopenoic 342 343 acid is more potent than apo-10'-lycopenoic acid and lycopene in reducing oxidative stress 344 caused by H₂O₂ and cigarette smoke in human macrophages. β-carotene metabolite, β-apo-345 13-carotenone, activated the retinoid receptor (RXR α) by interfering with nuclear receptor signaling.³¹ Higher antioxidant and cytotoxic effect of oxidized lutein over lutein were 346 reported in HeLa cells.^{10,11} These results strongly suggest that oxidation products have 347 348 potential biological effects compared to intact carotenoids.

349 Results of the present study demonstrated that UV- oxidative metabolites of lutein are 350 more potent than lutein in inhibiting the levels of nitrites, PGE₂, TNF- α , IL-6 in LPS challenged rats, which is in agreement with Shanmugasundaram and Selvaraj¹⁶ and Kim et 351 al.¹⁷, who demonstrated that lutein exerts both antioxidant and anti-inflammatory effects by 352 353 attenuating NF-KB DNA binding activity. Nitric oxide is an important inflammatory mediator produced by iNOS and plays an important role in the inflammatory response.^{32,33} Results of 354 355 the present study confirmed that LPS injection resulted in overproduction of nitrites, and 356 levels of nitrites in the serum and tissues were reduced significantly by the pre-treatment of 357 lutein oxidative metabolites. Further, results showed that oxidative metabolites more

358	efficiently suppressed PGE ₂ levels in the LPS stimulated rats than parent molecule lutein.
359	Kim et al. ¹⁷ demonstrated that the lutein down regulates the inducible COX-2 expression,
360	which is responsible for PGE_2 production in arachidonic acid metabolism. Chang et al. ³⁴
361	reported that the induction of COX-2 activity and subsequent generation of PGE_2 are closely
362	related to NO (nitrites) production. The COX-2, as well as the iNOS gene, possess binding
363	sites for several transcriptional factors, including nuclear factor- κB (NF- κB) and one possible
364	mechanism of the inhibition of COX-2 expression could be through the suppression of NF-
365	κB showed by fucoxanthin against LPS induced inflammation. ³⁵ In our experiment, we
366	observed that lutein and lutein oxidative metabolites, suppresses nitrites and PGE ₂ production
367	in the rats, possibly through the inhibition of the iNOS and COX-2 enzymes respectively.
368	It has been reported that activation of TNF receptor 1 (TNF-R1) triggered signal
369	transduction and lead to the activation of NF- κ B and JNK/AP-1, which in turn activates
370	many pro-inflammatory and immunomodulatory genes including cytokines (IL-6, IL-8, TNF-
371	α etc.), endothelial cell adhesion molecules, and surface adhesion ligands on neutrophils and
372	monocytes. ³⁶ Results from the present study indicated that lutein oxidative metabolites may
373	reduce the TNF- α concentration more competently than lutein. Lutein/oxidative metabolites
374	of lutein influence the monocytes and macrophages that produce TNF- α , thereby revealing its
375	anti-inflammatory action. The results of TNF- α inhibition by lutein or lutein metabolites
376	correlate with the decreased nitrites production in treated groups. However, the mechanism of
377	nitrites induced suppression of TNF- α synthesis is not known. A potential link could be PGE ₂
378	as it has been reported that NO activates COX enzymes and thereby leads to a marked
379	increase in PGE ₂ production. ³⁷ Lutein/ lutein oxidative metabolites suppressed the levels of
380	LPS induced PGE ₂ and TNF- α , further supported the argument for a regulatory role of NO
381	(nitrites) on TNF- α production. IL- 6 is a well known pro-inflammatory cytokine and

