Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Food & Function
2	
3	Tocotrienol modulates crucial lipid metabolism-related genes in differentiated
4	3T3-L1 preadipocytes
5	
6	Gregor Carpentero Burdeos ^a , Kiyotaka Nakagawa ^{a*} , Takumi Abe ^a , Fumiko Kimura ^a ,
7	Teruo Miyazawa ^a
8	
9	^a Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science,
10	Tohoku University, Sendai 981-8555, Japan
11	Corresponding author. Tel.: +81 22 717 8906; fax: +81 22 717 8905
12	E-mail address: nkgw@biochem.tohoku.ac.jp. (K. Nakagawa)
13	
14 15	Running title: Tocotrienol modulates lipid metabolism-related genes

16 **ABSTRACT**

17

18	Obesity and other lipid metabolism-related diseases have become more prevalent in
19	the recent years due to the drastic lifestyle change and dietary patterns. Unsaturated
20	vitamin E, tocotrienol (T3), represents one of the most fascinating naturally-occurring
21	compounds that have potential to influence a broad range of mechanism underlying
22	abnormal lipid metabolism process. But however its efficacy and mechanism have been
23	uncertain due to scarcity of data concerning the effect of T3 on lipid metabolism. In this
24	study, we found out a series of entrancing experimental evidences on how T3 affects
25	lipid metabolism in differentiated 3T3-L1 preadipocytes. Treatment of T3 (25 μ M),
26	especially δ and γ isomers, inhibited the accumulation of triglyceride and lipid droplets
27	in differentiated 3T3-L1 cells. This manifestation was supported by mRNA and protein
28	expressions of crucial lipid metabolism-related genes. The present study provided a
29	novel set of data pertaining to the possibility of T3 as an anti-metabolic disorder agent.
30	
31	Key Words: Tocotrienol; Tocopherol; Triglyceride; Lipid metabolism

33 **1. Introduction**

34

35 According to the world health organization (WHO), a change in lifestyle and habits 36 which contributes to a change in dietary patterns have increased in the generation of 37 lifestyle-related diseases especially those closely linked to heart, liver, obesity and other 38 metabolic-related afflictions. Moreover, obesity in particular has become more prevalent 39 in a certain social strata [1]. Though several approaches have been done regarding the 40 amelioration of obesity, most of these undertakings largely unsuccessful. Several 41 experimental trials concerning molecular regulation of some known lipid species such 42 as triglyceride (TG) and cholesterol (Cho) via biologically active molecules are in route 43 to reduce abnormal lipid accumulations.

44 The fat homeostasis is characterized between fat synthesis and fat breakdown in the 45 biological system. Metabolic-related diseases such as obesity happen when the balance 46 between energy intakes exceeds energy expenditure [2, 3]. Glucose generated from 47 carbohydrates stimulates lipogenesis by making it a substrate for lipogenic process 48 which is glycolytically converted to acetyl-CoA. This conversion then provides an 49 ample substrate (acetyl-CoA) to be carboxylated by acetyl-CoA carboxylase (ACC) to 50 malonyl-CoA of which it is elongated by fatty acid synthase (FAS) to create fatty acids 51 of dependent types. Regulation of this complex interplay would consequently affect fat 52 storage potential.

53 Since the discovery of adipose tissue as one of the sites that could synthesize fatty 54 acids, this led to the initial conclusion that this tissue is the major site for lipogenesis [4]. 55 Therefore, understanding the cellular mechanisms involved in the aberration of the 56 homeostatic status of fat storage and usage in the adipose tissue could entail an array of

