Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Title: Properties of starch from potatoes differing in glycemic index
2	
3	Authors: Kai Lin Ek ^a , Shujun Wang ^b , Jennie Brand-Miller ^c and Les Copeland ^{a*}
4	
5	Affiliations:
6	^a Department of Plant and Food Science, Faculty of Agriculture and Environment, The University of
7	Sydney, Australia.
8	^b Key Lab of Food Nutrition and Safety, Department of Education of China, School of Food
9	Engineering and Biotechnology, Tianjin University of Science & Technology.
10	^c Boden Institute of Obesity, Nutrition and Exercise, and the School of Molecular Bioscience, The
11	University of Sydney, Australia.
12	
13	* Corresponding Author
14	Les Copeland
15	The University of Sydney, NSW 2006 Australia
16	E-mail address: les.copeland@sydney.edu.au
17	Tel.: + 61 2 8627 1017; fax: + 61 2 8627 1099.
18	
19	

Food & Function Accepted Manuscript

20	
21	Abstract:
22	Potatoes are a popular source of dietary carbohydrate worldwide and are generally considered to
23	be a high glycemic index (GI) food. Potato starch characteristics play a key role in determining their
24	rate of digestion and resulting glycemic response. Starches isolated from seven potato cultivars
25	with different GI values, including a low GI cultivar (Carisma), were examined for relative
26	crystallinity, granule size distribution, amylopectin chain length, and thermal and pasting
27	properties. Starch from the Carisma cultivar was more thermally stable and more resistant to
28	gelatinization, with significantly higher (p<0.05) pasting temperature and differential scanning
29	calorimetry (DSC) gelatinization onset, peak and conclusion temperatures, compared to the other
30	cultivars. Differences between the potatoes in the other properties measured did not align with the
31	GI ranking. Thermal analysis and starch pasting properties may be useful indicators for preliminary
32	identification of potato cultivars that are digested slowly and have a lower GI.
33	
34	
35	Keywords: Glycemic index, potato, Solanum tuberosum L., starch, thermal properties, pasting

36 properties

37	1. Introduction
38	Potatoes are the most important non-grain food commodity produced globally, with production in
39	2012 reaching 368 million tonnes ¹ . They are a major source of carbohydrate in the Western world
40	and consumption is increasing rapidly in developing countries. Annual global consumption is more
41	than 200 million tonnes, with an estimated 74 kg consumed <i>per capita</i> in Europe, 53 kg in Australia
42	and 26 kg in Asia ² . Carbohydrates are the principal energy source in the human diet accounting for
43	40-80% of energy intake ³ .
44	
45	The terminology and classification of carbohydrates for translation into nutritional characteristics
46	is complex. The FAO/WHO scientific update on carbohydrates in human nutrition suggested the
47	glycemic index (GI) as one of the ways to guide food choices when considering similar
48	carbohydrate-containing foods ⁴ . The GI is a system of classifying carbohydrate-rich foods based on
49	their blood glucose-raising potential ⁵ . The carbohydrate in a high GI food is digested and absorbed
50	rapidly and results in high postprandial blood glucose and insulin levels, which over the long term
51	are associated with increased risks of diet-related diseases including type-2 diabetes and
52	cardiovascular disease ⁶⁻⁹ . According to the International Standards Organisation (ISO) Standard ¹⁰ ,
53	foods that have a GI of greater than 70 are classified as high GI, foods with a GI that fall in the range
54	of 56-69 are classified as medium GI, and foods that have a GI of 55 or less are classified as low GI ¹⁰ .
55	
56	Potatoes are generally considered a high GI food ¹¹ and some nutritionists have advised substitution
57	with a low GI option ^{9, 12} . This advice may not apply to all potatoes, as there is considerable natural
58	variability between cultivars in the GI values of potatoes that have been prepared for consumption
59	by similar methods ^{13, 14} .
60	
61	Starch is the main carbohydrate with blood glucose raising potential (i.e., available carbohydrate)
62	in potatoes. The susceptibility of native starch to enzymic breakdown <i>in vitro</i> is influenced by
63	various factors, including amylose content ¹⁵ , phosphorus content ^{15, 16} , granule size and starch
64	morphology ¹⁷ , amylopectin chain length profile ¹⁵ and the fine structures of branch chains in both
65	amylose and amylopectin ¹⁸ . In contrast, the extent of gelatinization and retrogradation of starch in

