Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

'Extraneous proteins can protect oleosin from gastric digestion and so affect the 'oil body' size in the small intestine. '

Food & Function Accepted Manuscript

1 2	Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (<i>Helianthus annuus</i>) oil bodies: A simulated gastrointestinal tract
3	study
5	
4	
5	
6	Sakunkhun Makkhun ^{ab} , Amit Khosla ^b , Tim Foster ^b ,
7	David Julian McClements ^c Myriam M.L. Grundy ^d and David A. Gray $*^{b}$
8	
9	
10	
11	
12	
13	
14 15	^d University of Phayaa, Division of Food Science and Technology
16	School of Agriculture and Natural Resources Muang Phayao Thailand 56000
17	School of Agriculture and Natural Resources, Muang, 1 hayao, 1 hanand, 50000
18	^b University of Nottingham, Division of Food Sciences, School of Biosciences,
19	Sutton Bonington Campus, Leicestershire, England. LE12 5RD
20	
21	^c Biopolymers and Colloids Research Laboratory, Department of Food Science,
22	University of Massachusetts, Amherst, MA 01003, USA
23	
24	^d King's College London, Department of Biochemistry, Diabetes & Nutritional Sciences Division,
25	Franklin-Wilkins Building, London SE1 9NH
26 27	
21	
20 20	
20	
30	
31	
32	
33	
3/	
)+) =	
35	
36	
37	*Corresponding author address:
38	University of Nottingham School of Riosciences
39	Division of Food Sciences, Sutton Bonington Campus, Leicestershire LE12 5RD
10	= 1 0 4 (0) 1 = 0 1 0 4 (0) 1 = 0 0 0 0 0 0 0 0 0

40 Tel: 00 44 (0)1159 516147. Fax: 00 44 (0)1159 516142. David.Gray@nottingham.ac.uk

41	Table of contents entriesPage		
42	At	stract	
43	1.	Introduction	
44	2.	Materials and Methods	
45		2.1 Materials	5
46		2.2 Recovery and purification of oil bodies	5
47		2.3 Proximate composition of purified oil body preparations	6
48		2.4 Preparation of emulsions	6
49		2.5 In vitro digestion model	6
50		2.6 Particle size analysis	7
51		2.7 Zeta Potential measurements	7
52		2.8 Imaging oil droplets	7
53		2.9 Protein analysis	
54		2.10 Displacement of intrinsic oil body proteins with bile salts	
55		2.11 Calculation and Statistical analysis	
56	3.	Results and discussion	
57		3.1 Characterisation of oil body-based emulsion droplets during	
58		digestion	9
59		3.2 Protein composition of oil bodies after treatment with bile salts	13
60	4.	Conclusions	
61	Re	erences	
62	Legends to Figures		
63	Figure 1		
64	Figure 2		
65	Fig	Jure 3	
66	Figure 4		
67	Figure 5		
68	Figure 6		
69	Figure 7		
70	Figure 8		
71	Figu	re 9	

76

Oil body

Protein enriched oil body

77

78

79 Abbreviations:

80	BCA	Bichinconinic acid
81	COB	Crude oil bodies
82	dH ₂ O	Deionized water
83	PL	Phospholipids
84	SDS	Sodium dodecyl sulphate
85	SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
86	TAG	Triacylglycerol
87	WOB	Washed oil bodies
88	WOB-SC	Sodium caseinate enriched oil bodies
89	WOB-WPI	Whey protein isolate enriched oil bodies
90	ζ-potential	Zeta potential

91

92 Abstract

93 In this study, we examined the physicochemical nature of sunflower seed oil bodies (in the absence and 94 presence of added protein) exposed to gastrointestinal conditions in vitro: crude oil bodies (COB); washed oil 95 bodies (WOB); whey protein isolate-enriched oil bodies (WOB-WPI); and, sodium caseinate enriched-oil 96 bodies (WOB-SC). All oil body emulsions were passed through an *in vitro* digestion model that mimicked the 97 stomach and duodenal environments, and their physicochemical properties were measured before, during, and 98 after digestion. Oil bodies had a positive charge under gastric conditions because the pH was below the 99 isoelectric point of the adsorbed protein layer, but they had a negative charge under duodenal conditions which 100 was attributed to changes in interfacial composition resulting from adsorption of bile salts. Oil bodies were 101 highly susceptible to flocculation and coalescence in both gastric and duodenal conditions. SDS-PAGE 102 analysis indicated degradation of oleosin proteins (ca. 18-21 kDa) to a greater or lesser extent (dependent on 103 the emulsion) during the gastric phase in all emulsions tested; there is evidence that some oleosin remained 104 intact in the crude oil body preparation during this phase of the digestion process. Measurements of protein 105 displacement from the surface of COBs during direct exposure to bile salts, without inclusion of a gastric 106 phase, indicated the removal of intact oleosin from native oil bodies.

107

108 Keywords: oil bodies; oleosomes; emulsions; bile salts; digestion

Page 5 of 26 Food & Function

Food & Function

109 **1. Introduction**

110 The seeds of many plants species store oil as food reserves for germination, and for post germination growth 111 of the seedlings, in organelles called oil bodies or oleosomes. Oil bodies are mainly composed of 112 triacylglycerol (TAG) core surrounded by phospholipids (PL) and alkaline proteins, e.g. oleosins¹. These proteins prevent coalescence of oil bodies in the cytosol of oilseed cells²⁻⁶. Furthermore, at neutral pH they 113 114 have a net negative charge which prevents coalescence ex vivo when oil bodies are dispersed in a suspension. 115 Oil bodies isolated from plant seeds in aqueous media are therefore a natural emulsion that may represent a 116 vehicle to deliver stable, pre-emulsified oil into a range of food systems. In addition to their physical stability, 117 oil bodies, ex-vivo, carry essential fatty acids and a number of lipophilic bioactives, such as vitamin E and oryzanols, depending on the parent seed ⁷⁻⁹. Sunflower seed oil bodies were selected for this study as they have 118 119 been well characterised by our group.