57 new insights regarding the possibility of future pharmacological target for the treatment 58 of obesity and other metabolic-related diseases. 59 Recently, a handful of studies have been reported concerning the novel utilization of 60 functional food components and nutrients as possible inhibitory agent against 61 endogenous lipid accumulation generated by aberrant lipid metabolic process. For 62 instance, catechin has been reported to inhibit adipocyte differentiation via down 63 regulation of peroxisome proliferator-activated receptor (PPAR)-y and 64 CCAAT/enhancer binding protein (C/EBP)- α in 3T3-L1 cells [5]. Furthermore, 65 administration of carotenoids and retinoids has been linked to have anti-adiposity 66 through nuclear receptors regulation [6]. 67 Vitamin E is the generic name for tocopherol (Toc) and tocotrienol (T3). Structurally, 68 these vitamin E classes differ only in their side chains (Fig. 1). Toc has saturated phytyl 69 side chain, while T3 contains unsaturated isoprenoid tail. To date, eight substances have 70 been found in nature as vitamin E: α -, β -, γ -, and δ -Toc and α -, β -, γ -, and δ -T3. T3 has 71 recently gained increasing interest due to its several health-promoting properties that 72 differ somewhat from those of Toc. For example, T3 protects neuronal cells against 73 oxidative damage, and have anti-angiogenesis, anti-tumor, and lipid-lowering activity 74 [7-12]. However, it should be noted that only few paper have been published focusing 75 on the biological effect of T3 on lipogenesis in the adipose tissue. T3 is reported to 76 suppress adipocyte insulin-induced differentiation and Akt phosphorylation in 3T3-L1 77 preadipocytes [13]. It was also cited that γ -T3 isomer may improve obesity-related 78 functional abnormalities in adipocytes by attenuating nuclear factor (NF)-kB activation 79 and the expression of inflammatory adipokines [14]. Though these data emphasized the 80 potency of T3 as anti-adipogenic and anti-inflammatory agents in adipocyte cells, it is

81	also worth to note that the lipid metabolic pathway is very complex as such regulation
82	only of those genes (NF- κ B and inflammatory adipokines) would not confirm the
83	clinical usage of T3 as future anti-metabolic disease medicine. Because of the scarcity
84	of data concerning the impact of T3 as potential lipid metabolism regulator in adipose
85	tissues, further biological studies are needed to elucidate the mechanisms involve on
86	how T3 affects the interaction of crucial genes in the lipid metabolism pathway in
87	adipocyte cells. In this study, investigations concerning the modulation of T3 on lipid
88	metabolism via multiple metabolic genes regulation in differentiated 3T3-L1
89	preadipocytes were clearly elucidated trough cellular, RT-PCR and western blotting
90	analyses respectively.
91	
92	2. Materials and methods
93	2.1 Reagents and cells
94	T3 isomers and α -Toc were kindly provided by Eisai Food & Chemical Co., Ltd
95	(Tokyo, Japan) and were dissolved in ethanol at a concentration of 50 mM as stock
96	solution. 3T3-L1 preadipocytes were obtained from the RIKEN cell bank (Tsukuba,
97	Japan). The cells were cultured in DMEM medium (high glucose; Sigma, St. Louis,
98	MO) containing 0.3 g/L L-glutamine and 2.0 g/L sodium bicarbonate supplemented
99	with 10% fetal bovine serum (FBS; Biowest, Paris, France), 100 kU/L penicillin, and
100	100 mg/L streptomycin (Gibco BRL Rockville, MD) at 37 °C in 5% CO ₂ /95% air
101	atmosphere in a humidified incubator. All reagents used in this study were of analytical
102	grade.
103	2.2 Preparation of experimental medium for cell culture studies

104 T3 isomers and α -Toc stock solutions were diluted with 10% FBS/DMEM (high

105 glucose) medium to achieve the desired final concentration (0-50 μ M). The final 106 concentration of ethanol in the experimental medium was less than 0.1% (v/v), which 107 did not affect cell viability. Medium with ethanol alone was similarly prepared and used 108 as control medium. 109 2.3 Cell viability assay For cell viability assays, 3T3-L1 preadipocytes $(2 \times 10^4 \text{ cells/well})$ were 110 111 pre-incubated with 10% FBS/DMEM (high glucose) in 96 well culture plates. 24 h later, 112 the cells were washed with phosphate buffered saline (PBS) and medium was replaced 113 with the experimental medium. After incubation for 24 h, the number of viable cells was 114 determined using WST-1 reagent according to the manufacturer's instructions (Dojindo 115 Laboratories, Kumamoto, Japan). In brief, WST-1 reagent (10 μ L) was added to the 116 medium, and incubated at 37 °C for 3 h. Absorbance (450/655 nm) of the medium was 117 measured with a microplate reader (Model 550, Bio-Rad Laboratories, Hercules, CA). 118 **2.4 Adipocyte differentiation** 3T3-L1 preadipocytes (2×10^4 cells/plate) were seeded in a 35 mm cell culture plates 119 120 supplemented with 10% FBS/DMEM (high glucose), and incubated until confluence. 121 Differentiation was then initiated by 10% FBS/DMEM (high glucose) containing 0.25 122 µM dexamethasone, 0.5 mM 3-isobuthyl-1-methylxanthine and 10 µg/mL insulin in the 123 presence or absence of T3 isomers and α -Toc. The cells were then further incubated for 124 6-8 din 10% FBS/DMEM (high glucose) containing 10 µg/mL insulin in the presence or 125 absence T3 and α -Toc. Medium change containing the latter was performed at every 2 d 126 interval from the start of the differentiation. At day 8, cells were harvested for TG, T3 127 and Toc cellular uptake analyses.