66	processed or cooked foods is the main determinant of the rate at which it is digested and elicits
67	postprandial blood glucose responses ^{19, 20} .
68	
69	In a previous study, a low GI potato cultivar, Carisma, with a GI of 53, was identified amongst seven
70	potato cultivars. The other cultivars had GI values ranging from 69 to 103 ²¹ . The GI values were
71	strongly and positively correlated with the extent of <i>in vitro</i> enzymatic hydrolysis of starch in the
72	cooked potatoes at 120 min ($r = 0.91$, $p < 0.01$), but not to dry matter, total starch or dietary fibre
73	content of the potatoes ²¹ . There were no significant differences in the amylose content among the
74	starches isolated from the seven potato cultivars ²¹ . In the present study, the properties of starch
75	from Carisma and high GI potatoes were examined to identify characteristics of potato starch that
76	influence their GI values.
77	
78	2. Materials and Methods
79	2.1 Potatoes
80	Potatoes were obtained from growers in South Australia (Carisma, Desiree, Virginia Rose) and
81	Tasmania, Australia (Russet Burbank, Maiflower, Nicola, Bintje).
82	
83	2.2 Starch extraction
84	Starch was extracted from potatoes according to the method of Noda <i>et al.</i> ²² with modifications, as
85	described by Ek <i>et al.</i> ²¹ .
86	
87	2.3 Phosphorus content
88	Phosphorus content was determined spectrophotometrically according to the method of
89	Morrison ²³ .
90	
91	2.4 Particle size analysis
92	Particle size of starch granules was quantified as starch surface area using a method based on
93	image analysis of light micrographs. Starch granules (20 mg) were dispersed in 1 mL of deionised
94	water and a few drops of the suspension were placed on a microscope slide with a coverslip and
95	sealed using nail varnish. Images were obtained using a Leica DM 2500M light microscope (Leica,

96	Germany). Five slides were prepared of starch from each potato cultivar and three micrographs
97	were obtained from each slide. Three micrographs were selected randomly from the total of 15
98	micrographs collected per cultivar giving a triplicate measurement of starch surface area. The
99	micrographs were converted into binary images, a scale in μm was set and granule surface area was
100	measured using ImageJ 1.43u (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda,
101	Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012) (Figure 1). The output was copied into Excel
102	spreadsheets for data analysis. Classification of the size of starch granules according to surface area
103	was: small (< 500 μ m ²), medium (500-1000 μ m ²) and large (> 1000 μ m ²).
104	
105	2.5 Starch crystallinity
106	Relative crystallinity of starch was measured using a Difftech Mini Materials Analyser X-ray
107	diffractometer (GBC Scientific Equipment Pty. Ltd.) according to the method by Wang <i>et al</i> ²⁴ . The X-
108	
	ray generator was equipped with a cobalt anode (λ = 1.78897 Å) operating at 1 kW and 3.36 mA. All
109	ray generator was equipped with a cobalt anode (λ = 1.78897 Å) operating at 1 kW and 3.36 mA. All starch samples were kept at constant humidity (75%) in a desiccator over a saturated NaCl solution
109 110	
	starch samples were kept at constant humidity (75%) in a desiccator over a saturated NaCl solution
110	starch samples were kept at constant humidity (75%) in a desiccator over a saturated NaCl solution for a week prior to analyses. X-ray diffractograms were acquired at room temperature (20 ± 1°C),
110 111	starch samples were kept at constant humidity (75%) in a desiccator over a saturated NaCl solution for a week prior to analyses. X-ray diffractograms were acquired at room temperature ($20 \pm 1^{\circ}$ C), the scattering intensity was measured from 4° to 30° as a function of 20 and at a scanning speed of

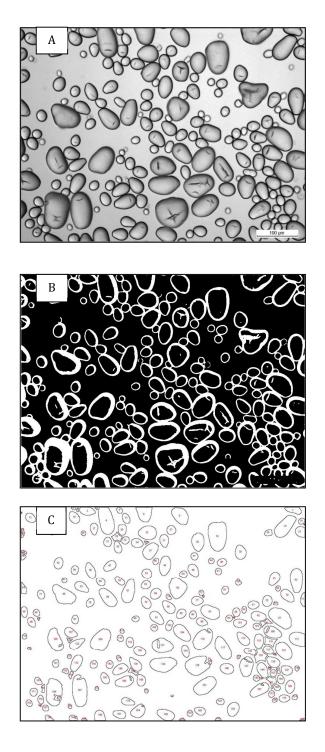


Figure 1: Particle size determination of starch granules by image analysis. Light micrographs of starch granules of cultivar Russet Burbank (A) were converted in binary images (B) and the surface area of the granules was estimated using ImageJ software (C). The scale bar corresponds to 10 µm.

115	2.6 Amylopectin chain length profile
116	The amylopectin chain length profile was determined using using high performance anion
117	exchange chromatography with pulsed amperometric detection (HPAEC-PAD), according to the
118	method of Liu <i>et al</i> . ¹⁵ using isoamylase (280 U/mg, Megazyme International Ireland Ltd. Bray Co.,
119	Wicklow, Ireland) to de-branch the starch. Enzymes were inactivated by placing samples in a
120	boiling water bath for 10 min and an aliquot (200 μ L) from de-branched samples was diluted with
121	2 mL of 150 mM NaOH, filtered (0.45 μm nylon syringe filter) and injected into the HPAEC-PAD
122	system (5 μ L sample loop) (Dionex Corporation, Sunnyvale, CA, USA). The HPAEC-PAD system
123	consisted of a Dionex HPLC equipped with an ED50 electrochemical detector with a gold working
124	electrode, P680 HPLC pump, TCC-100 column oven, and ASI-100 automated sampler (Dionex
125	Corporation, Sunnyvale, CA, USA). The standard triple potential waveform was employed, with the
126	following periods and pulse potentials: T_1 =040 s, with 0.20 s sampling time, E_1 = 0.05 V; T_2 = 0.20 s,
127	E ₂ – 0.75 V; T ₃ = 0.40s, E ₃ = -0.15V. A Dionex CarboPac TM PA1 column with gradient elution (-5 to 0
128	min, 40% A; 5 min, 60% A; 45 min, 80% A) at a column temperature of 26°C and a flow rate of 1
129	mL/min (0.5 Hz) was used. Data were collected using Chromeleon software, version 6.80(Dionex
130	Corporation, Sunnyvale, CA). The weight fractions of chain lengths 6-13, 14-18, 19-37, 38-60 were
131	quantified based on the area of peaks. Standards were prepared by dissolving 0.5-1.0 mg from a
132	Shodex STANDARD P-82 kit (Showa Denko K.K. Shodex Group, Kawasaki, Kanagawa, Japan) in
133	distilled water to make 0.1-0.5% solutions.
134	
405	

