Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Oolong, black and pu-erh tea suppresses adiposity in mice via activation of
2	AMP-activated protein kinase
3	
4	Yoko Yamashita, Liuqing Wang, Lihua Wang, Yuki Tanaka, Tianshun Zhang, Hitoshi
5	Ashida*
6	
7	Department of Agrobioscience, Graduate School of Agricultural Science, Kobe
8	University, Kobe 657-8501, Japan
9	
10	*Corresponding author.
11	Hitoshi Ashida, Ph.D.
12	Tel and Fax: +81-78-803-5878
13	E-mail: <u>ashida@kobe-u.ac.jp</u>
14	Address: Department of Agrobioscience, Graduate School of Agricultural Science,
15	Kobe University, Nada-ku, Kobe 657-8501, Japan
16	

- 18
- 19
- 20

21 Abstract

22	It is well known that tea has a variety of beneficial impacts on human health,
23	including anti-obesity effects. It is well documented that green tea and its constituent
24	catechins suppress obesity, but the effects of other tea on obesity and its potential
25	mechanisms involved are not yet fully understood. In this study, we investigated
26	suppression of adiposity by oolong, black and pu-erh tea and characterized the
27	underlying molecular mechanism in vivo. We found that consumption of oolong, black
28	or pu-erh tea for a period of one week significantly decreased visceral fat without
29	affecting body weight in male ICR mice. On a mechanistic level, consumption of tea
30	increased phosphorylation of AMP-activated protein kinase (AMPK) in white adipose
31	tissue (WAT). This was accompanied by the induction of WAT protein levels of
32	uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results
33	indicate that oolong, black and pu-erh tea, in particular black tea, suppresses adiposity
34	via phosphorylation of the key metabolic regulator AMPK and increases browning of
35	WAT.
36	
37	

37

38 **Keywords:** acetyl-CoA carboxylase (ACC), AMP-activated protein kinase (AMPK),

- 39 black tea, insulin-like growth factor binding protein 1 (IGFBP-1), pu-erh tea,
- 40 uncoupling protein (UCP),

- 42
- 43

Page 5 of 38

Food & Function

Food & Function Accepted Manuscript

44	Introd	uction

45With the exception of water, tea is the most consumed beverage in the world. There are four types of tea, namely, green tea (non-oxidized), oolong tea (partially oxidized), 46 black tea (fully oxidized) and pu-erh tea (oxidized and fermented). Although catechins 47and their derivatives are the main polyphenolic components in tea, their levels vary with 4849the degree of oxidation and/or fermentation. Caffeine level also varies during the 50production process of tea. A variety of recent cell, animal, and human studies have described the effects of tea, and in particular green tea¹⁻³, in preventing obesity and 51ameliorating energy consumption. Specifically, they have demonstrated that green tea, 5253or components thereof, reduce adipocyte differentiation and proliferation, lipogenesis, fat mass, body weight, fat absorption, appetite, and plasma levels of triglycerides, free 54fatty acids, cholesterol, glucose, insulin, and leptin^{1, 2, 4}. In contrast, however, the effects 55of other tea on these parameters are not well elucidated. 5657AMPK is an important therapeutic target for drugs in the prevention and treatment of obesity and diabetes mellitus⁵, such as metformin and the thiazolidinediones^{6, 7}. 58Activation of AMPK suppresses various anabolic processes, including fatty acid $\mathbf{59}$ 60 synthesis, cholesterol synthesis, and gluconeogenesis, and activates a variety of catabolic processes, such as fatty acid uptake and oxidation, and glucose uptake. AMPK 61is itself modulated by the adipokines leptin and adiponectin, which are pivotal 62 regulators of whole-body energy metabolism⁸⁻¹⁰. Collectively, these results indicate that 63 64 stimulation of AMPK is important for the prevention and treatment of diabetes and 65obesity. 66 Obesity results from an imbalance between energy uptake and expenditure, and

67 excess dietary fat intake is one of the primary etiologic factors in the development of