Food & Function Accepted Manuscript

128 **2.5 TG analysis**

129 Cellular TG concentrations were evaluated using Folch method [15]. Briefly, 130 differentiated 3T3-L1 cells were washed with PBS and scrapped using rubber 131 policeman, transferred into eppendorf tube (1.5 mL) and were centrifuged for 1000 g for 132 3 min. Cell pellets were transferred to micro smashing tube with the addition of 500 µL 133 PBS buffer for homogenization. After homogenization, contents of the cellular protein 134 were determined using Bradford protein assay [16]. Cellular TG was measured using 135 commercial TG kit (Wako, Osaka, Japan). 136 2.6 Oil Red O staining 137 Differentiated 3T3-L1 cells were washed with PBS and were fixed using 4% formalin 138 for 60 min. After fixation, the cells were washed with distilled water, stained with 139 filtered oil red O working solution and washed further with distilled water. Visualization 140 of the stained lipids was performed using photomicrograph system. 141 2.7 T3 and Toc cellular uptake of 3T3-L1 differentiated cells 142 Cellular uptake of T3 and Toc in differentiated 3T3-L1 cells were measured using 143 4000 Qtrap LC-MS/MS (AB SCIEX, Tokyo, Japan). In brief, at day 8 after cellular 144 differentiation, differentiated 3T3-L1 cells were washed with PBS, suspended in 2 mL 145 of water in a micro smashing tube for homogenization. A 1 mL aliquot of 6% ethanolic 146 pyrogallol and 1 mL of 1 µM ethanolic 2,2,5,7,8-pentamethyl-6-hydroxychroman 147 (internal standard) were mixed with the cell suspension. The sample mixture was added 148 with 0.2 mL of 60% aqueous KOH and incubated at 70 °C for 30 min. After the mixture 149 was cooled down at room temperature, 1.5 mL of water and 5 mL of hexane were added 150 for extraction. The samples were then centrifuged at 1000g for 5 min, and the upper 151 hexane layer was collected and dried. The residue was reconstituted in 100 µL of hexane, and a portion of the aliquot (5 μ L) was injected to LC-MS/MS for analysis. 152 7

153	Separation was performed at 40 °C using a silica column (ZORBAX Rx-SIL, 4.6×250
154	mm; Agilent, Palo Alto, CA). A mixture of hexane/1, 4-dioxane/2-propanol (100:4:0.5)
155	was used as the mobile phase at a flow rate of 1.0 mL/min. T3 and Toc were detected by
156	atmospheric pressure chemical ionization mode (APCI). MS/MS parameters were
157	optimized withT3 and Toc (Eisai Food & Chemical Co., Ltd) standards in APCI mode
158	(negative). T3 and Toc were determined using the multiple reaction monitor (MRM)
159	mode as follows: α-Toc, <i>m/z</i> 429.5> <i>m/z</i> 163.0; α-T3, <i>m/z</i> 423.4> <i>m/z</i> 163.1; β-T3, <i>m/z</i>
160	409.4> <i>m/z</i> 148.9; γ-T3, <i>m/z</i> 409.4> <i>m/z</i> 148.9; δ-T3, <i>m/z</i> 395.4> <i>m/z</i> 135.0. Cellular T3
161	and Toc contents were calculated in nmol/mg protein of differentiated 3T3-L1 cells.
162	
163	2.8Isolation of total RNA and analysis of mRNA expression
164	Total cellular RNA was isolated with an RNeasyPlus Mini kit (Qiagen, Valencia, CA)
165	for real-time quantitative reverse transcription-PCR (RT-PCR). cDNA was synthesized
166	using a Ready-To-Go T-Primed First-Strand kit (GE Healthcare, Piscataway, NJ), and
167	PCR amplification was performed with a CFX96 Real-Time PCR Detection System
168	(Bio-Rad Laboratories, New South Wales, Australia) using SYBR Premix Ex Taq
169	(Takara Bio Inc., Shiga, Japan) and gene-specific primers for FAS, carnitine
170	palmitoyltransferase I (CPT1), stearoyl-CoA desaturase 1 (SCD-1), acetyl-CoA
171	carboxylase 1 (ACC1), sterol regulatory element-binding protein 1c (SREBP 1c),
172	adiponectin receptor 2 (ADIPOR2), uncoupling protein 2 (UCP2),
173	3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA-R), low-density lipoprotein
174	receptor (<i>LDLR</i>), <i>PPAR-</i> γ , and beta actin (β -actin). PCR conditions were 95 °C for 60 s,
175	95 °C for 5 s, and 65 °C for 30 s for 40 cycles.
176	2.9 Western blotting analysis