DSC measurements were made using a Modulated Differential Scanning Calorimeter MDSC 2920
instrument (TA Instruments Inc., Delaware, USA) equipped with a thermal analysis data station and
data recording software. Approximately 3 mg of starch from each cultivar was weighed accurately
into an aluminium sample pan. Water was added to the starch sample with a microsyringe to obtain
a starch:water ratio of 1:2 (w/w) and the pan was hermetically sealed. The detailed procedures for
DSC measurements and analysis of the thermal transition parameters are described elsewhere²⁶.

142

135

143 2.8 Starch pasting properties

2.7 Thermal analysis

144	Starch pasting properties were analyzed using a Rapid Visco Analyser RVA-4 (Newport Scientific,
145	Warriewood, Australia). Starch samples and deionised water (8% dry starch basis, total weight of
146	28 g) were weighed directly into a test canister and the mixture was agitated by stirring using the
147	plastic paddle before the canister was inserted into the instrument. The starch suspension was
148	stirred at 960 rpm for the first 10 s then decreased to 160 rpm for the remainder of the experiment.
149	Samples were equilibrated at 50°C for 1min then heated at 6°C/min to 95°C, held at 95°C for 5 mins
150	before cooling at 6° C/min back to 50° C and held for 2 mins. Peak viscosity, trough viscosity and
151	final viscosity were recorded, and breakdown (peak minus trough viscosity) and setback (final
152	minus trough viscosity) were calculated using the Thermocline software provided with the
153	instrument.
154	
155	2.9 Statistical analyses
156	All analyses were performed on duplicate starch samples except relative crystallinity
157	determination, which was done as a single test, and granule size analysis which was performed in
158	triplicate. One-way analysis of variance (ANOVA) by Duncan's test (p<0.05) was performed using
159	SPSS V. 20 software (SPSS Inc., Chicago, IL).
159 160	SPSS V. 20 software (SPSS Inc., Chicago, IL).
	SPSS V. 20 software (SPSS Inc., Chicago, IL). 3. Results
160	
160 161	3. Results
160 161 162	3. Results3.1 Physicochemical properties
160 161 162 163	 3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24
160 161 162 163 164	 3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%).
160 161 162 163 164 165	 3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their
160 161 162 163 164 165 166	 3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their amylopectin chain length distributions, and also in their phosphorus content and relative
160 161 162 163 164 165 166 167	3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their amylopectin chain length distributions, and also in their phosphorus content and relative crystallinity (Table 1), these differences did not differentiate Carisma from other high GI cultivars
160 161 162 163 164 165 166 167 168	3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their amylopectin chain length distributions, and also in their phosphorus content and relative crystallinity (Table 1), these differences did not differentiate Carisma from other high GI cultivars
160 161 162 163 164 165 166 167 168 169	3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their amylopectin chain length distributions, and also in their phosphorus content and relative crystallinity (Table 1), these differences did not differentiate Carisma from other high GI cultivars (Table 1).
160 161 162 163 164 165 166 167 168 169 170	3. Results 3.1 Physicochemical properties The chain length profile of amylopectin from all of the potato cultivars had the chain length 13-24 fraction as the highest percentage (47-51%) and chain length 6-12 fraction as the lowest (7-9%). Although small differences were noted among the starches from the seven potato cultivars in their amylopectin chain length distributions, and also in their phosphorus content and relative crystallinity (Table 1), these differences did not differentiate Carisma from other high GI cultivars (Table 1). Russet Burbank starch had the largest mean granule size, whereas the mean granule size of

Food & Function Accepted Manuscript

174	highest percentage of large granules (11%). The percentage of small starch granules (82%) and
175	large granules (4%) in Carisma was significantly different from the respective values for Russet
176	Burbank, but did not differ significantly from Maiflower (Figure 2). Although there were significant
177	differences in granule size distributions between the cultivars (Table 1), these did not correspond
178	to the differences in GI values.
179	
180	3.2 Thermal properties
181	The potato starches presented well-defined single differential scanning calorimetry (DSC)
182	endotherms (Figure 3). The thermal transition temperatures T_o , T_p and T_c ranged from 60.0 to
183	66.2°C, 62.8 to 69.3°C and 67.6 to 75.8°C, respectively, and the gelatinization enthalpies ranged
184	from 18.5 to 19.5 Jg ⁻¹ (Table 2). Carisma starch had the highest values T_o (66.2°C), T_p (69.3°C) and T_c
185	(75.8°C), whereas the lowest respective values were observed for Russet Burbank. The average
186	gelatinization temperature range (T_c - T_o) was 10.0°C. The thermal transition temperatures varied
187	significantly between some of the cultivars, but there were no significant differences in
188	gelatinization enthalpies ($p > 0.05$).
189	
190	3.3 Starch pasting properties
191	All seven starches displayed similar pasting profiles, which were typical of potato starch. Pasting
192	temperature ranged from 60.8°C to 70.2°C (Table 3). Carisma starch had the highest pasting
193	temperature (70.2°C), whereas Russet Burbank starch had the lowest (60.8°C), consistent with the
194	ranking of DSC thermal transition temperatures. The starches had similar peak viscosities with the
195	exception of Russet Burbank starch, which was significantly lower than those of the others. Final
196	paste viscosity was lowest for Russet Burbank (3869 cP) and the highest for Carisma (9009 cP).