68	this disease. In the last two decades, uncoupling proteins (UCPs) have attracted
69	considerable interest in the context of energy metabolism and obesity ^{11, 12} . UCP-1 plays
70	an important role in energy expenditure by regulating fat oxidation and heat generation
71	in brown adipose tissue (BAT) and, moreover, UCP-2 and UCP-3 are also implicated in
72	regulation of energy metabolism and the development of obesity ^{13, 14} . UCP-1 is involved
73	in the formation of brown phenotype in white adipose tissue (WAT). Certain
74	environmental and chemical stimuli, such as cold exposure and peroxisome
75	proliferator-activated receptor γ (PPAR γ), promote browning of WAT ¹⁵⁻¹⁹ . Recently,
76	certain food components increase UCP-1 expression in WAT: For example, fucoxanthin
77	from edible seaweed, Undaria pinnatifida, increases UCP-1 protein expression in
78	WAT ¹⁹ . We also showed that a polyphenol-rich black soybean seed coat extract induces
79	both mRNA and protein expression of UCP-1 in WAT ²⁰ . These results indicate that
80	browning of WAT accompanied by up-regulation of UCP-1 expression may contribute
81	to reducing WAT weight.
82	In adipocytes, phosphorylation of AMPK activates glycerol-3-phosphate acyl
83	transferase-1 and carnitine palmitoyltransferase-1, the principal enzymes in fatty acid
84	metabolism, and inhibits phosphorylation of acetyl CoA carboxylase (ACC), a rate
85	limiting enzyme for lipogenesis ²¹ . Moreover, phosphorylation of AMPK in WAT has
86	been shown to result in upregulated expression of the gene encoding insulin-like growth
87	factor binding protein-1 (IGFBP-1) ²² . IGFBP-1 is known to suppress sucrose-induced
88	increases in body weight, adipose tissue weight, and serum leptin levels, and to inhibit
89	IGF-1 induced adipocyte differentiation ²³ . In preadipocytes, IGF-1 has been shown to
90	activate the cAMP-response element binding protein via the IGF-1 receptor, resulting in
91	up-regulation of PPAR γ and CCAAT/enhancer binding protein (C/EBP) α expression ²⁴ .

 $\mathbf{5}$

92	Moreover, activation of AMPK reportedly inhibits adipocyte differentiation through
93	repression of C/EBP β , C/EBP δ , C/EBP α and PPAR γ^{25} . Collectively, these observations
94	support the assertion that activated AMPK plays a pivotal role in ameliorating
95	symptoms of obesity by stimulating fatty acid oxidation, adipocyte differentiation and
96	energy metabolism. We previously found that oolong, black and pu-erh tea activates
97	both insulin- and AMPK-dependent signaling pathways to induce glucose transporter 4
98	translocation in the skeletal muscle of ICR mice and to improve glucose intolerance in
99	these animals ²⁶ . In this study, we demonstrated that oolong, black and pu-erh tea inhibits
100	adiposity in vivo by stimulating AMPK, and thereby upregulating levels of energy
101	expenditure-related factors.
102	
103	Experimental
104	Materials
104 105	Materials Blood total-cholesterol and triglyceride levels were measured using commercially
105	Blood total-cholesterol and triglyceride levels were measured using commercially
105 106	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting,
105 106 107	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit
105 106 107 108	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from
105 106 107 108 109	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-AMPK rabbit IgG,
105 106 107 108 109 110	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-AMPK rabbit IgG, anti-p-AMPK rabbit IgG antibodies, and anti-p- ACCα-rabbit IgG antibodies were from
105 106 107 108 109 110 111	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-AMPK rabbit IgG, anti-p-AMPK rabbit IgG antibodies, and anti-p- ACCα-rabbit IgG antibodies were from Cell Signaling Biotechnology (Tokyo, Japan); and anti-UCP-2 rabbit IgG antibody was
105 106 107 108 109 110 111 112	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPARγ-goat IgG, anti-C/EBPα-goat IgG, anti-UCP-1 goat IgG, anti-ACCα-rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-AMPK rabbit IgG, anti-p-AMPK rabbit IgG antibodies, and anti-p- ACCα-rabbit IgG antibodies were from Cell Signaling Biotechnology (Tokyo, Japan); and anti-UCP-2 rabbit IgG antibody was purchased from Biolegend (Kyoto, Japan). Blocking-One solution was from Nacalai
105 106 107 108 109 110 111 112 113	Blood total-cholesterol and triglyceride levels were measured using commercially available kits from Wako Pure Chemical Industries (Osaka, Japan). For western blotting, anti-PPAR γ -goat IgG, anti-C/EBP α -goat IgG, anti-UCP-1 goat IgG, anti-ACC α -rabbit IgG, anti-mouse IgG, anti-goat IgG, and anti-rabbit IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-AMPK rabbit IgG, anti-p-AMPK rabbit IgG antibodies, and anti-p- ACC α -rabbit IgG antibodies were from Cell Signaling Biotechnology (Tokyo, Japan); and anti-UCP-2 rabbit IgG antibody was purchased from Biolegend (Kyoto, Japan). Blocking-One solution was from Nacalai Tesque (Kyoto, Japan). Polyvinylidene difluoride (PVDF) membrane and ImmunoStar