177	Differentiated 313-L1 cells proteins were extracted and separated by SDS-PAGE
178	(4-20% e-PAGEL; Atto, Tokyo, Japan). The protein bands were transferred to
179	polyvinylidene fluoride membranes (Invitrogen, Carlsbad, CA). After blocking for 1 h,
180	membranes were incubated with primary antibodies for FAS, CPT1, SCD-1, ACC1,
181	SREBP 1c, UCP2, LDLR, PPAR- γ , and β -actin (Cell Signaling Technology, Beverly,
182	MA), followed by horseradish peroxidase-conjugated secondary antibody (Cell
183	Signaling Technology). ECL Plus (GE healthcare) was used for detection. Bands
184	intensities were measured using Image Lab software version 3.0 (Bio-Rad
185	Laboratories).
186	2.10 Statistical analysis
187	The data were expressed as the mean \pm standard deviation (SD). One-Way ANOVA
188	was performed, followed by the Bonferroni/Dunn test for multiple comparisons.
189	Differences were considered significant at $P < 0.05$.
190	
191	3. Results
192	3.1 Treatment of T3, especially δ and γ isomers, inhibits TG and lipid droplets
193	accumulations in differentiated 3T3-L1 cells
194	Sample treated 3T3-L1 preadipocytes were subjected to WST-1 assay. Results
195	showed that most of the T3 isomers exhibited cytotoxic effect to 3T3-L1 preadipocytes
196	at higher doses (20-50 μ M) except that of α -T3 which only showed significant
197	cytotoxicity at 50 μ M (Fig. 2). However, α -Toc did not show any cytotoxic effect to
198	3T3-L1 preadipocytes. Since most of the T3 isomers showed less cytotoxic effect at 25
199	μ M, this concentration was used in the succeeding experiments.
200	Next, differentiated 3T3-L1 cells were treated with T3 or Toc for 8 d, and cellular TG

Food & Function

201	was extracted. TG levels were measured using TG measuring Kit (Wako), and
202	expressed as mg/mg protein. T3 showed abrogation of TG in differentiated 3T3-L1 cells
203	at dose dependent manner (Fig. 3). T3 isomers (δ -, γ -, and β -T3) attenuated TG levels at
204	25-50 μ M concentrations, but α -T3 showed attenuation only at 50 μ M. However,
205	unexpectedly, there were no significant differences observed in the cellular uptake
206	concentration of T3 and Toc (Fig. 4). This suggested that the molecular structure of δ -,
207	γ -, and β -T3, rather than their amounts in the 3T3-L1 is an important determinant for
208	their bioactivity. This possibility needs further investigation, because it has been
209	generally known that δ - and γ -T3 exert bioactivity (e.g., cytotoxicity) at lower
210	concentrations than other T3 and Toc isomers because of faster rate of cellular uptake.
211	Moreover, this is the first data reported regarding the measurement of T3 and Toc
212	cellular uptake in differentiated 3T3-L1 cells which might give valuable information as
213	to the differing T3 and Toc cellular incorporation in different cell lines.
214	
215	In order to confirm whether T3 or Toc affects the lipid droplets accumulation in
216	differentiated 3T3-L1 cells, oil red O staining assay was performed. Cellular lipid
217	droplets aggregations were significantly observed from 6 to 8 d after differentiation (Fig.
218	5). Differentiated 3T3-L1 cells treated with T3 showed significant reduction of lipid
219	droplets with higher effect exhibited by δ -, γ -, and β -T3 isomers respectively. Though
220	α -T3 also showed a less reduction of lipid droplets, its effect was comparable with other
221	T3 isomers (Fig. 5). Moreover, α -Toc did not showed any observable reduction of lipid
222	droplets in the differentiated cells.