197 Carisma starch also had the highest trough (7595 cP) and final viscosity (9009 cP).

Cultivar	AM (%) ^c	P (%)	RC (%)	Mean GSA (μm²) —	AP chain length profile			
(GI value) ^c					DP 6 – 12	DP 13-24	DP 25-36	DP 37-54
Carisma (53)	25.2 ± 1.7^{a}	0.054 ± 0.005^{cd}	24	314 ± 31 ^b	7.0 ± 0.1^{a}	$49.2\pm0.6^{\rm a}$	$26.8\pm0.1^{\rm b}$	$17.1\pm0.7^{\mathrm{ab}}$
Nicola (69)	25.6 ± 1.7^{a}	0.061 ± 0.007^{de}	25	288 ± 53^{ab}	$8.4\pm0.4^{\rm ab}$	$50.5\pm4.0^{\text{a}}$	$22.8\pm3.6^{\text{a}}$	$18.3\pm0.7^{\rm b}$
Desiree (74)	23.1 ± 0.9^{a}	0.032 ± 0.004^{a}	26	438 ± 86°	$7.2\pm0.1^{\rm a}$	$46.7\pm0.6^{\texttt{a}}$	$27.6\pm0.2^{\rm b}$	$18.4\pm0.6^{\rm b}$
Russet Burbank (82)	24.4 ± 0.8^{a}	0.047 ± 0.001^{bc}	27	649 ± 74^{d}	8.4 ± 0.6^{ab}	$46.6\pm0.6^{\texttt{a}}$	$27.5\pm1.3^{\rm b}$	$18.5\pm1.2^{\rm b}$
Virginia Rose (93)	27.7 ± 0.8^{a}	0.040 ± 0.000^{ab}	24	259 ± 22^{ab}	$7.0\pm0.3^{\rm a}$	$47.0\pm0.8^{\rm a}$	$27.9\pm0.5^{\rm b}$	$18.7\pm0.2^{\rm b}$
Bintje (94)	24.7 ± 1.3^{a}	0.068 ± 0.004^{e}	23	362 ± 54^{bc}	$7.2\pm0.1^{ ext{a}}$	$47.3\pm1.1^{\rm a}$	$27.6\pm0.8^{\rm b}$	$18.0\pm0.2^{\rm b}$
Maiflower (103)	24.1 ± 1.9^{a}	0.042 ± 0.009^{abc}	30	196 ± 58ª	$9.3\pm1.5^{\rm b}$	$47.7\pm0.3^{\rm a}$	$26.8\pm0.7^{\rm b}$	$16.3\pm0.6^{\rm a}$

^{*a*} Values in a column with the same superscript do not differ significantly (p> 0.05).

^{*b*} Abbreviations: GI, Glycemic Index; AM, amylose; AP, amylopectin; P, phosphorus; RC, relative crystallinity; GSA, granule surface area; DP, degree of polymerization. ^{*c*} GI values and AM content are from Ek *et al*²¹.

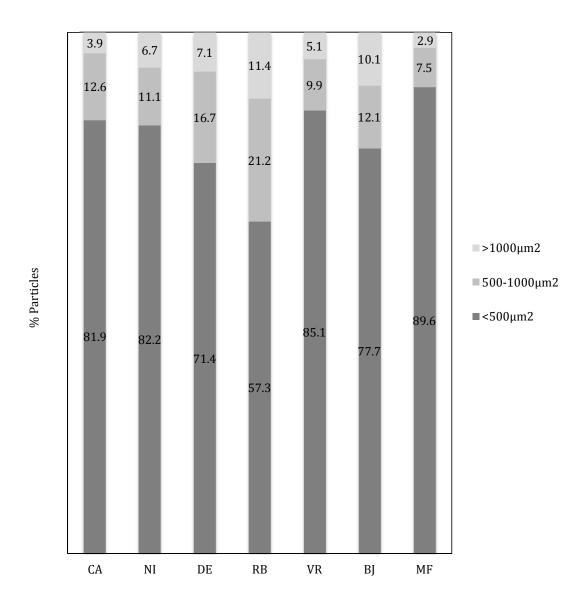


Figure 2: Particle size distribution of starch granules from seven different potato cultivars Abbreviations: CA, Carisma; NI, Nicola; DE, Desiree; RB, Russet Burbank; VR, Virginia Rose, BJ, Bintje; MF, Maiflower.