Food & Function Accepted Manuscript

116 available from commercial sources.

117

118 **Preparation of tea**

Oolong, black, and pu-erh tea leaves were purchased from a local market in Kobe city. Regarding oolong pu-erh tea, leaves were pulverized by a coffee mill and adjusted the size of leaves through a 65-mesh sieve (0.291 mm). Tea was freshly prepared as follows. Briefly, 2 g of tea leaves were extracted in 100 ml of boiled water for 2 min. For oolong and pu-erh tea, the tea leaves were washed with 100 ml of boiled water for 15 seconds before extraction. The resulting extracts were cooled to room temperature and used for experiments within a day.

126

127 Measurement of total polyphenols

The total polyphenol content in each tea was measured by the Folin-Ciocalteu method ¹⁵. Briefly, 10 μ l of tea and 50 μ l of folin-ciocalteu reagent were mixed with 790 μ l of distilled water. After 1 min, 150 μ l of 20% (w/v) aqueous Na₂CO₃ solution was added, mixed, left at room temperature in the dark for 120 min. The absorbance of the mixture was measured at 750 nm. The total polyphenol content was calculated from a calibration curve using gallic acid as a standard compound.

134

135 Measurement of catechins by liquid chromatography-tandem mass spectrometry

136 (LC-MS/MS) and caffeine by a high-performance liquid chromatography (HPLC)

137 Tea extract was first centrifuged at $10,000 \times g$ for 10 min at 4°C. The resulting

supernatant was then subjected to reverse-phase HPLC and quadrupole tandem mass

139 spectrometry (4000 Q TRAP, AB SCIEX, Foster City, CA, USA). Catechins and

140	theaflavins were analyzed by LC-MS/MS according to our previous method ²⁶ . Caffein
141	were analysed by HPLC as follows: A portion of the extract (10 μ l) was injected into a
142	HPLC-UV (SHIMADZU, RF-20A xs series, Kyoto, Japan) equipped with a Supelco
143	Discovery HS-PEG column (i.d. 4.1×250 mm, 5 $\mu\text{m},$ Sigma-Aldrich) and maintained
144	at a constant temperature of 37 °C. The gradient system used solvent A [0.1% (v/v)
145	phosphoric acid] and solvent B $[0.1\% (v/v)$ phosphoric acid-acetonitrile], and was
146	programmed for 0-20 min (B 15-20%), 20-21 min (B 20-15%), and 21-31 min (B 15%)
147	at a detection rate of UV 280 nm. Under these experimental conditions, caffeine was
148	detected at 9.7 min (data was not shown).
149	
150	Animal treatments
151	Two animal experiments with the same feeding design were carried out according
152	to the 'Guidelines for the Care and Use of Experimental Animals' at Kobe University
153	Rokkodai Campus (Permission # 21-07-02). Male ICR mice (4 weeks old for
154	Experiment 1 and 6 weeks old for Experiment 2) were obtained from Japan SLC
155	(Shizuoka, Japan) and maintained in a temperature-controlled room $(23 \pm 2^{\circ}C)$ with a
156	12:12-h light/dark cycle (lights on at 9:00 am). Sixteen mice were given free access to
157	tap water and commercial chow (Rodent lab diet EQ from Japan SLC) and were
158	acclimatized for 7 days before the experiments. The mice were divided into four groups
159	(n=5 mice/group for Experiment 1 and n=4 mice/group for Experiment 2), which were
160	provided olong tea, black tea, pu-erh tea, or water, respectively, to drink for 7 days. All
161	animals were given free access to commercial chow over the 7 days. Feces were
162	collected during the experimental period in Experiment 2. Mice were sacrificed on day
163	7 without fasting, and perirenal, epididymis, mesenteric and subcutaneous (for only