120 It is important that any delivery system is capable of delivering the encapsulated bioactive components to 121 the appropriate site of action within the human body. Consequently, it is necessary to understand the potential 122 biological fate of delivery systems within the human gastrointestinal tract. Initial screening experiments of 123 delivery systems are usually carried out using *in vitro* digestion models designed to simulate the human 124 digestive system. These in vitro methods have been used to evaluate the digestibility and bioaccessibility of a range of micro-nutrients from different food matrices ¹⁰⁻¹². Recently, *in vitro* digestion models have been used 125 to better understand the behaviour of oil bodies under gastrointestinal conditions ¹³⁻¹⁵. These studies have 126 127 shown that there are appreciable changes in the interfacial composition, aggregation, and structural 128 organization of oil bodies as they pass through different regions of simulated gastrointestinal tracts.

129 The composition and structure of oil bodies isolated from plant seeds depends on the nature of the isolation 130 procedure used, e.g., temperature, shear, solvent type, and additive type. Oil bodies consist of a triacylglycerol 131 (TAG) core that is coated by a layer of phospholipids and intrinsic proteins (oleosins). However, they may 132 also contain varying amounts of extraneous proteins e.g. seed storage proteins, that are more loosely attached 133 to the oil body surfaces depending on the isolation procedure. Previously, we studied the *in vitro* digestibility and bioaccessibility of fatty acids and α -tocopherol from sunflower urea-washed oil body suspensions ¹⁶. 134 135 Washing a crude preparation of oil bodies with urea or sodium bicarbonate removes the extraneous proteins 136 that normally surround oil bodies, but leaves the intrinsic proteins in place. If oil bodies were used in food 137 formulations they would probably be in a crude state (*i.e.* the preparation would contain both intrinsic and 138 extraneous proteins). In addition, food formulations often contain various other proteins that could interact 139 with the surfaces of oil bodies and alter their surface chemistry. Slowing down the rate of oil droplet digestion 140 can promote satiety, a physiological target for reducing total food intake; the rate of digestion of emulsified 141 lipids is known to depend on the presence of proteins adsorbed to their surfaces, since this influences the 142 accessibility of lipase to the droplet surfaces ¹⁷⁻¹⁸. The purpose of this study was therefore to establish if some

143 commonly consumed proteins can protect oil bodies under simulated gastrointestinal conditions. The dairy

144 proteins selected for study are common in the diet and have very distinct interfacial properties that represent 145 the behaviour of a range of protein types in aqueous solution.

146 **2. Materials and methods**

147 **2.1 Materials**

148 Dehulled sunflower seeds (high oleate) were purchased from Cargill Ltd. (West Fargo, USA). Whey protein 149 isolate was purchased from Myprotein.co.uk. (Cheshire, UK). Sodium caseinate was a gift from industry. Both 150 the whey protein and sodium caseinate powders were over 90% protein, and only 0.25% fat, and 0.17% 151 carbohydrate; the rest of the powder was tightly adsorbed water and ash/minerals. Porcine pepsin (#P7125, 152 activity = 650 units/mg of protein calculated using haemoglobin as substrate), porcine pancreatic extract 153 (#L3126, lipase activity = 53 units/mg of powder calculated using tributyrin as substrate, and trypsin activity = 154 2.3 units/mg of powder calculated using TAME (p-tolune-sulfonyl-L-arginine methyl esteras substrate), 155 porcine co-lipase and porcine bile extract (#B8631, contains glycine, taurine, conjugates of hydroxycholic 156 acid) were purchased from Sigma Chemical Company (Dorset, UK.). Gastric lipase analogue of fungal origin 157 (F-AP15, activity >150 units/mg) was obtained from Amano Enzyme Inc. (Nagoya, Japan). All chemicals 158 used for SDS-PAGE analysis were purchased from Bio-Rad (Hercules, USA). Unless otherwise stated, all 159 reagents used were of analytical grade.

160 **2.2 Recovery and purification of oil bodies**

161 Oil bodies from sunflower seeds were extracted and purified/washed by the method of Beisson et al (2001)¹⁹ 162 with slight modifications. Sunflower seeds (20g) were kibbled with liquid nitrogen using coffee grinder 163 (DeLonghi KG40, UK) for 30 seconds. The ground seeds were then added to 200 ml of 0.1M Tris-HCl buffer 164 (pH 8) containing 1mM EDTA, and immediately homogenised by a Silverson (L5M, Chesham, UK) at 6000 165 rpm for 40 seconds. The slurry was filtered through 1 layer of Miracloth and the filtrate centrifuged at 10,400 166 g (Beckman Coulter J2-21M, Buckinghamshire, UK) for 20 mins at 4°C. The oil body pad was removed from 167 the surface and placed into a clean bottle; these oil bodies produced were classed as the crude oil bodies 168 (COB) and stored until use at 4 °C.

Washed oil bodies (WOB) were obtained by re-suspending the crude oil body pad in 200 ml of a 0.1M NaHCO₃, 1mM EDTA solution by using a Silverson at 6000 rpm for 10 seconds. The mixture was centrifuged as described above. The upper layer was isolated and washed with 200 ml of a 0.1M NaHCO₃, 1mM EDTA solution as described above. The isolated upper layer was then washed twice with 1mM Tris-HCl buffer (pH 8) containing 1mM EDTA. The oil body pad was stored at 4°C until use.

174 **2.3 Proximate composition of purified oil body preparations**

Page 7 of 26 Food & Function

Food & Function

175 The moisture content of the oil body cream was determined gravimetrically following vacuum drying at 50°C

- for 24 h. The lipid content of the dried oil body preparation (ca. 0.5-1g) was determined gravimetrically using
 repeated extraction (3 times in total) with isooctane ⁹. The protein content of the defatted dried oil bodies was
- determined using the BCA (bichinconinic acid) assay 20 following solubilisation of proteins in 2% sodium
- 179 dodecyl sulfate (SDS) solution at 90°C. Bovine serum albumin was used as a protein standard.
- 180 **2.4 Preparation of emulsions**

181 Sunflower seed oil body emulsion

182 Oil body emulsions were prepared by mixing oil body pad with dH₂O to achieve a 5% emulsion based on the

total lipid content. A uniform dispersion of oil bodies was achieved by passing the mixture 10 times through a

- 184 Potter Elvenheim Homogeniser (Wheaton, USA) at 500 rpm. The emulsion was prepared no longer than 5
- 185 hours before use.