Table 2.	Thermal	properties	s of starch	from seven	potato cultivar
Table 2.	Thermal	properties	s of starch	from seven	potato cultiva

Cultivar	Transition temperature (°	sition temperature (°C)					
Sundival	To	T_p	T _c	$T_c - T_o$	ΔΗ (J/g)		
Carisma	$66.2\pm0.1^{\text{e}}$	$69.3\pm0.0^{\text{e}}$	$75.8\pm0.1^{\rm e}$	$9.6\pm0.1^{ m b}$	$19.4\pm0.0^{\rm ab}$		
Nicola	$60.4\pm0.1^{\text{a}}$	$64.0\pm0.2^{\rm b}$	$67.6\pm0.2^{\rm b}$	$10.6\pm0.4^{\circ}$	$18.5\pm0.5^{\rm a}$		
Desiree	$63.7\pm0.2^{\rm d}$	$67.1\pm0.3^{\rm d}$	$74.4\pm0.1^{\rm d}$	$10.7\pm0.3^{\circ}$	$18.7\pm0.0^{\rm ab}$		
Russet Burbank	$60.0\pm0.2^{\rm a}$	$62.8\pm0.2^{\rm a}$	$67.6\pm0.2^{\rm a}$	$7.6\pm0.0^{\mathrm{a}}$	18.7 ± 0.7^{ab}		
Virginia Rose	$61.4\pm0.0^{\rm bc}$	$65.4\pm0.0^{\rm c}$	$72.6\pm0.5^{\text{c}}$	$11.2\pm0.5^{\text{c}}$	$19.4\pm0.3^{\text{ab}}$		
Bintje	$61.8\pm0.4^{\rm c}$	$66.2\pm0.1^{\circ}$	$71.1\pm1.2^{\rm b}$	$9.3\pm0.8^{ m b}$	$18.5\pm0.3^{\rm a}$		
Maiflower	$61.2\pm0.0^{\rm b}$	$66.2\pm0.1^{\rm c}$	$72.1\pm0.3^{\rm bc}$	$10.9\pm0.3^{\circ}$	$19.5\pm0.1^{\rm b}$		

^{*a*} Values in a column with the same superscript do not differ significantly (p> 0.05).

^{*b*} Abbreviations: T_o = onset temperature; T_p = peak temperature; T_c = conclusion temperature; Δ H = enthalpy change.

Cultivar	PT (°C)	PV (cP)	TV (cP)	BV (cP)	FV (cP)	SB (cP)
Carisma	$70.2\pm0.4^{\rm f}$	13128 ± 69^{d}	$7595\pm322^{\rm d}$	$5533\pm253^{\text{a}}$	$9009\pm301^{\text{e}}$	$1415\pm21^{\rm e}$
Nicola	$62.8\pm0.0^{\rm b}$	12847 ± 28^{cd}	$4088\pm9^{\rm b}$	$8759\pm19^{\rm b}$	4876 ± 11^{b}	$788\pm2^{\rm b}$
Desiree	$66.0\pm0.0^{\text{e}}$	$10812\pm370^{\text{b}}$	$5186\pm70^{\circ}$	5626 ± 440^a	$6304\pm31^{\text{d}}$	$1119\pm 39^{\rm d}$
Russet Burbank	$60.8\pm0.1^{\rm a}$	8521 ± 83^a	$3215\pm20^{\text{a}}$	5306 ± 64^{a}	3869 ± 13^{a}	654 ± 7^{a}
Virginia Rose	$64.2\pm0.2^{\rm d}$	$13723 \pm 141^{\text{e}}$	$4934 \pm 199^{\circ}$	$8789\pm59^{\rm b}$	$5881\pm214^{\circ}$	$947\pm15^{\rm c}$
Bintje	$63.4\pm0.4^{\circ}$	13262 ± 292^{d}	$3849\pm24^{\rm b}$	9413 ± 268^{c}	$4543\pm106^{\rm b}$	$694\pm82b^{\text{ab}}$
Maiflower	$63.4\pm0.3^{\circ}$	$12478\pm100^{\circ}$	3907 ± 52^{b}	8571 ± 48^{b}	$4671\pm105^{\rm b}$	764 ± 52^{b}

Table 3. Pasting properties of starch from seven potato cultivars

^{*a*} Values in a column with the same superscript do not differ significantly (p> 0.05).

^b Abbreviations: PT, pasting temperature; PV, peak viscosity; TV, trough viscosity; BV, breakdown viscosity; FV, final viscosity; SB, setback.