164	Experiment 1) WAT was collected. In Experiment 1, another five mice were sacrificed
165	on day 0, and mesenteric WAT and BAT were collected. Adipose tissue was washed in
166	1.15% (w/v) KCl, immediately frozen in liquid nitrogen, and stored at -80° C until use
167	for western blot analysis.
168	
169	Measurement of plasma and adiponectin lipids levels
170	Blood samples were collected and centrifuged at 9,600 $\times g$ for 10 min at 4°C. The
171	supernatant was collected and used as plasma for measurement of total-cholesterol and
172	triglyceride levels using the appropriate commercial kit as described above. Plasma
173	adiponectin levels were measured using a commercial enzyme-linked immunosorbent
174	assay (ELISA) kit (Mouse/Rat High Molecular Weight Adiponectin ELISA Kit,
175	Shibayagi, Gunma, Japan).
176	
177	Western blot analysis
178	Tissue lysate was prepared from WAT as previously described ²⁷ and used to
179	detect protein levels of PPARy, C/EBPa, IGFBP-1, UCP-1, UCP-2, ACCa,
180	phosphorylated ACC α (p-ACC α), AMPK, and phosphorylated AMPK (p-AMPK). The
181	protein bands were visualized using ImmunoStar LD (Wako) and detected with a
182	light-Capture II (Atto Corp., Tokyo, Japan). The density of specific bands was
183	determined using ImageJ image analysis software.
184	
185	Preparation of mRNA and real time PCR analysis
186	An aliquot of WAT (60 mg each) was homogenized with 300 μ l of TRIzol

187 Reagent (Invitrogen, Carlsbad, CA, USA) by Polytron[®] homogenizer. The homogenate

Food & Function Accepted Manuscript

188	was incubated for 5 min at room temperature and centrifuged at 12,000 \times g for 15 min
189	at 4°C. The supernatant containing RNA was mixed with 60 µl of chloroform and
190	incubated at room temperature for 10 min. Then the mixture was centrifuged at 12,000
191	\times g for 15 min at 4°C. The aqueous phase was transferred to another microtube. To
192	precipitate the RNA, 180 μ l of isopropyl alcohol was mixed, and incubated for 10 min
193	at room temperature. The mixture was centrifuged at 12,000 \times g for 10 min at 4°C. The
194	supernatant was discarded and the RNA pellet was dried at room temperature. The pellet
195	was dissolved in 30 μ l of deionized distilled water. After ethanol precipitation of the
196	final elute, total RNA was re-dissolved in 30 μ l of deionized distilled water. The quality
197	and concentration of total RNA were measured by spectrophotometry. The RNA
198	samples were purified by digesting the residual DNA using DNase I (Roche, Basel,
199	Switzerland) according to the manufacturer's instructions. The DNase-treated RNA (5.0
200	μ l) was reverse transcribed to cDNA in a reaction mixture (final volume, 20 μ l) using
201	ReverTra Ace® qPCR RT Kit (Toyobo Co., Ltd. Osaka, Japan). cDNA was then
202	subjected to quantitative real-time PCR amplification using SYBR Premix Ex Taq II
203	(Takara Bio, Otsu, Japan). The forward and reverse primers used were as follows: Acc α
204	[forward 5'-tttcactgtggcttctccag-3' and reverse 5'-tgcatttcactgctgcaata-3'], Adipoq
205	[forward 5'-gaacttgtgcaggttggatg-3' and reverse 5'-tgcatctcctttctctccct-3'], UCP-1
206	[forward 5'-ctgcactggcactacctagc-3' and reverse 5'-aaaggactcagccctgaaga-3'] and β -actin
207	[forward 5'-ggtcatcactattggcaacg-3' and reverse 5'-tccatacccaagaaggaagg-3'].
208	Reactions were run in a real-time PCR system (TaKaRa PCR Thermal Cycler Dice,
209	Takara Bio). Relative gene expression levels were calculated by the comparative CT
210	method ²⁸ , using the expression of the β -actin gene as an internal control. The results are
211	expressed as the fold-change relative to the expression levels in the water group.