382	regarded as an endogenous mediator of inflammation. ¹⁵ Similar, results were seen in the case
383	of IL-6 that was reduced by lutein oxidative metabolites more profoundly than lutein.
384	It has been shown that several natural antioxidant compounds directly inhibit the
385	expression of cytokines, PGE_2 , iNOS and COX-2 and thus reduced the inflammation. The
386	LPS induced inflammatory response has been linked to the production of neutrophils derived
387	free radicals and release of other neutrophils derived mediators. ¹⁵ . He et al. ³⁸ demonstrated
388	that LPS increases the levels of oxygen derived species, which might attack plasma
389	membrane, resulting in the accumulation of MDA. Present study also exhibited similar results
390	and further revealed that oxidative metabolites of lutein considerably reduced the
391	accumulation of MDA in serum, retina and liver after LPS administration. In addition, GSH
392	levels were significantly up-regulated by lutein or oxidative metabolites of lutein. In the
393	present study, activities of CAT, SOD, GPx, and GR in serum and liver were found to be
394	lower in the LPS group, which subsequently increased towards normalcy in lutein or
395	oxidative metabolites of lutein treated groups (Table 2). Thereby, it is assumed that the
396	suppression of MDA levels in serum, retina and liver is probably due to the increased
397	activities of CAT, SOD, GPx, and GR. These results were in agreement with He et al. ³⁸ , who
398	reported that mRNA expression, as well as activities of SOD and GPx, increased after lutein
399	treatment in LPS challenged mice. Further, results also revealed that oxidative/ photolyzed
400	metabolites of lutein upregulated the antioxidant enzymes more profoundly than lutein, which
401	may be due to stronger oxygen quenching capability, considering their molecular structure.
402	In summary, lutein oxidative/ photolyzed metabolites were found to have higher anti-
403	inflammatory effect than the parent molecule lutein. A possible mechanism for the anti-
404	inflammatory effect of oxidative metabolites is the suppression of production of nitrites,
405	MDA, PGE ₂ , IL-6 and TNF- α by direct blocking NOS enzyme activity and upregulation of
406	antioxidant defense enzymes. These results suggest that along with lutein, oxidative

407	metabolites of lutein also possess potential anti-inflammatory activity and might have a
408	beneficial effect on the treatment for inflammatory diseases.
409	Acknowledgement
410	The authors thank the Director, CSIR-Central Food Technological Research Institute
411	for their encouragement and also thank Dr. Gopal Vaidhyanathan and Mr. P.M.N. Rajesh,
412	Waters India Pvt. Ltd, Bangalore for permitting to use the LC-MS facility. Also we thank Dr.
413	Diwakar, Chief Scientist, CFTRI, for helping in deducing the tentative structures for lutein
414	oxidized/ photolyzed products. This work has been carried out with the financial assistance
415	from the project BSC 0404 (Nutri-ARM) under 12th five year plan
416	[No9/1/BS/CFTRI(4)/2012-13-PPD] of the Council of Scientific and Industrial Research,
417	New Delhi, India. Nidhi Bhatiwada acknowledges the award of Senior Research Fellowship
418	by the University Grants Commission, Government of India, New Delhi, India.
419	
420	
421	
422	
423	
424	
425	
426	
.20	
427	References
428	1. B. P. Chew, C. M. Brown, J. S. Park, and P. F. Mixter, Anticancer Res., 2003, 23, 3333-

42	29	3339.
4	30	2. J. P. SanGiovanni and M. Neuringer, Am. J. Clin. Nutr., 2012, 96, 1223S-1233S.
4	31	3. T. Tanaka, M. Shnimizu, and H. Moriwaki, <i>Molecules</i> , 2012, 17, 3202–3242.
4	32	4. F. Khachik, G. Englert, C. E. Daitch, G. R. Beecher, L. H. Tonucci, and W. R. Lusby, J.
4	33	Chromatogr. B. Biomed. Sci. App., 1992, 582, 153–166.
4	34	5. G. I. Albert, U. Hoeller, J. Schierle, M. Neuringer, E. J. Johnson, and W. Schalch, Comp.
4	35	Biochem. Physiol. B Biochem. Mol. Biol., 2008, 151, 70–78.
4	36	6. L. Yonekura, M. Kobayashi, M. Terasaki, and A. Nagao, J. Nutr., 2010, 140, 1824–1831.
4	37	7. A. Nagao, J. Nutr., 2004, 134, 237S–240S.
4	38	8. J. R. Mein, F. Lian, and XD. Wang, Nutr. Rev., 2008, 66, 667–683.
4	39	9. A. Catalano, R. E. Simone, A. Cittadini, E. Reynaud, C. Caris-Veyrat, and P. Palozza,
44	40	Food Chem. Toxicol., 2013, 51 , 71–79.
44	41	10. R. Lakshminarayana, U. V. Sathish, S. M. Dharmesh, and V. Baskaran, Food Chem.
44	42	<i>Toxicol.</i> , 2010, 48 , 1811–1816.
44	43	11. R. Lakshminarayana, G. Aruna, U. V. Sathisha, S. M. Dharmesh, and V. Baskaran, Chem.
44	44	<i>Biol. Interact.</i> , 2013, 203 , 448–455.
44	45	12. H. Zhang, E. Kotake-Nara, H. Ono, and A. Nagao, Free Radic. Biol. Med., 2003, 35,
44	46	1653–1663.
44	47	13. O. Aust, N. Ale-Agha, L. Zhang, H. Wollersen, H. Sies, and W. Stahl, Food Chem.
44	48	<i>Toxicol.</i> , 2003, 41 , 1399–1407.
44	49	14. X. H. Jin, K. Ohgami, K. Shiratori, Y. Suzuki, T. Hirano, Y. Koyama, K. Yoshida, I.
4	50	Ilieva, K. Iseki, and S. Ohno, Invest. Ophthalmol. Vis. Sci., 2006, 47, 2562-2568.
4	51	15. J. E. Kim, J. O. Leite, R. deOgburn, J. A. Smyth, R. M. Clark, and M. L. Fernandez, J.
4	52	Nutr., 2011, 141, 1458–1463.
4:	53	16. R. Shanmugasundaram and R. K. Selvaraj, Poult. Sci., 2011, 90, 971–976.