186 **Protein enriched oil body emulsion**

187 To formulate oil body emulsions at 5% w/v of oil and 1% w/v of protein, WPI or SC was used as protein 188 source for the emulsions. WPI or SC was added into the prepared oil body emulsions. The mixtures were 189 stirred with magnetic stirrer at 100 rpm for 10 minutes. Emulsions were used within 1 hour of formation.

- 190 **2.5** *In vitro* digestion model
- 191 The *in vitro* digestion model was modified from Beysseriat et al.²¹ Mun et al.²² Mandalari et al.²³ and White et al.¹⁶.

193 Gastric model

The prepared emulsions (20 ml) were placed into 50 ml amber bottles, and the pH was adjusted to 2.5 with a few drops of 1M HCl. NaCl (solid) was added to make a final concentration of 0.15 M; this was followed by adding pepsin and a gastric lipase analogue to the system. Final concentrations of the mixtures were, 146 units/ml pepsin and 84 units/ml gastric lipase analogue. The samples were then incubated for 2 hours at 37°C in the incubator and stirred using a magnetic stirrer at 130 rpm.

199 **Duodenal model**

- 200 The gastric mixture was carried forwarded to the duodenal model. The pH of the samples was immediately
- adjusted to 5 by adding a few drops of 0.9 M NaHCO₃. Bile extract was then added to the system. The
- samples were then adjusted to pH 6.5 with 0.9 M NaHCO₃ (if needed), followed by the addition of pancreatic
- 203 lipase and co-lipase. Final concentrations of constituents were 4.4 mg/ml bile extract; 54 units/ml pancreatic
- 204 lipase and $3.2 \,\mu$ g/ml co-lipase. The duodenal digestion then proceeded for 2 hours at 37°C in the incubator and
- stirred using a magnetic stirrer at 130 rpm.

206 The samples were examined every hour during 4 hours of digestion. The 'before' and 'after' digestion samples

207 were assessed by size analysis, light microscopy, and ζ -potential.

208

209 **2.6 Particle size analysis**

210 Emulsion droplet diameter were determined by using a laser light scattering instrument (LS 13 320 Laser 211 Diffraction Particle Size Analyzer, Beckman Coulter, Inc., USA). Samples (1 ml) were introduced into the 212 universal liquid module, and obscuration was maintained at 7% for all samples by dilution with dH₂O. The 213 diffraction data were analysed using the Fraunhofer diffraction method. Particles with diameters between 0.3 214 to 2000 µm were detected. The fundamental size distribution derived from this technique is volume based i.e. 215 reported percentage distribution within a given size category infers the percentage of the total volume of 216 particles in the entire distribution. The particle size measurements are hereby reported as the volume mean 217 diameter: $d_{4,3} = \sum n_i d_i^4 / \sum n_i d_i^3$, where n_i is the number of droplets of diameter d_i . Each individual particle size 218 measurement was determined from the average of three readings made per sample.

219

220 **2.7 Zeta Potential measurements**

Oil body emulsions were diluted in dH₂O to 0.25% (lipid weight). Diluted emulsions were then injected into the measurement chamber of a particle electrophoresis instrument (Delsa Nano C Particle Analyzer, Beckman Coulter, Inc., USA). The instrument settings used were: temperature = 25° C; refractive index of dispersant = 1.330; viscosity of dispersant = 0.891 mPa s; relative dielectric constant of dispersant = 79.0; electrode spacing = 50.0 mm. The zeta potential (ζ -potential) was then determined by measuring the direction and velocity of the droplets in an applied electric field from which ζ -potential was calculated using Beckman Software. Each ζ -potential measurement was reported as the average of three readings made per sample.

228

229 2.8 Imaging Oil Droplets

230 **2.8.1 Confocal microscopy**

A Leica SP5 confocal laser scanning microscope (Leica Microsystems, UK) was used to examine the microstructure of lipid droplets. Proteins were stained with Nile blue (Sigma) (2 μ l of 0.01% w/v dye in 75% glycerol were added to 100 μ l emulsion) and lipids were stained with Nile red (Sigma) (4 μ l of a 0.002% w/v dye in 100% polyethylene glycol were added to 100 μ l of emulsion). Stained emulsion (8 μ l) was transferred on a glass slide and covered with a glass coverslip (size 18 mm × 18 mm). Nile red was excited using the 514 nm line of an Argon laser and Nile blue was excited using the 633 nm line of a Helium-Neon laser.

Page 9 of 26 Food & Function

Food & Function

Fluorescence intensity data were collected between 560 to 600 nm for Nile red and 650 to 680 nm for Nile

- blue. To avoid interference due to cross fluorescence, the two emission spectra were collected using the
- 239 sequential line scanning mode. Images were processed using the Leica SP5 Image Analysis software and
- 240 figures were created using Microsoft PowerPoint 2007 (Microsoft Corporation, Redmond, USA).
- 241

242 2.8.2 Light Microspcopy

The microstructure of the lipid droplets was determined using optical microscopy (Nikon microscope Eclipse E400, Nikon Corporation, Japan). A drop of the emulsion was placed on a glass slide and cover with a cover slip. The prepared glass slide was observed under the microscope at a magnification of 40x magnification. The images were recorded to observe the change in the microstructure of the samples during digestion.

247

248 **2.9 Protein analysis**

249 Protein concentration was determined using the BCA method and equal concentrations of protein samples 250 (20 μ l) were mixed with 20 μ l of sample buffer (Laemmli buffer (Biorad, UK) + 5% β -mercaptoethanol), and 251 heated at 95°C for 5 min then cooled on ice. Proteins were resolved by SDS-PAGE using 4-20% 252 polyacrylamide gels (Mini-Protean TGX Gels, 15- well, 15 µl, Bio-Rad, Hercules, USA) ; gels were 253 positioned within a SE 600 BioRad separation unit and suspended in tank buffer (25 mM Tris, 250 mM 254 Glycine, 0.1% SDS, pH 8.3). Electrophoresis was run at 100 V for 40 min. After electrophoresis, the gel was 255 washed (15 min) once with distilled water then stained (1 hour) with the Imperial Protein Stain (Pierce, 256 Rockford, IL, USA) and destained (8 hours) four times with distilled water. Gels were imaged using a BIO-257 RAD GS-800 densitometer and images were processed using PDQuest Quantity-one (Bio-Rad, Hercules, 258 USA). Incubation samples were centrifuged (as described above) to isolate the oil droplets (buoyant fraction) 259 from the micellar phase, prior to protein extraction and analysis.