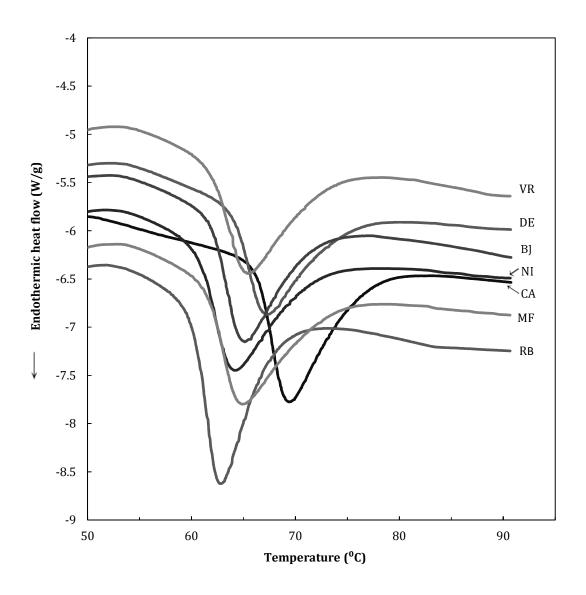


Figure 3: DSC thermograms of starch from seven potato cultivars. Abbreviations: CA, Carisma; NI, Nicola; DE, Desiree; RB, Russet Burbank; VR, Virginia Rose, BJ, Bintje; MF, Maiflower.

198	4. Discussion
199	The present study has shown that starch from the low GI potato cultivar Carisma was more resistant than
200	starch from the high GI cultivars to the effects of hydrothermal treatment in the DSC and RVA. Carisma
201	starch had significantly higher thermal transition temperatures (T_o , T_p and T_c) and starch paste
202	temperature compared to starches from high GI cultivars. Trough and final viscosities, and hence setback
203	viscosity, were also significantly different for Carisma compared to the other cultivars. While there were
204	some differences between the cultivars with respect to starch granule size distribution, amylose content,
205	phosphorus content, relative crystallinity and amylopectin chain length profiles, none of the trends
206	differentiated Carisma from the high GI potatoes.
207	
208	
209	Higher DSC transition temperatures are thought to result from a higher degree of crystallinity, or more
210	ordered crystalline regions, which impart greater structural stability and make the granules more
211	resistant to gelatinization ²⁷ . Potato starch with less crystalline order was observed to gelatinize at a lower
212	temperature and reach a greater degree of gelatinization at the same temperature than more crystalline
213	potato starch ²⁸ . The same study showed that glycemic response increased with a greater degree of starch
214	gelatinization. The higher gelatinization onset temperature of Carisma starch suggests that the crystalline
215	regions of Carisma starch are more stable than those of the other cultivars. Hence, under the same
216	cooking conditions, the lower glycemic response elicited by Carisma could be because its starch was
217	gelatinized to a lesser extent than starch from the potatoes with a high GI value.
218	
219	The parameter ΔH measures the energy change due to loss of molecular order and melting of crystallites
220	when hydrogen bonds break within the granule. The value of ΔH has been considered to be an indicator
221	of the quantity and quality of the starch crystalline structure ^{29, 30} . However, more recent studies have
222	indicated that the DSC endotherm obtained at a water/starch ratio of 2:1 does not represent complete
223	starch gelatinization and corresponds to the energy taken up until the available water becomes limiting ³¹ .
224	Under these conditions, considerable residual crystallinity and lamellar structure remains at the end of
225	the DSC endotherm 32 . Therefore in the present study, the onset and peak temperatures, but not ΔH , in the
226	DSC endotherm obtained at a water/starch ratio of 2:1 would have been indicative of the quality of the
227	starch crystallinity of the seven potato cultivars.

Food & Function Accepted Manuscript

228	
229	The pasting profile of Carisma starch was clearly different from that of the other six cultivars (Figure 4),
230	with a significantly higher pasting temperature, higher trough and final viscosities. RVA pasting
231	temperature provides an indication of the temperature at which granule disruption commences. A higher
232	pasting temperature indicates that Carisma starch required more heat for the onset of starch
233	gelatinization during cooking. Continued heating past the temperature of peak viscosity results in the
234	breakdown of swollen granules and realignment of starch polymer molecules, causing a decrease in paste
235	viscosity. Carisma starch had greater resistance to breakdown as indicated by the significantly higher
236	trough viscosity compared to the other starches (Figure 4). The setback viscosity is thought to result from
237	the rearrangement of amylose molecules that have leached from swollen starch granules during cooling,
238	and is indicative of the retrogradation tendency of starch ³³ . Carisma starch had significantly higher final
239	and setback viscosities compared to the other starches indicating more viscous retrograded starch paste
240	which could confer resistance to enzymatic digestion. Food matrix viscosity has been observed to affect
241	the enzymatic digestibility of starch and glycemic response ¹⁹ . A high level of viscosity slows down
242	propulsive and mixing effects generated by peristalsis, reducing interactions between substrates and
243	digestive enzymes and also the absorption of hydrolysis products thus lowering postprandial glycemia ¹⁹ .
244	
245	No significant correlations were observed between amylose and phosphorus contents, and amylopectin
246	chain length distributions, of the seven starches with their respective DSC and RVA properties, nor with
247	the GI values of the potatoes. The lack of such correlations was similar to the results of other studies,
248	which found no significant relationship between amylose and phosphorus content with gelatinization
249	temperature and enthalpy ^{15, 34} . Smaller granule sizes have been reported to be related to increased DSC
250	transition temperatures and decreased enthalpy of gelatinization ³⁵ . However, in the present study,
251	Maiflower starch had a significantly smaller mean granule size compared to Carisma starch but did not
252	show higher transition temperatures. Higher amylose content, fewer short amylopectin branch chains
253	and smaller granule size were reported to be associated with higher pasting temperature, higher setback
254	viscosity and higher peak viscosity temperature ³⁶⁻³⁸ , however these associations were not observed in the
255	present study.