3.2 Regulation of T3 to crucial lipid metabolism-related genes and proteins in 223 differentiated 3T3-L1 cells 224

Food & Function Accepted Manuscript

225	Effects of T3 or Toc on mRNA expression levels of some known crucial lipogenic
226	genes were investigated. Differentiated 3T3-L1 cells treated with or without T3 or Toc
227	at 8 d after differentiation were harvested and subjected to mRNA extraction. Selected
228	genes mRNA expressions were evaluated using RT-PCR. Expression of crucial lipid
229	metabolism-related genes such as FAS, SCD-1, ACC1, SREBP 1c, LDLR, and PPAR-y
230	were significantly down regulated by δ - and γ -T3 (Fig. 6). On the other hand, β -T3
231	showed down regulation to SCD-1, ACC1 and LDLR genes respectively. There were no
232	significant attenuation observed for α -T3 and α -Toc. In contrast, only δ - and γ -T3
233	significantly up-regulated CPT1, ADIPOR2 and UCP2 genes expressions (Fig. 6). In
234	this study, interestingly, gene that codes for Cho synthesis (HMG-CoA-R) was not
235	regulated by all experimental groups. This observation was in coherence with our
236	previous animal and cell culture studies [12]. We therefore hypothesized that the
237	reported lipid lowering effect of T3 might be mediated by its regulation to other crucial
238	lipid metabolism-related genes rather than HMG-CoA-R gene. The present study caters
239	an immense possibility that T3 can regulate a wide array of essential genes necessary
240	for lipid metabolism.
241	Finally, we extracted the proteins from differentiated 3T3-L1 cells incubated with
242	T3 and Toc for 8 d, and analyzed the proteins using customary western blotting
243	procedure. Protein blots revealed that δ - and γ -T3 markedly repressed FAS, SCD-1,
244	ACC1, SREBP 1c, LDLR, and PPAR-y protein expressions (Fig. 7). Up regulation of
245	CPT1 and UCP2 proteins were also observed in δ - and γ -T3 treated 3T3-L1
246	differentiated cells. However, β -T3 did not showed remarkable regulation to all selected
247	proteins though it displayed significant mRNA regulation to SCD-1, ACC1, and LDLR
248	genes (Fig. 6). In the present study, both α -T3 and α -Toc did not show any significant

249	regulation to all the proteins (Fig. 7).
250	
251	4. Discussion
252	The modulation of precise gene expression especially those that activates lipid
253	metabolism process in response to nutritional factors has become an immense
254	significance as to the search of novel functional food constituents that could
255	physiologically rectify the aberrant expressions of these genes. In our previous studies,
256	T3 significantly attenuated TG accumulation via lipogenic and β -oxidation genes
257	regulations [12]. In order to unravel the profound mechanism involve regarding the
258	bioactivity of T3 against lipid metabolism, we investigated the effect of T3 to crucial
259	lipid metabolism-related genes that significantly influences this metabolic machinery in
260	differentiated 3T3-L1 preadipocytes.
261	In this study, T3 isomers but not α -Toc showed a significant cytotoxic effect to
262	3T3-L1 preadipocytes at 30-50 μ M (Fig. 2). Moreover, as to the reason why α -Toc did
263	not show any cytotoxic effect to the cells is still unknown. But such manifestation has
264	been observed in different cell lines such as human hepatocellular carcinoma (HepG2)
265	[12]. Moreover, T3-induced TG attenuation was significantly observed in differentiated
266	3T3-L1 cells with higher efficacy to that of δ - and γ -T3 isomers (25µM) (Fig. 3).
267	Conversely, although T3 significantly attenuated TG in 3T3-L1 cells, the concentrations
268	of T3 and Toc cellular uptake were not significantly different (Fig.4). Furthermore,
269	since 3T3-L1 cells were incubated with T3 and Toc for such a long time (8 days), this
270	may raise the possibilities of the role of T3 metabolites in the present experimental
271	condition as such further studies are needed to elucidate the mechanism behind this
272	observed experimental phenomenon.