260

261 **2.10** Displacement of intrinsic oil body proteins with bile salts

To analyse the displacement of oleosin on the surface of oil bodies with bile salts, a crude oil body emulsion was subjected to *in vitro* duodenal digestion conditions as described above, but no enzymes, only bile extract was added into the system, and a control was included in this experiment, where 20ml of crude oil bodies emulsion was incubated at 37°C for 2 hours. Incubation samples were centrifuged (as described above) to isolate the oil droplets (buoyant fraction) from the micellar phase, prior to protein extraction and analysis.

267

268 2.11 Calculation and Statistical analysis

Food & Function

269 All experiments were carried out on triplicate emulsion preparations; statistical analysis was performed by

270 one-way ANOVA and Least Significant Different (LSD) using SPSS 15.0. Assessment of significance was

based on a 95% confident limit (P<0.05). Values are expressed as means \pm SD.

3. Results and discussion

273 **3.1** Characterisation of oil body-based emulsion droplets during digestion

274 Confocal analysis of WOB and protein enriched WOB preparations, was carried out to make sure that the 275 extra dairy proteins were physically associated with the WOB surface. Figure 1 shows the location of lipid 276 (green) and that of the proteins (red). Frome these images we can see that WOBs are surrounded by a thin 277 layer of protein, this layer appears to increase in thickness on adding WPI or SC, indicating an association 278 between these added proteins and the surface of the washed oil bodies. Addition of SC appears to generate the 279 thickest protein shell.

280 The composition of the crude oil bodies recovered in this study was approximately 76.2 ± 7.6 % lipid and 17.5 281 ± 0.9 % protein (dry weight). The composition of the washed oil bodies was approximately 89.0 ± 9.6 % lipid 282 and 3.9 ± 0.8 % protein (dry weight). The ζ -potential of crude oil bodies (COB), washed oil bodies (WOB), 283 whey protein isolate-enriched oil bodies (WOB-WPI) and sodium caseinate-enriched oil bodies (WOB-SC) at 284 pH 6.5 were -37.4 ± 8.9 , -17.9 ± 4.1 , -37.8 ± 1.2 and -59 ± 1.9 mV, respectively (Figure 2). The negative 285 surface charge on oil bodies can be attributed to the interface consisting of anionic phospholipids²⁴ and protein 286 molecules that were above their isoelectric point at this pH. After adding WPI and SC to WOB, there was a 287 significant increase (P<0.05) in the negative charge of the oil bodies. This can be explained by WPI and SC 288 adsorbing onto the oil body surfaces thereby increasing their negative charge. Interestingly, the SDS-PAGE 289 profiles of proteins from the protein-enriched washed oil bodies (Figure 8) show that WPI and SC become 290 associated with WOBs, which is consistent with the our deductions from the surface charge data and from the 291 confocal images..

292 The pattern of ζ -potential changes of oil body and protein-enriched oil bodies was similar during digestion. 293 Under gastric conditions (first 2 h) at pH 2.5, the ζ -potential of COB, WOB, WOB-WPI and WOB-SC 294 emulsion droplets changed from negative to positive $(+7.0 \pm 1.8, +24.9 \pm 3.0, +41.7 \pm 4.4 \text{ and } +30.0 \pm 0.8$ 295 mV, respectively). All emulsion droplets remained positively charged for 2 h during incubation in the gastric 296 model. The charge on the oil droplets after digestion in the small intestine became strongly negative: $-54.5 \pm$ 297 8.1, -70.7 ± 20.9 -86.3 ± 3.0 and -78.7 ± 6.4 mV, respectively. Interestingly, the charge associated with the 298 surface of the COB derived droplets in the duodenal conditions was lower than the charge associated with the 299 surface of the droplets in the other oil body-based emulsion preparations. This suggests that the association of 300 bile salts with the surface of the crude oil bodies (and the commensurate displacement of surface proteins) 301 appears less extensive for this case than for the other oil bodies.

302 The particle size distribution and optical microscopy images of all oil bodies (COB, WOB, WOB-WPI and 303 WOB-SC) pre- and post-incubation in the *in vitro* gastric model can be seen in Figures 3 to 6. Each oil body 304 emulsion contained droplets of a similar size prior to digestion, but thereafter, significant changes occurred. 305 The mean particle diameters ($d_{4,3}$) of the WOB, WOB-WPI and WOB-SC emulsion droplets ($3.2 \pm 0.6, 3.9 \pm$ 306 1.0 and 2.6 \pm 0.1 µm, respectively) were significantly smaller (P<0.05) than COB (5.6 \pm 1.4 µm) prior to 307 incubation in the gastrointestinal model (Figure 7). During gastric digestion for 2 hours the diameter $(d_{4,3})$ of 308 all emulsion droplets appeared to increase significantly. After 2 hours digestion in the gastric model followed 309 by two hours incubation in the duodenal model the mean diameter of the particles in the COB emulsions (37.2 310 \pm 26.7 µm) was slightly decreased from gastric model (p>0.05). However, WOB-SC emulsion droplets (7.8 \pm 311 2.4 μ m) decreased significantly (P<0.05), whereas WOB and WOB-WPI emulsion droplets (104.7 ± 24.3 and 312 $56.9 \pm 16.2 \,\mu$ m, respectively) increased significantly in size (P<0.05). In addition, when digested in duodenal 313 conditions, a shift from a mono-modal distribution to a bi-modal distribution was observed for COB, but not 314 for the other emulsions. The presence of several peaks in the particle size distribution interferes with the 315 measurement of the mean particle diameter of the lipid droplets during digestion. The relatively large standard 316 deviations observed in the particle size distributions are typical of measurements made in highly aggregated 317 emulsion systems and are usually attributed to changes in sample structure induced by dilution and stirring 318 within the light scattering instrument 22 .