256

257 Recent work has shown that the fine structural features of both amylose and amylopectin significantly 258 influence the *in vitro* digestion rate of starch in cooked rice grains. Longer chain lengths of amylose 259 branches, a smaller relative amount of long to short amylopectin branches and a smaller ratio of longer 260 amylose branches to short amylopectin branches increased *in vitro* digestion rate¹⁸. In the present study 261 no relationship was found between amylose content, amylopectin chain length profile and GI value, but 262 further aspects of the fine structures of branch chains in amylose and amylopectin (for example, spacing 263 between branch points) were not investigated and could be possible factors that influence starch granule 264 resistance to gelatinization during cooking, starch digestibility and consequently the GI value. It is also 265 possible that due to fine structural differences the glucan chains of Carisma starch are less disordered and 266 therefore less susceptible to amylolysis when hydrothermally treated in the potato tissue³⁹. 267

268 Potato cultivars differ in the size and shape of tuber cells, and the strength of cell wall structures⁴⁰⁻⁴¹. 269 Hence, the physical properties of the tuber may also influence the GI and *in vitro* digestibility of starch in 270 cooked potatoes. Cell walls are considered to be a limiting factor for starch hydrolysis in foods^{19,42}. Cell 271 walls could act as a physical barrier for heat conductance during cooking and thereby reduce the extent of 272 starch gelatinisation. They can also limit the extent of starch swelling, and the rate of starch hydrolysis by 273 restricting enzyme access. Nevertheless, the significantly different hydrothermal properties of isolated 274 Carisma starch indicate that the characteristics of the starch are likely to be a major determinant of 275 digestibility.

276

277 5. Conclusions

278 Starch from the low GI potato cultivar Carisma was more resistant to the effects of hydrothermal 279 treatment in the DSC and RVA than starch from the high GI cultivars used for comparison in this study. 280 Carisma starch was also more resistant to shear and breakdown, and formed a stronger retrograded 281 starch paste than the starches from the high GI potatoes. Further examination of these properties, which 282 could be associated with the fine structure of amylose and amylopectin and the way these molecules are 283 organized in the granules, may provide insights into why the starch in cooked Carisma potatoes has 284 greater resistance to enzymatic hydrolysis, and elicits a lower postprandial blood glucose response than 285 other potatoes. The importance and popularity of potatoes as a food crop dictate the need to identify and 286 develop cultivars that are digested slowly and have a low GI. This study suggests that thermal analysis

Food & Function Accepted Manuscript

Food & Function

287	and starch paste properties could be used as an aid in identifying and developing cultivars that are
288	digested slowly and have a low GI.
289	
290	Acknowledgements
291	K.E. was supported by a scholarship from Agrico Holland, the Mitolo Group (Australia) and Glycemic
292	Index Foundation Limited. The authors thank the Mitolo Group and Agronico for supplying the potato
293	cultivars used in this study. The authors acknowledge the scientific and technical assistance from Mr
294	Dennis Dwarte from the Australian Centre for Microscopy and Microanalysis (ACMM), The University of
295	Sydney in the development of the particle size analysis method.
296	
297	References
298	1 FAOSTAT, <u>http://faostat3.fao.org/home/index.html#DOWNLOAD</u> , (accessed 20/08/2013).
299	2 FAOSTAT, <u>http://faostat3.fao.org/home/index.html#DOWNLOAD</u> , (accessed 20/08/2013).
300	3 FAO. Carbohydrates in human nutrition, Report of a Joint FAO/WHO Expert Consultation, Rome, 1998.
301	4 J. Mann, J. H. Cummings, H. N. Englyst, T. Key, S. Liu, G. Riccardi, C. Summerbell, R. Uauy, R. M. Van Dam,
302	B. Venn, H. H. Vorster and M. Wiseman, Eur. J. Clin. Nutr., 2007, 61, S132-S137.
303	5 D. J. Jenkins, T. M. Wolever, R. H. Taylor, H. Barker, H. Fielden, J. M. Baldwin, A. C. Bowling, H. C. Newman,
304	A. L. Jenkins and D. V. Goff, Am. J. Clin. Nutr., 1981, 34 , 362-366.
305	6 S. M. Liu, W. C. Willett, M. J. Stampfer, F. B. Hu, M. Franz, L. Sampson, C. H. Hennekens and J. E. Manson,
306	<i>Am. J. Clin. Nutr.</i> , 2000, 71 , 1455-1461.
307	7 D. D. S. Ludwig, <i>JAMA, J. Am. Med. Assoc.</i> , 2002, 287 , 2414-2423.
308	8 D. Mozaffarian, T. Hao, E. B. Rimm, W. C. Willett and F. B. Hu, N. Engl. J. Med., 2011, 364, 2392-2404.
309	9 W. Willett, J. Manson and S. M. Liu, Am. J. Clin. Nutr., 2002, 76 , 274S-280S.
310	10 ISO 26642:2010(E). Food products – Determination of the glycaemic index (GI) and recommendation for
311	food classification, 2010.
312	11 L. M. Aston, D. Jackson, S. Monsheimer, S. Whybrow, T. Handjieva-Darlenska, M. Kreutzer, A. Kohl, A.
313	Papadaki, J.A. Martinez, V. Kunova, M.A. Van Baak, A. Astrup, W.H.M. Saris, S.A. Jebb and A.K.
314	Lindroos, <i>Obes. Rev.</i> , 2010, 11 , 92-100.
315	12 J. Brand-Miller, J. McMillan-Price, K. Steinbeck and I. Caterson, J. Am. Coll. Nutr., 2009, 28 Suppl, 446S-
316	449S.