273	To date, very few data have shown the ability of some T3 isomers such as α - and
274	γ -T3 in the reduction of cellular TG in adipocyte cell lines [13], but however it is also
275	important to note that α -Toc failed to show significant TG attenuation (Fig. 3).
276	Interestingly, lipid droplets accumulation in differentiated 3T3-L1 cells were also
277	markedly reduced by T3 (Fig. 5). In its simplest form, lipid droplets controls the storage
278	and hydrolysis of neutral lipids including TG or Cho esters and its regulation is of vital
279	importance in the development of lipid-related diseases [17]. Therefore, T3, but not Toc,
280	may attenuate TG accumulation by reducing lipid droplets in the differentiated
281	preadipocytes. Our findings provided a new information regarding the effect of T3 (all
282	isomers) as well as Toc on the TG levels in differentiated 3T3-L1 cells.
283	T3 has been increasingly known as potential compound that can reduce TG
284	accumulation. For instance, it was reported that T3 suppresses TG accumulations and
285	cellular differentiations in preadipocytes cell lines via Akt phosphorylation and
286	transcription factor C/EBP α down regulation [13]. But however it is very vital to note
287	that lipid metabolic process involved a complex system of genetic and enzymatic links
288	that are directly or subsidiarily interplaying to sustain lipid homeostasis. In the present
289	study, T3 significantly modulated an array of genes that are crucial for lipid metabolism.
290	Among these genes, T3 observably showed regulation to those genes that code for lipid
291	biosynthesis (FAS, SCD-1, ACC1, ADIPOR2 and LDLR) and β -oxidation (CPT1 and
292	UCP2). Additionally, transcription factors such as SREBP 1c and PPAR- γ were also
293	markedly regulated by T3 (Fig. 6). Moreover, down regulation of cleaved SREBP1c
294	was also observed in T3 treated differentiated 3T3-L1 cells (date not shown) which
295	further justifies that the suppression of T3 to SREBP 1c was firstly initiated by its
296	non-phosphorylated membrane-bound precursor thereby deactivating its transcription

297	process. FAS and SREBPs are both noted to be the culprit of lipid synthesis, and
298	regulations of these genes are known to induce dramatic reductions of fat accumulations
299	[18, 19]. Specifically, this physiological role of SREBP-1c in lipogenesis was initially
300	proposed for its direct control of lipogenic genes such as those that codes for FAS and
301	acetyl coenzyme-A carboxylase (ACC) in the liver and adipose tissue [20]. Thus, the
302	dramatic reduction of TG observed in differentiated 3T3-L1 cells maybe associated with
303	the multiple modulation of SREBP 1c, FAS and ACC genes transcription by T3 (Fig. 6).
304	Moreover, reports showed that SCD-1 inhibition results in the buildup of acyl-CoAs
305	which diminishes the inhibition of CPT shuttle and will allow fat transportation to the
306	mitochondria for breakdown via β -oxidation [21, 22]. Therefore, T3-induced down
307	regulation of SCD-1 gene expression may partly explain the up regulation of CPT1 gene
308	expression thereby enhancing β -oxidation process in 3T3-L1 differentiated cells.
309	Interestingly, uncoupling protein 2 (UCP2), a mitochondrial gene that functions as
310	uncouplers of oxidative phosphorylation thus dissipating energy as heat, was also up
311	regulated by T3 [23]. The mechanism of this new discovery is still unknown. However,
312	although the exact molecular mechanism of action is still contentious, it is reported that
313	UCP2 expression is activated by the peroxisome proliferator-activated receptors
314	(PPARs) [24]. Contrary to our findings, T3 administration to 3T3-L1 differentiated cells
315	significantly down regulated <i>PPAR-γ</i> and up regulated <i>UCP2</i> genes expressions (Fig. 6).
316	Whether the up regulation UCP2 gene expression is directly associated with PPAR
317	transcription factor activation or by other unknown mechanism, this issue is still open
318	for further research.
319	Besides this regulation of T3 to lipid metabolism-related genes transcription, protein

320 expressions of these genes were also significantly regulated by T3 (Fig. 7). Importantly,

321 β -T3 was not able to show significant regulation to selected proteins even though it 322 exhibited significant mRNA regulation to SCD-1, ACC1, and LDLR genes (Fig. 6). This 323 might employ that the effect of β -T3 to these genes is confined only at mRNA level. 324 This observation may relate to the processes between transcription and translation 325 regulation. The correlation between transcription and translation level can vary 326 sometimes as there are many steps and factors involved in the two processes. An mRNA 327 may have a low expression profile, but may be stable and efficiently translated. To date, 328 to the best of our knowledge, this is the first data reported concerning the wide 329 regulation of T3 to crucial lipid metabolism-related protein expressions in differentiated 330 preadipocytes. 331 The modulation of T3 to these crucial lipid metabolism-related proteins accentuates 332 the possible reason as to the reported lipid-lowering effect of T3 [12, 25]. Furthermore, 333 the underlying mechanism on how T3 (especially δ and γ isomers) significantly 334 regulated both mRNA and protein expressions of crucial lipid metabolism-related genes 335 can somehow be explained on its individual isomer molecular structure differences. 336 This assumption has been currently in experimental development in our laboratory. 337 Generally, adhering to these valuable findings, regulation of T3 on both mRNA and 338 protein expressions of lipid metabolism related-genes would create a possible down and 339 upstream modulation of interacting genes necessary for lipid metabolism which 340 eventually could lead to the amelioration of abnormal lipid accumulations caused by 341 aberrant lipid metabolic process. A thorough study on how these regulated genes by T3 342 affects the other interplaying genes necessary for the total cellular process of lipid 343 metabolism are of great importance future studies to provide a probable lipid 344 metabolism regulation genetic profile for T3.