319 The particle size analyser cannot distinguish between aggregation and coalescence, and so microscopic 320 observation of the oil body suspensions was carried out to provide further evidence of structural changes. The 321 optical microscopy images revealed changes in system microstructure during incubation in the gastric model. 322 The oil bodies in the COB, WOB-WPI and WOB-SC emulsions were seen to flocculate during the first hour 323 of incubation and then coalesce during the second hour, whereas there was already some coalescence evident 324 during the first hour of incubation in the WOB emulsions. Under duodenal conditions, free oil droplets were 325 clearly observed in WOB and WOB-WPI whereas few free oil droplets were observed in COB and WOB-SC. 326 These observations explain the shift in the particle size data for all emulsions. From these results we can see 327 that in our model system COB behaves similarly to WOB-SC, but there is a marked contrast when compared 328 with WOB and WOB-WPI.

Wu and co-workers $(2012)^{13}$ demonstrated the partial protective effect of carrageenan at the surface of soybean oil bodies against digestion. Similar to our work, they observed a change in the surface charge of oil bodies during incubation, with a significant negative charge (-70 mV) in the presence of bile salts. This suggests that bile salts associate with the surface of these droplets, either through direct physical association or through displacement of some of the surface material. Their surface area-weighted particle size data ($d_{3,2}$) suggests that their soybean oil body preparations varied in size that did not change radically during the gastric phase, then developed a broader distribution during the duodenal phase. Micrographs of the same material told

Food & Function

Food & Function Accepted Manuscrip

a slightly different story with a significant increase in particle size during the gastric phase, this increase being inversely proportional to the amount of carrageenan that was present; the droplets then decreased in size during the duodenal phase. The increase in droplet size under gastric conditions coincided with the loss of oleosin, presumably through the action of pepsin, which was inhibited in the presence of carrageenan.

In a study of the digestion of almond seed oil bodies, Gallier and Singh¹⁴ observed that the oil bodies 340 341 aggregated and coalesced under gastric conditions. During the duodenal phase the measured change in particle 342 size depended on the mode of measurement. The surface area-weighted values $d_{3,2}$ revealed a reduction in 343 average diameter from 20 µm (immediately after the gastric phase) to 5 µm after 15 minutes and until the 344 endpoint at 120 minutes. On the other hand, $d_{4,3}$ values revealed an unchanged average diameter for the first 345 60 minutes of duodenal conditions, followed by a gradual increase to almost 45 µm after a total duodenal 346 incubation of 120 minutes. This is consistent with our data where we used the volume-weighted measure of 347 the average particle size of oil droplets. The change that they have reported in the zeta potential of almond 348 seed oil bodies reflects the change we have seen with our sunflower seed oil bodies. The charge of their 349 almond oil bodies was less than +10 mV after 60 and 120 minutes under gastric conditions, followed by a 350 gradual change in charge to almost -50 mV after 45 minutes, presumably due to the uptake of bile salts under 351 duodenal conditions. Similar effects of bile salts on the surface charge of protein-stabilised emulsion droplets have been reported ²⁵⁻²⁷. Mun et al ²² studied the changes in the droplet size of emulsions formed with whey 352 353 proteins compared to an emulsion formed with caseinate after *in vitro* hydrolysis by pancreatic lipase at pH 7. 354 They reported that in their conditions whey protein isolate emulsions are the least stable. Based on 355 microscopic observations, the caseinate stabilised emulsions were more prone to flocculation rather than 356 coalescence whereas the whey protein stabilised emulsions were highly prone to coalescence, which is 357 consistent with our observations.

358 WPI and SC are milk proteins commonly used as food ingredients because of their surface active properties. Whey protein and caseinate produce an interfacial film with different properties ²⁸, notably with different 359 adsorption and surface rheological behaviours 29,30 . In brief, the globular β -lactoglobulin forms a highly elastic 360 361 interfacial film, whereas β-casein forms a weaker interfacial film, but the charged N-terminal region provides 362 excellent steric stabilization. In other words, β -casein is a flexible/'soft' protein, which changes its conformation more easily than β -lactoglobulin which is a 'hard', globular protein ³¹. As a consequence, β -363 364 case in can be displaced from an interface much more readily than β -lactoglobulin. This rule of thumb is 365 clearly less reliable in a system complicated by enzymic action and pH changes.

Oil droplets were recovered from the incubation systems by centrifugation, just after the gastric and duodenal phases. The proteins still associated with their surfaces were studied by SDS-PAGE (Figure 8). Loss of bands indicates removal of proteins from the surface, and/or digestion (full or partial); new bands indicate remnant protein fragments, left behind after partial protein digestion, which remain associated with the droplet

370 surface. For the oil bodies, the loss of the oleosin band (~18-21 kDa) during digestion in the gastric model, and 371 the appearance of protein fragments either between 6.7 and 17.5 kDa, or less than 6.7 kDa, indicates the 372 breakdown of oleosin into small peptides that appear to remain bound to/associated with the oil droplets. 373 Oleosin has three functional motifs: an amphipathic N-terminal region, a central hydrophobic antiparallel β -374 strand domain and an amphipathic C-terminal domain with variable length². It is likely that the protruding part 375 of the oleosin molecule, which provides a strengthened layer on the surface, is susceptible to enzymatic 376 cleavage and leads to the weakening and consequential coalescence of oil bodies. Pepsin hydrolyses peptide 377 bonds at the N-terminus of aromatic residues ³². Given the amino acid sequence of oleosin protein in sunflower 378 seed, there are eleven potential sites of pepsin action, and 4 of these peptide bonds are within the exposed 379 domains of oleosin on the surface of oil bodies ³³⁻³⁵.

Qualitative examination of protein molecular weights in COB reveals a general degradation of proteins resulting in an increase in the number of bands between 6.7 to 17.5 kDa after incubation in the gastric model (lane B and C). The major band in this region has been highlighted with a green box in Figure 8; this band may represent the hydrophobic domain (and associated residual hydrophilic domain 'stumps') of oleosin, left behind securely anchored in the oil phase after the action of pepsin on the exposed hydrophilic domains.