212

213 Extraction and measurement of fecal lipids

214	After freeze drying, feces were pulverized to powder in a mortar and pestle. An
215	aliquot of 200 mg fecal powder was suspended in 3 ml of distilled water. The
216	suspension was vortex mixed for 3 min with 4 ml chloroform/methanol=2:1 (v/v) and
217	centrifuged at 3,000×g for 10 min. The chloroform layer was collected and washed with
218	0.88% KCl (w/v) and centrifuged again at 3,000×g for 10 min. The chloroform layer
219	was collected and dried using a centrifugal thickener. For measuring of total lipid
220	content, the feces were weighed then dissolved in isopropyl alcohol containing 10%
221	(w/v) Triton X-100. Total cholesterol and triglyceride content were measured in the
222	solubilized lipids using the appropriate commercial kits.
223	
224	Statistical analysis
225	The results are presented as the mean \pm standard error (SE). Differences among
226	each group were analyzed using Dunnett's test. The level of significance was set at $p <$
227	0.05.
228	
229	Results
230	Total polyphenol content and polyphenol composition of oxidaized tea
231	The total polyphenol content was measured by the Folin-Ciocalteu method. As
232	hown in Table 1, the total polyphenol content was similar in oolong and pu-erh tea (223
233	and 348 mg/l, respectively), while black tea contained a higher polyphenol content (893
234	mg/l). The composition of catechins and theaflavins (TFs) in each tea was determined
235	by LC-MS/MS. Regarding catechins, oolong tea mainly contained EGCg, GC and EGC,

Food & Function Accepted Manuscript

236	and black tea mainly contained EGCg and ECg (Table 1). On the other hand, pu-erh tea
237	contained much lower levels of catechins, particularly gallate-type catechins than
238	oolong and black tea. The total amount of catechins was similar in oolong and black tea,
239	but its content in pu-erh tea was approximately 30-40% lower than that in oolong and
240	black tea. Black tea significantly contained abundant TFs, particularly TF and TF3g.
241	These results the abundance of catechins and TFs was the greatest in black tea and the
242	lowest in pu-erh tea. Caffeine content was similar in oolong, black and pu-erh tea (291,
243	338 and 341 mg/l, respectively).
244	
245	Effect of oolong, black and pu-erh tea on body weight, food and beverage intake,
246	and WAT weight
247	There was no significant difference in food and beverage intake between the
248	control group and any of the three tea groups in both Experiment 1 and Experiment 2
249	(Table 2). Similarly, there was no effect of any tea used in this study on body weight,
250	with the exception of a slight decrease in body weight in the black tea group that failed

to reach statistical significance. In contrast, relative to the control group, consumption

252 of black tea affected significant reductions in the weight of retroperitoneal, epididymal

and mesenteric WAT and tended to reduce in the weight of subcutaneous tissue in

Experiment 1 (Table 2). Oolong and pu-erh tea also affected weak reductions in the

weight of WAT. In Experiment 2, the same trend was observed: all WAT were decreased

by tea. From the results in Experiment 1, we calculated the lean body mass and obtained

257 no difference among the mice groups. This indicated that the reduction of WAT by tea

did not affect an increase in the weight of other tissues or organs.