- 317 13 K. L. Ek, J. Brand-Miller and L. Copeland, *Food Chem.*, 2012, **133**, 1230-1240.
- 318 14 C. J. K. Henry, H. J. Lightowler, C. M. Strik and M. Storey, *Br. J. Nutri.*, 2005, **94**, 917-921.
- 319 15 Q. Liu, R. Tarn, D. Lynch and N. M. Skjodt, *Food Chem.*, 2007, **105**, 897-907.
- 320 16 Z. H. Lu, R. Y. Yada, Q. A. Liu, B. Bizimungu, A. Murphy, D. De Koeyer, X. Q. Li and R. G. Pinhero, *Food* 321 *Chem.*, 2011, **126**, 1246-1253.
- 322 17 S. Dhital, A. K. Shrestha and M. J. Gidley, *Carbohydr. Polym.*, 2010, 82, 480-488.
- 323 18 Z. A. Syahariza, S. Sar, J. Hasjim, M. J. Tizzotti, and R.G. Gilbert, Food Chem, 2013, 136, 742-749.
- 324 19 J. Singh, A. Dartois and L. Kaur, *Trends in Food Sci. Tech.*, 2010, **21**, 168-180.
- 325 20 S. Wang and L. Copeland, *Food Funct.*, 2013, **4**, 1564-1580.
- 326 21 K. L. Ek, S. Wang, L. Copeland and J. Brand-Miller, *Br. J. Nutr.*, 2014, **111**, 699-705.
- 327 22 T. Noda, S. Tsuda, M. Mori, S. Takigawa, C. Matsuura-Endo, K. Salto, W. H. A. Mangalika, A. Hanaoka, Y.
- 328 Suzuki and H. Yamauchi, *Food Chem.*, 2004, 86, 119-125.
- 329 23 W. R. Morrison, Anal. Biochem., 1964, 7, 218-224.
- 330 24 S. J. Wang, J. L. Yu, Q. H. Zhu, J. G. Yu and F. M. Jin, *Food Hydrocolloids*, 2009, **23**, 426-433.
- 331 25 S. Nara and T. Komiya, *Starch Stärke*, 1983, **35**, 407-410.
- 332 26 S. J. Wang, P. Sharp and L. Copeland, *Food Chem.*, 2011, **126**, 1546-1552.
- 333 27 V. Barichello, R.Y. Yada, R.H. Coffin and D.W. Stanley, J. Food Sci., 1990, 55, 1054-1059.
- 334 28 J. Parada, and J.M. Aguilera, *Food Res. Int.*, 2012, **45**, 238-243.
- 335 29 R. F. Tester and W. R. Morrison, *Cereal Chem.*, 1990, **67**, 551-557.
- 336 30 D. Cooke and M. J. Gidley, *Carbohydr. Res.*, 1992, **227**, 103-112.
- 337 31 S. Wang and L. Copeland, J. Agri. Food Chem., 2012, 60, 6439-6446.
- 338 32 P. J. Jenkins and A. M. Donald, *Carbohydr. Res.*, 1998, **308**, 133-147.
- 339 33 A. A. Karim, M. H. Norziah, and C. C. Seow, *Food Chem.*, 2000, **71**, 9-36.
- 340 34 A. A. Karim, L. C. Toon, V. P. L. Lee, W. Y. Ong, A. Fazilah and T. Noda, J. Food Sci., 2007, 72, C132-C138.
- 341 35 N. Singh and L. Kaur, J. Sci. Food Agri., 2004, 84, 1241-1252.
- 342 36 L. Kaur, J. Singh, O. J. McCarthy and H. Singh, *J. Food Eng.*, 2007, **82**, 383-394.
- 343 37 M. Schirmer, A. Hochstotter, M. Jekle, E. Arendt, and T. Becker, *Food Hydrocolloids*, 2013, **32**, 52-63.
- 344 38 I. S. M. Zaidul, H. Yamauchi, S. Takigawa, C. Matsuura-Endo, T. Suzuki and T. Noda, Food Chem., 2007,
- **105**, 164-172.

- 346 39 R. Tahir, P. R. Ellis, T. Y. Bogracheva, C. Meares-Taylor and P J. Butterworth, *Biomacromolecules*, 2011,
- **347 12**, 123-133.
- 348 40 A. Bordoloi, L. Kaur and J. Singh, *Food Chem.*, 2012, **133**, 1092-1100.
- 349 41 P. Colonna, V. Leloup, and A. Buleon, *Eur. J. Clin. Nutr.*, 2009, **46**, S17-S32.
- 350 42 N. Singh, L. Kaur, R. Ezekiel and H. S. Guraya, J. Sci. Food Agric., 2005, 85, 1275-1284.
- 351
- 352
- 353
- 354