385 One unique feature of the COB data is that some 'complete' oleosin also appears to remain after the initial 386 gastric phase of digestion. Perhaps the extraneous proteins (that we have already suggested shield the surface 387 of the oil bodies and so affect the apparent surface charge), protect exposed oleosin domains from digestion to 388 some extent. It could be argued that a similar protection of oleosin is afforded by extraneous almond proteins during gastric incubation¹⁴. This shielding from enzyme activity is not apparent for WPI and SC enriched 389 390 WOB material. Interestingly, protein breakdown was much more efficient in the WOB emulsion as no protein 391 bands were seen on the protein gel after the gastric conditions (2 hours). This suggests that all the proteins 392 were degraded and/or removed from the surface of the droplets (compare lane E with lane F). It is worth 393 noting that the WOB material used for this study contained a protein, not observed in the parent COB material, 394 that coincides with the putative 'oleosin hydrophobic domain' band. This protein fragment may be present on 395 all the parent COB and WOB samples (or is an artefact of sample preparation for SDS-PAGE analysis), but is 396 only observed when its loading concentration effectively increases through removing extraneous proteins 397 during the oil body washing phase, or some proteolytic activity was present in the sample (perhaps due to an 398 endogenous enzyme). If the latter explanation is correct, then one may speculate that if the COB material is 399 left for any time (even chilled) before washing, then such a transformation may be possible.

For both WOB-WPI and WOB-SC emulsions (lanes H and I and lanes K and L) incubation in the gastric model resulted in a general protein breakdown/loss, but less dramatic compared with WOB, as protein bands are still clearly visible (lanes I and L). This is even more marked in WOB-WPI compared with WOB-SC. As was the case for COB emulsions, there is a suggestion that after the gastric phase, the exposed domains of

Food & Function

404 oleosin in these protein-enriched WOB emulsions have been removed through digestion, leaving a residual 405 protein composed predominantly of the hydrophobic domain. Protein breakdown/loss continued for all the 406 emulsions with a clear reduction in the molecular weight of all the remaining peptides (lane D, G, J and M). In 407 the case of WOB-WPI, it is possible that after 2 hours under gastric conditions some β -lactoglobulin remains 408 intact, but its molecular weight coincides with one of the oleosin isoforms, so it is not possible, with the 409 current data, to stipulate categorically whether at least a proportion of one or the other protein (or both) survive 410 the gastric phase; taken overall, the SDS-PAGE data provides a stronger case for the retention of some of the 411 β-lactoglobulin.

412 Whey protein is a complex mixture of different proteins: ca. 55% β -lactoglobulin (18.4 kDa), 24% α -413 lactalbumin (14.2 kDa), 5% serum albumin (66.2 kDa) and 15% immunoglobulins (90 kDa). SDS-PAGE (lane 414 I) of WOB-WPI digested in the gastric model, suggest breakdown/loss of α -lactalbumin but possible retention 415 of the β -lactoglobulin protein under these conditions, implying specificity of the action of the pepsin enzyme. This breakdown of protein in WPI is consistent with previous studies ^{13, 36-38}. Beta-lactoglobulin in its native 416 form has indeed been recognised to be resistant to hydrolysis in the gastric phase ³⁹. However, when a change 417 418 in conformation occurs, such as during adsorption to the oil-water interface, the protein becomes susceptible to 419 pepsin hydrolysis ³⁸. For WOB-SC, sodium caseinate contains the four main caseins; β -casein (23 kDa), α_{s1} -420 casein (24 kDa), α_{s2} -casein (25 kDa) and κ -casein (19 kDa) in the ratios 3:4:1:1, respectively. However, the 421 commercial SC was mainly composed of polypeptides with their MW within range of 29.4 to 37.6 kDa (lane 422 K). This was slightly higher than the MW of caseins (19-25 kDa) due to the polymerization of proteins during 423 commercial processing. SDS-PAGE (lane L) of WOB-SC digested in the gastric model, suggest complete 424 breakdown of oleosin in WOB and all polypeptides in SC. This breakdown of caseins by protein hydrolysis in 425 gastric conditions is in agreement with the previous studies 40.42.

Finally, there is a clear reduction in the intensity of protein bands in all emulsions after the duodenal digestion (lane D, G, J and M). This confirms the presence of active proteases in the porcine pancreatic extract. This agrees with Singh et al. ⁴³ who reported that commercial pancreatic lipase from Sigma-Aldrich company causes the breakdown of protein in a β -lactoglobulin-stabilised emulsion.

430 **3.2** Protein composition of oil bodies after treatment with bile salts

As mentioned earlier, the dominant intrinsic protein associated with the surfaces of the oil bodies are the oleosins ^{3, 44}. Oleosins from diverse species range in molecular weight (MW) from approximately 15 to 26 kDa ⁴⁴. The exact sizes of the different isoforms vary from one plant to another, for example 16 and 18 kDa in maize, 18 and 24 kDa in soybean and 18 and 21 kDa in sunflower seeds ⁴⁵. Work was carried out to establish if bile salts were capable of displacing oleosin from a preparation of crude oil bodies. Bile salts can absorb onto and remove other materials e.g. proteins and emulsifier from the lipid surface ¹⁷. Maldonado-Valderrama et al.

437 ¹⁸ reported that the bile salts can almost completely displace the intact protein β -lactoglobulin network under 438 duodenal conditions. It is not yet known if intrinsic oil body proteins are displaced by bile salts or not. Figure 439 9 shows the protein profile of the micellar phase removed after incubation of crude oil bodies (COB) with bile 440 salts (lane E). This profile is similar to the protein profile of the control COB (no bile salts) after 2 h 441 incubation but before phase separation (lane C); whereas there were only a few proteins in the micellar phase 442 of the COB control after incubation (lane D). These results suggests that almost all the surface proteins of oil 443 bodies, including oleosin, were displaced by bile salts. Interestingly, the data also show that the pattern of 444 protein bands in COB control after incubation is similar to the pre-incubation profile (lane C compared to lane 445 B). However, there are small molecular weight protein bands (between 6.7 and 17.5 kDa) accumulating in the 446 COB control after incubation (lane C). This observation suggests that there is some breakdown of proteins in 447 this sample; the crude oil body preparation may contain some carry-over enzymes with proteolytic activity, but 448 this effect seems almost negligible. These results show the potential of bile salts to displace proteins at the 449 surface of oil bodies, even well-anchored proteins such as oleosin. Whether bile salts could effect this 450 displacement if oleosin was reduced to the hydrophobic domain after gastric digestion is not clear from this 451 work; it has been suggested that such a remnant, if it exists, could affect the rate of lipase digestion in the 452 duodenum¹⁴.