- 454 17. J. E. Kim, R. M. Clark, Y. Park, J. Lee, and M. L. Fernandez, Nutr. Res. Pract., 2012, 6,
- 455 113.
- 456 18. S. J. Kim, E. Nara, H. Kobayashi, J. Terao, and A. Nagao, *Lipids*, 2001, **36**, 191–200.
- 457 19. R. Lakshminarayana, G. Aruna, R. K. Sangeetha, N. Bhaskar, S. Divakar, and V.
- 458 Baskaran, Free Radic. Biol. Med., 2008, **45**, 982–993.
- 459 20. D. Ricart-Jane, M. Llobera, and M. D. Lopez-Tejero, *Nitric Oxide*, 2002, 6, 178–185.
- 460 21. H. Ohkawa, N. Ohishi, and H. Yagi, *Anal Biochem*, 1979, **95**, 351–358.
- 461 22. L. Flohe and F. Otting, 1984, **105**, 93–104.
- 462 23. H. Aebi, *Methods in Enzymol*, 1984, **105**, 121–129.
- 463 24. L. Flohe and W. Gunzler, *Methods in Enzymol*, 1984, **105**, 114–121.
- 464 25. I. K. Smith, T. L. Vierheller, and C. A. Thorne, *Anal. Biochem.*, 1988, **175**, 408–413.
- 465 26. C. Gluthenberg, Alin P, and Mannervik B, 1985, **113**, 507–510.
- 466 27. C. Owens and R. Belcher, *Biochem J*, 1965, **94**, 705–711.
- 467 28. J. R. Mein, G. G. Dolnikowski, H. Ernst, R. M. Russell, and X.-D. Wang, *Arch. Biochem.*468 *Biophys.*, 2011, **506**, 109–121.
- 469 29. Y. Sharoni, K. Linnewiel-Hermoni, M. Khanin, H. Salman, A. Veprik, M. Danilenko,
- 470 and J. Levy, *Mol. Nutr. Food Res.*, 2012, **56**, 259–269.
- 471 30. A. Rahman and R. S. Parker, *Nutr. Res.*, 2001, **21**, 735–745.
- 472 31. E. H. Harrison, C. dela Sena, A. Eroglu, and M. K. Fleshman, *Am. J. Clin. Nutr.*, 2012,
 473 96, 1189S–92S.
- 474 32. Y. C. Lo, P. L. Tsai, Y. B. Huang, K. P. Shen, Y. H. Tsai, Y. C. Wu, Y. H. Lai, and I. J.
- 475 Chen, J. Ethnopharmacol., 2005, **96**, 99–106.
- 476 33. M. H. Pan, C. S. Lai, S. Dushenkov, and C. T. Ho, J. Agric. Food Chem., 2009, 57,
- 477 4467–4477.
- 478 34. Y. C. Chang, P. C. Li, B. C. Chen, M. S. Chang, J. L. Wang, W. T. Chiu, and C. H. Lin,

- 479 *Cell. Signal.*, 2006, **18**, 1235–1243.
- 480 35. K. Shiratori, K. Ohgami, I. Ilieva, X. H. Jin, Y. Koyama, K. Miyashita, K. Yoshida, S.
- 481 Kase, and S. Ohno, *Exp. Eye Res.*, 2005, **81**, 422–428.
- 482 36. H. Wajant, K. Pfizenmaier, and P. Scheurich, Cell Death Differ., 2003, 10, 45–65.
- 483 37. K. Ohgami, K. Shiratori, S. Kotake, T. Nishida, N. Mizuki, K. Yazawa, and S. Ohno,
- 484 Invest. Ophthalmol. Vis. Sci., 2003, 44, 2694–2701.
- 485 38. R. R. He, B. Tsoi, F. Lan, N. Yao, X.-S. Yao, and H. Kurihara, *Chin. Med.*, 2011, 6, 38.