345	Acknowledgements		
346	This work was supported in part by KAKENHI (S) (20228002, to T. M.) of JSPS,		
347	Japan.		
348			
349	Conflict of Interest		
350	The authors declare that they have no conflict of interest		
351			
352	Refe	rences	
353	[1]	Kopelman PG. Obesity as a medical problem. <i>Nature</i> , 2000, 404 , 635-643.	
354	[2]	Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell,	
355		2001, 104 , 531-543.	
356	[3]	Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell,	
357		2004, 116 , 337-3503.	
358	[4]	Shapiro B, Wertheimer E. The synthesis of fatty acids in adipose tissue in vitro.	
359		J Biol Chem, 1948, 173 , 725-728.	
360	[5]	Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K,	
361		Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by	
362		down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci	
363		Biotechnol Biochem, 2004, 68, 2353-2359.	
364	[6]	Kawada T, Kamei Y, Fujita A, Hida Y, Takahashi N, Sugimoto E, Fushiki T.	
365		Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear	
366		receptors. Biofactors, 2000, 13, 103-109.	
367	[7]	Qureshi AA, Qureshi N, Wright JJ, Shen Z, Kramer G, Gapor A, Chong YH,	
368		DeWitt G, Ong A, Peterson DM. Lowering of serum cholesterol in	

369		hypercholesterolemic humans by tocotrienols (palmvitee). Am J Clin Nutr, 1991,
370		53 ,1021S-1026S.
371	[8]	Khanna S, Roy S, Slivka A, Craft TK, Chaki S, Rink C, Notestine MA, DeVries
372		AC, Parinandi NL, Sen CK. Neuroprotective properties of the natural vitamin E
373		alpha-tocotrienol. Stroke, 2005, 36, 2258-2264.
374	[9]	Nakagawa K, Shibata A, Yamashita S, Tsuzuki T, Kariya J, Oikawa S, Miyazawa
375		T. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J Nutr,
376		2007, 137 , 1938-1943.
377	[10]	Shibata A, Nakagawa K, Sookwong P, Tsuzuki T, Oikawa S, Miyazawa T. Tumor
378		anti-angiogenic effect and mechanism of action of delta-tocotrienol. Biochem
379		Pharmacol, 2008, 76, 330-339.
380	[11]	Hiura Y, Tachibana H, Arakawa R, Aoyama N, Okabe M, Sakai M, Yamada K.
381		Specific accumulation of gamma- and delta-tocotrienols in tumor and their
382		antitumor effect in vivo. J Nutr Biochem, 2009, 20, 607-613.
383	[12]	Burdeos GC, Nakagawa K, Kimura F, Miyazawa T. Tocotrienol attenuates
384		triglyceride accumulation in HepG2 cells and F344 rats. Lipids, 2012, 47,
385		471-481.
386	[13]	Uto-Kondo H, Ohmori R, Kiyose C, Kishimoto Y, Saito H, Igarashi O, Kondo K.
387		Tocotrienol suppresses adipocyte differentiation and Akt phosphorylation in
388		3T3-L1 preadipocytes. J Nutr, 2009, 139, 51-57.
389	[14]	Matsunaga T, Shoji A, Gu N, Joo E, Li S, Adachi T, Yamazaki H, Yasuda K,
390		Kondoh T, Tsuda K. γ -Tocotrienol attenuates TNF- α -induced changes in secretion

- and gene expression of MCP-1, IL-6 and adiponectin in 3T3-L1 adipocytes. *Mol*
- *Med Rep*, 2012, **5**, 905-909.