453 **4.** Conclusions

454 Sunflower seed oil bodies have the capacity to associate with extraneous proteins including whey protein 455 isolates and casein proteins. This extraneous protein environment surrounding oil bodies affects the apparent 456 surface charge and stability of oil bodies, which may have important consequences for the commercial 457 application of oil bodies as delivery systems in foods. The proteins associated with the surface of the 458 sunflower oils bodies studied (crude, or washed, or washed and enriched with WPI or casein) are, to a greater 459 or lesser extent, hydrolysed and/or removed from the surface during simulation of gastro-intestinal conditions. 460 causing significant changes in the morphology of the droplets. Sunflower seed proteins not intrinsic to oil 461 bodies (present in COB), and caseinate (present in WOB-SC) both appear to cause flocculation of droplets in 462 the gastric phase, whereas WOB and WOB-WPI display more coalescence than flocculation at this stage. 463 Although it is clear that bile salts dominate the surface of all the droplets in the duodenal phase of digestion, 464 COB and WOB-SC vield smaller droplets in the duodenal phase of the digestion model employed, compared 465 with WOB or WOB-WPI. This may have an effect on the rate of triacylglycerol digestion. The reason for 466 these differences in droplet size is not entirely clear, but is should be pointed out that the competing dynamics 467 of bile salt insertion into the surface of the droplets emerging from the gastric phase, and their tendency to 468 coalesce will affect the size of the droplets throughout that phase. We have evidence that bile salts are able to 469 displace oleosin. It may therefore be possible that the extraneous seed proteins are protecting the oleosin

Food & Function Accepted Manuscript

of

	Food	Food & Function Page	
470 471 472	during impor	g the gastric phase, thus restricting the droplet size during bile salt insertion. These results may have rtant implications for the design of functional food products that control the digestion and release of from oil body-based delivery systems	
473	Acknowledgements		
474	The Royal Thai government is acknowledged for the financial support of this research.		
475 476	Refe	rences	
477 478	1.	J. T. C. Tzen, Y. Z. Cao, P. Laurent, C. Ratnayake and A. H. C. Huang, <i>Plant Physiol.</i> , 1993, 101 , 267-276.	
479	2.	J. T. C. Tzen, G. C. Lie and A. H. C. Huang, J. Biol. Chem., 1992, 267, 15626-15634.	
480	3.	J. T. C. Tzen and A. H. C. Huang, J. Cell Biol., 1992, 117, 327-335.	
481	4.	F. Beisson, N. Ferte and G. Noat, Biochem. J., 1996, 317, 955-956.	
482 483	5.	P. J. E. Thoyts, J. A. Napier, M. Millichip, A. K. Stobart, W. T. Griffiths, A. S. Tatham and P. R. Shewry, <i>Plant Sci.</i> , 1996, 118 , 119-125.	
484 485	6.	D. J. Lacey, N. Wellner, F. Beaudoin, J. A. Napier and P. R. Shewry, <i>Biochem. J.</i> , 1998, 334 , 469-477.	
486	7.	I. D. Fisk, D. A. White, A. Carvalho and D. A. Gray, J. Am. Oil Chem. Soc., 2006, 83, 341-344.	
487 488	8.	N. Nantiyakul, S. Furse, I.D. Fisk, T.J. Foster, G. Tucker and D.A. Gray, J. Am. Oil Chem. Soc , 2012, 89 (10) 1867-1872	
489 490	9.	D.A. Gray, G. Payne, D.J. McClements, E.A. Decker and M. Lad , <i>European Journal of Lipid Science and Technology</i> , 2010, 112 (7), 741-749	
491	10.	D. A. Garrett, M. L. Failla and R. J. Sarama, J. Agri. Food Chem., 1999, 47, 4301-4309.	
492	11.	E. Hedren, V. Diaz and U. Svanberg, Eur. J. Clin. Nutr., 2002, 56, 425-430.	
493 494	12.	D. D. Miller, B. R. Schricker, R. R. Rasmussen and D. Vancampen, Am. J. Clin. Nutr., 1981, 34, 2248-2256.	
495 496	13.	N. Wu, X. Huang, XQ. Yang, J. Guo, SW. Yin, XT. He, LJ. Wang, JH. Zhu, JR. Qi and EL. Zheng, J. Agri. Food Chem., 2012, 60, 1567-1575.	
497	14.	S. Gallier and H. Singh, Food Funct., 2012, 3, 547-555.	
498	15.	S. Gallier, H. Tate and H. Singh, J. Agric. Food Chem., 2013, 61, 410-417.	

- 499 16. D. A. White, I. D. Fisk, S. Makkhun and D. A. Gray, J. Agri. Food Chem., 2009, 57, 5720-5726.
- 500 17. J. Maldonado-Valderrama, P. Wilde, A. Macierzanka and A. Mackie, Adv. Colloid Interfac. Sci., 501 2011, 165, 36-46.