487 **Figure Legends**:

- 488 Fig. 1: A typical HPLC and LC-MS profile of standard lutein (A, B) and lutein oxidation
- 489 products resulted after UV- exposure to lutein liposomes for 48 h (C, D).
- 490 Refer to Table 1 for possible structures and respective molecular mass. HPLC and LC-MS
- 491 conditions adopted were outlined under materials and method section.
- 492
- 493 Fig. 2: Proposed pathway of lutein fragmentation *in vitro* by UV- irradiation.
- 494 Refer to Table 1 for possible structures and respective molecular mass.
- 495
- 496 Fig. 3: HPLC profile of purified lutein oxidation products/ metabolites after purification by
- 497 preparatory and reverse phase HPLC.
- 498 HPLC conditions adopted were outlined under materials and method section.
- 499
- 500 Fig. 4: Typical LC-MS profile of four different lutein oxidation products/ metabolites after
- 501 purification by preparatory and reverse phase HPLC.
- 502 HPLC and LC-MS conditions adopted were outlined under materials and method section.
- 503
- 504 Fig. 5: Effect of lutein or lutein oxidation products/ metabolites (200 μ M/day for 15 days) on
- 505 the nitrites in the serum (A) and liver (B) of rats treated with LPS.
- 506 Values are mean \pm SD (n = 5). Groups not sharing a similar letter are significantly different
- 507 (p < 0.05) as determined by one-way ANOVA followed by Tukey's test.

- 509 Fig. 6: Effect of lutein or lutein oxidation products/ metabolites (200 μ M/day for 15 days) on
- 510 the malondialdehyde concentration in the serum (A), liver (B) and retina (C) of rats treated
- 511 with LPS.

- 512 Values are mean \pm SD (n = 5). Groups not sharing a similar letter are significantly different
- 513 (p < 0.05) as determined by one-way ANOVA followed by Tukey's test.
- 514
- 515 Fig. 7: Effect of lutein or lutein oxidation products/ metabolites (200 µM/day for 15 days) on
- 516 the serum TNF- α (A), IL-6 (B) and PGE₂ (C) levels in rats treated with LPS.
- 517 Values are mean \pm SD (n = 5). Groups not sharing a similar letter are significantly different
- 518 (p < 0.05) as determined by one-way ANOVA followed by Tukey's test.

- 520 Table 1: Fragmented ions derived after the exposure of lutein with UV- irradiation for 48 h,
- 521 elucidated by LC-MS, APCI⁺ ion mode showing their molecular structure, molecular mass
- 522 and molecular formula.