Food & Function

393	[15]	Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification
394		of total lipids from animal tissues. J Biol Chem, 1957, 226, 497-509.
395	[16]	Bradford MM. A rapid and sensitive method for the quantitation of microgram
396		quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,
397		1976, 72 , 248-254.
398	[17]	Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V,
399		Yan WQ, Miyoshi H, Mashek GDV. The role of lipid droplets in metabolic disease
400		in rodents and humans. J Clin Invest, 2011, 121 , 2102-2110.
401	[18]	Alberts AW, Strauss AW, Hennessy S, Vagelos PR. Regulation of synthesis of
402		hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to
403		polysomes. Proc Natl Acad Sci U S A, 1975, 7, 3956-3960.
404	[19]	Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont
405		R, Saito RM, Hyberts SG, Yang S. An ARC/Mediator subunit required for SREBP
406		control of cholesterol and lipid homeostasis. Nature, 2006, 442, 700-704.
407	[20]	Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and
408		lipogenic genes by insulin and glucose: a role for the transcription factor sterol
409		regulatory element binding protein-1c. Biochem J, 2002, 366, 377-391.
410	[21]	Cohen P, Ntambi JM, Friedman JM. Stearoyl-CoA desaturase-1 and the metabolic
411		syndrome. Curr Drug Targets Immune Endocr Metabol Disord, 2003, 3, 271-280.
412	[22]	Cohen P, Friedman JM. Leptin and the control of metabolism: role for
413		stearoyl-CoA desaturase-1 (SCD-1). J Nutr, 2004, 134, 2455S-2463S.
414	[23]	Fleury C, Sanchis D. The mitochondrial uncoupling protein-2: Current status. Int
415		J Biochem Cell Biol, 1999, 31 , 1261-1278.
416	[24]	Bugge A, Siersbaek M, Madsen MS, Göndör A, Rougier C, MandrupS. A novel

417		intronic peroxisome proliferator-activated receptor gamma enhancer in the
418		uncoupling protein (UCP) 3 gene as a regulator of both UCP2 and -3 expression
419		in adipocytes. J Biol Chem, 2010, 23, 17310-17317.
420	[25]	Zaiden N, Yap WN, Ong S, Xu CH, Teo VH, Chang CP, Zhang XW, Nesaretnam
421		K, Shiba S, YapYL. Gamma delta tocotrienols reduce hepatic triglyceride
422		synthesis and VLDL secretion. J Atheroscler Thromb, 2010, 17, 1019-1032.
423		

424	Figure legends
425	
426	Fig. 1 Chemical structures of T3 and Toc.
427	
428	Fig. 2 Effect of increasing concentrations of T3 or α -Toc (0-50 μ M) on cell proliferation
429	of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were incubated with T3 or α -Toc for 24
430	h, and then cell proliferation was evaluated with WST-1 assay. Experimental procedures
431	are shown in Materials and methods. Data are expressed as mean \pm SD (n = 6). Means
432	without a common letter differ, $P < 0.05$.
433	
434	Fig. 3 Effect of increasing concentrations of T3 or α -Toc (0-50 μ M) on TG levels of
435	3T3-L1 cells at 8 d after differentiation. Experimental procedures are shown in
436	Materials and methods. Data are expressed as mean \pm SD (n = 3). Means without a
437	common letter differ, $P < 0.05$.
438	
439	Fig. 4 Cellular uptake of T3 or Toc (25 μ M) at 8 d after differentiation. Below detection
440	limit of T3 and Toc cellular uptake were observed for control cells. Experimental
441	procedures are shown in Materials and methods. Data are expressed as mean \pm SD (n =
442	3).
443	
444	Fig. 5 Oil red O stained lipid droplets of 3T3-L1 cells treated with T3 or α -Toc (25 μ M)
445	from 0, 6, and 8 d after differentiation. Scale bar= $30 \ \mu m$. Experimental procedures are
446	shown in Materials and methods.
447	

Fig. 6 Effect of T3 or α-Toc (25 μM) on mRNA expression of FAS, CPT1, SCD-1,

449	ACC1, SREBP 1c, ADIPOR2, UCP2, HMG-CoA-R, LDLR, and PPAR-y genes in
450	3T3-L1 cells at 8 d after differentiation. Experimental procedures are shown in
451	Materials and methods. Data are expressed as mean \pm SD (n = 3). Means without a
452	common letter differ, $P < 0.05$.
453	
454	Fig. 7 Effect of T3 or α -Toc (25 μ M) on FAS, CPT1, SCD-1, ACC1, SREBP 1c, UCP2,
455	LDLR, PPAR- γ , and β -actin protein expressions in 3T3-L1 cells at 8 d after
456	differentiation. Experimental procedures are shown in Materials and methods. Each
457 458	Western blot is a representative example of data from three replicate experiments.