18.	J. Maldonado-Valderrama, N. C. Woodward, A. P. Gunning, M. J. Ridout, F. A. Husband, A. R. Mackie, V. J. Morris and P. J. Wilde, <i>Langmuir</i> , 2008, 24 , 6759-6767.
19.	F. Beisson, N. Ferte, R. Voultoury and V. Arondel, Plant Physiol. Biochem., 2001, 39, 623-630.
20.	P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, <i>Anal. Biochem.</i> , 1985, 150 , 76-85.
21.	M. Beysseriat, E. A. Decker and D. J. McClements, Food Hydrocolloids, 2006, 20, 800-809.
22.	S. Mun, E. A. Decker and D. J. McClements, Food Res. Int., 2007, 40, 770-781.
23.	G. Mandalari, R. M. Faulks, G. T. Rich, V. Lo Turco, D. R. Picout, R. B. Lo Curto, G. Bisignano, P. Dugo, G. Dugo, K. W. Waldron, P. R. Ellis and M. S. J. Wickham, <i>J. Agri. Food Chem.</i> , 2008, 56 , 3409-3416.
24.	G. Payne, M. Lad, T. Foster, A. Khosla and D.A. Gray, <i>Colloids and Surfaces B: Biointerfaces</i> , 2014, 116 , 88-92
25.	A. Sarkar, K. K. T. Goth, R. P. Singh and H. Singh, Food Hydrocolloids, 2009, 23, 1563-1569.
26.	M. Golding, T. J. Wooster, L. Day, M. Xu, L. Lundin, J. Keogh and P. Clifton, <i>Soft Matter</i> , 2011, 7, 3513-3523.
27.	J. Li, A. Ye, S. J. Lee and H. Singh, Food Funct., 2012, 3, 320-326.
28.	J. N. de Wit, J. Dairy Sci., 1998, 81, 597-608.
29.	M. Bos and T. van Vliet, Adv. Colloid Interface Sci., 2001, 91, 437-471.
30.	J. R. Mitchell, Dev. Food Prot, 1986, 4, 291-338.
31.	T. Arai and W. Norde, Colloids and Surfaces, 1990, 51, 1-15.
32.	J. S. Fruton, S. Fujii and M. H. Knappenberger, P Natl Acad Sci USA, 1961, 47, 759-761.
33.	J. C. F. Chen and J. T. C. Tzen, Plant Cell Physiol., 2001, 42, 1245-1252.
34.	M. Li, D. J. Murphy, K. H. K. Lee, R. Wilson, L. J. Smith, D. C. Clark and J. Y. Sung, <i>J. Biol. Chem.</i> , 2002, 277 , 37888-37895.
35.	S. Vandana and S. C. Bhatla, Plant Physiol. Biochem., 2006, 44, 714-723.
36.	D. G. Schmidt and B. W. Vanmarkwijk, Neth. Milk Dairy J., 1993, 47, 15-22.
37.	N. Kitabatake and Y. I. Kinekawa, J. Agric. Food Chem., 1998, 46, 4917-4923.
38.	A. Malaki Nik, A. J. Wright and M. Corredig, J. Colloid Interface Sci., 2010, 344, 372-381.
39.	I.M. Reddy, N.K.D. Kella and J.E. Kinsella, Journal Agric. Food Chem., 1988, 36 (4), 737-74138.
40.	A. Macierzanka, A. I. Sancho, E. N. C. Mills, N. M. Rigby and A. R. Mackie, <i>Soft Matter</i> , 2009, 5 , 538-550.
41.	M. R. Guo, P. F. Fox, A. Flynn and P. S. Kindstedt, J. Dairy Sci., 1995, 78, 2336-2344.
42.	M. Defernez, G. Mandalari and E. N. C. Mills, <i>Electrophoersis</i> , 2010, 31 , 2838-2848.
	 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42.

Food & Function

- 536 43. H. Singh, A. Ye and D. Horne, *Prog. Lipid Res.*, 2009, **48**, 92-100.
- 537 44. A. H. C. Huang, Annu. Rev. Plant Phys., 1992, 43, 177-200.
- 538 45. J. T. C. Tzen, Y. K. Lai, K. L. Chan and A. H. C. Huang, *Plant Physiol*, 1990, **94**, 1282-1289.

539

540

541 Legends to Figures

542 Figure 1.

543 Confocal Micrographs of WOB (washed oil bodies), WOB-WPI (washed oil bodies + whey protein isolate) 544 and WOB-SC (washed oil bodies + sodium caseinate) prepared as described in the methods section.

545 **Figure 2.**

546 Zeta potential of COB, WOB, WOB-WPI and WOB-SC emulsion; before and during gastrointestinal digestion 547 for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal condition).

548

549 **Figure 3.**

550 Particle size distributions (%volume) and light microscopy pictures of COB emulsion before and during 551 gastrointestinal digestion for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal condition).

552

553 Figure 4.

- 554 Particle size distributions (%volume) and light microscopy pictures of WOB emulsion before and during 555 gastrointestinal digestion for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal condition).
- 556

557 **Figure 5.**

558 Particle size distributions (%volume) and light microscopy pictures of WOB-WPI enriched emulsion before 559 and during gastrointestinal digestion for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal 560 condition).

561

562 Figure 6.

563 Particle size distributions (%volume) and light microscopy pictures of WOB-SC enriched emulsion before and 564 during gastrointestinal digestion for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal condition).

565

566 Figure 7.

567 Mean diameter $(d_{4,3})$ of COB, WOB, WOB-WPI and WOB-SC emulsion before and during gastrointestinal 568 digestion for 4 hours (1h and 2h in gastric condition, 3h and 4h in duodenal condition).

- 569
- 570
- **571 Figure 8.**
- 572 SDS-PAGE of proteins associated with COB, WOB, WOB-WPI and WOB-SC droplets before and during 573 gastrointestinal digestion for 4 hours (2 hours in gastric condition followed by 2 hours in duodenal condition)

574 Protein standard marker (lane A); initial COB droplets (lane B); digested COB under gastric conditions (lane 575 C); digested COB under duodenal conditions (lane D); initial WOB droplets (lane E); digested WOB under 576 C); digested COB c);

576 gastric conditions (lane F); digested WOB under duodenal conditions (lane G); initial WOB-WPI droplets 577 (lane H); digested WOB-WPI under gastric conditions (lane I); digested WOB-WPI under duodenal conditions

577 (lane I); digested wOB-wPI under gastric conditions (lane I); digested wOB-wPI under duodenal conditions 578 (lane J); initial WOB-SC droplets (lane K); digested WOB-SC under gastric conditions (lane L); and digested

- 579 WOB-SC under duodenal conditions (lane M)
- 580 Red arrows indicate bands the correlate with known molecular weights of specific proteins; the green 581 box highlights a band that may be the hydrophobic domain of the oleosin protein.
- 582
- 583 **Figure 9.**

584 SDS-PAGE of proteins in crude oil body (COB) droplets after incubation with bile salts for 2 hours under 585 duodenal conditions (no prior gastric phase)

586 Protein standard marker (lane A); COB pre-incubation (lane B); COB control [no bile salts] (pre-separation 587 into micellar and buoyant (oil droplet) fractions) (lane C); micellar phase of COB control (lane D); and 588 micellar phase of COB after incubation with bile salts (lane E)

588 micellar phase of COB after incubation with bile salts (lane E).

Page 20 of 26

- **590 Figure 1.**
- 591 WOB

597

598 WOB-WPI

599

600

601 WOB-SC

607

Note: From left to right: lipid stained with Nile red; protein stained with Nile blue; overlay of lipid

Figure 2.

Figure 3.

- **Figure 5.**

Food & Function Accepted Manuscri

Figure 7.

- **Figure 8.**

Figure 9.