Parameters	Control	LPS	Lutein + LPS	M1 + LPS	M2 + LPS	M3 + LPS	M4 + LPS
Serum							
SOD	1.9 ± 0.3^{a}	0.5 ± 0.2^{b}	2.0 ± 0.3^{a}	$3.8\pm0.3^{\circ}$	2.7 ± 0.4^{a}	2.9 ± 0.4^{ac}	2.2 ± 0.5^{a}
(U/mg protein)							
CAT	$0.9\pm0.2^{\mathrm{a}}$	0.3 ± 0.1^{b}	$1.7 \pm 0.6^{\rm c}$	3.1 ± 0.8^{d}	2.1 ± 0.8^{cd}	2.1 ± 0.7^{cd}	1.5 ± 0.4^{c}
(µmol/min/mg protein)							
GPx	1.6 ± 0.1^{a}	0.7 ± 0.1^{b}	1.1 ± 0.3^{a}	$2.3 \pm 0.3^{\mathrm{ac}}$	$2.2\pm0.2^{\mathrm{ac}}$	1.6 ± 0.2^{a}	1.0 ± 0.2^{a}
(mmol/min/mg prot)		L				,	
GR	40.5 ± 3.5^{a}	$30.3 \pm 4^{\text{b}}$	$60.3 \pm 1.9^{\circ}$	75.4 ± 2.8^{d}	$64.8 \pm .4^{\circ}$	78.4 ± 1.4^{d}	$61.3 \pm 9.8^{\circ}$
(µmol/min/mg protein)		h					
GSH	7.8 ± 1.7^{a}	3.5 ± 0.2^{6}	10.8 ± 3.3^{a}	$17.2 \pm 2.3^{\circ}$	$15.9 \pm 1.6^{\circ}$	$14.8 \pm 2.0^{\circ}$	11.5 ± 3.4^{a}
<u>(µg/ml)</u>							
Liver		h					
SOD	3.7 ± 0.5^{a}	$1.3 \pm 0.6^{\circ}$	$5.7 \pm 0.8^{\rm ac}$	6.8 ± 0.5^{ac}	$7.1 \pm 0.6^{\circ}$	$7.3 \pm 0.6^{\circ}$	5.4 ± 1.6^{ac}
(U/mg protein)			<pre>< - 2</pre>				
	$5.5 \pm 0.8^{\circ}$	$1.4 \pm 0.3^{\circ}$	6.8 ± 1.5^{a}	$8.7 \pm 0.9^{\circ}$	$9.4 \pm 0.9^{\circ}$	7.7 ± 0.7^{ac}	$6.4 \pm 0.8^{\circ}$
(µmol/min/mg protein)	11 () 2 08	- 1 + 1 ch		20.0 + 2.5%	101 + 2 26	100+00	170 1 1 480
GPX	$11.6 \pm 3.0^{\circ}$	$5.1 \pm 1.6^{\circ}$	16.2 ± 2.7^{ac}	$20.9 \pm 3.5^{\circ}$	$18.1 \pm 3.2^{\circ}$	$18.9 \pm 3.6^{\circ}$	17.2 ± 1.4^{40}
(mmoi/min/mg protein)	10 ± 00^{a}	$a a + a a^{b}$	1.4 ± 0.6^{a}	$2 1 + 0 0^{\mathbf{a}}$	25 ± 0.2^{a}	$24 + 0.5^{a}$	1.2 ± 0.6^{a}
OK (mmal/min/ma protain)	$1.8 \pm 0.2^{\circ}$	$0.8 \pm 0.3^{\circ}$	$1.4 \pm 0.6^{\circ}$	$2.1 \pm 0.6^{\circ}$	$2.5 \pm 0.3^{\circ}$	$2.4 \pm 0.5^{\circ}$	$1.3 \pm 0.6^{\circ}$
(IIIII0//IIII/IIIg protein)	69.0 ± 2.5^{a}	266 ± 2^{b}	562±51 ^a	72.2 ± 2.1^{a}	$99.2 \pm 6.7^{\circ}$	$90.9 \pm 2.7^{\circ}$	61.2 ± 70.53
(umol/min/mg protein)	08.9 ± 3.3	30.0 ± 2	30.3 ± 3.4	12.3 ± 3.1	88.3 ± 0.7	80.8 ± 2.7	$01.2 \pm /a.3$
GSH	22.5 ± 1.4^{a}	0.6 ± 0.0^{b}	22.1 \pm 2.1 ^a	$262 \pm 42^{\circ}$	$240 \pm 20^{\circ}$	$20.4 \pm 5.1^{\circ}$	26.4 ± 2.9^{a}
(ug/g)	23.3 ± 1.4	9.0 ± 0.9	22.1 ± 3.1	<i>3</i> 0. <i>3</i> ± 4. <i>3</i>	J4.0 ± 2.8	30.4 ± 3.1	∠0.4 ± ∠.8
(<i>µB</i> / <i>B</i>)							

523 Table 2: Effect of feeding lutein or lutein oxidation products (200 μ M/d/rat) for 14 days on the antioxidant enzymes in the serum and liver of the 524 rats treated with LPS.

- 549 Values are mean \pm SD (n = 5). Values not sharing a similar superscript within the same row in a group are significantly different (p < 0.05) as
- 550 determined by one-way ANOVA followed by Tukey's test. CAT, catalase; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione
- 551 reductase; GST, glutathione-S-transferase; LPS, lipopolysaccharides; SOD, superoxide dismutase.

552 Graphical Abstract

415x295mm (96 x 96 DPI)

480x311mm (96 x 96 DPI)

207x143mm (96 x 96 DPI)

241x135mm (96 x 96 DPI)

193x86mm (96 x 96 DPI)

211x169mm (96 x 96 DPI)

205x169mm (96 x 96 DPI)