259

Food & Function Accepted Manuscript

Food & Function

260	Effect of oolong, black and pu-erh tea on lipid content of plasma and feces
261	Given the effect of tea on adiposity, we next evaluated their impact on plasma and
262	fecal lipid content. In Experiment 1, black tea significantly decreased plasma
263	cholesterol level. In Experiment 2, all tea groups significantly lowered plasma
264	cholesterol level compared with water group (Table 3). None of the tea had any effect
265	on plasma triglyceride level in both experiments. Since tea significantly decreased WAT
266	weight, we investigated the excretion of lipids to feces in Experiment 2. However,
267	excretion of lipids in feces did not changed by tea (Table 3).
268	
269	Effect of oolong, black and pu-erh tea on the phosphorylation of AMPK
270	We previously showed that intake of oolong, black and pu-erh tea for a period of 7
271	days enhanced AMPK phosphorylation in the skeletal muscle of mice ²⁶ . Therefore, we
272	investigated whether oxidized and/or fermented tea exerted the same effect in WAT and
273	BAT. Significant increases in the levels of p-AMPK in mesenteric WAT were found in
274	response to consumption of black and pu-erh tea, but not oolong tea in both experiments
275	(Figure 1). In Experiment 1, we also found that all tea significantly increased in the
276	levels of p-AMPK in subcutaneous WAT and BAT (Figure 1A). Used tea had no effect
277	on expression level of AMPK in both WAT and BAT. We further investigated the
278	expression and phosphorylation levels of ACC α as one of the downstream target of
279	AMPK in Experimental 1. As shown in Figure 2, black tea slightly increased the
280	phosphorylation level of ACC α without significance. On the other hand, black and
281	pu-erh tea significantly increased mRNA expression of ACC α , although these tea did
282	not increase protein expression of ACC (Figure 2).
283	

306

Food & Function

284	Effect of oolong, black and pu-erh tea on the expression of UCPs and IGFBP-1
285	Since UCP proteins have been linked to energy consumption in adipose tissues, we
286	next determined effect of oolong, black and pu-erh tea on the expression levels of UCP
287	in mesenteric WAT. As shown in Figure 3A, consumption of black tea, but not water,
288	significantly increased protein expression level of UCP-1 in mesenteric WAT compared
289	with non-treated control mice. In the same experiment, we confirmed that protein
290	expression level of UCP-1 in BAT (as a positive control) was drastically higher than that
291	in WAT of non-treated control mice, of which expression level of UCP-1 was weak with
292	almost the same level as that in 3T3-L1 (as a negative control). Relative to the control
293	group, consumption of black and pu-erh tea significantly increased mRNA and protein
294	expression levels of UCP-1 (Figure 3B and 3C). Oolong tea had no effect on expression
295	of UCP-1 in mesenteric WAT. In the case of UCP-2 expression, oolong, black and
296	pu-erh tea showed increasing tendency of UCP-2 protein, but the consistent and
297	significant increase was not observed (Figure 3).
298	Since the association between IGFBP-1 and body weight, adiposity and
299	hyperglycemia, we next investigated adipose levels of IGFBP-1 in response to
300	consumption of oolong, black and pu-erh tea. Relative to controls, consumption of all
301	three types of tea significantly increased protein expression level of IGFBP-1 in
302	mesenteric WAT in both experiments (Figure 4).
303	
304	Effect of oolong, black and pu-erh tea on the expression of PPAR γ and C/EBP α
305	PPAR γ and C/EBP α have been characterized as master regulators of adipocyte

Food & Function Accepted Manuscript

307 increasing tendency. In contrast, levels of adipose PPARγ were significantly repressed

differentiation. In Experiment 1, expression of PPAR γ and C/EBP α showed an

	pt
	Manuscrip
	Accepted
	Function
	õ
	Food

in response to consumption of all three types of tea in mesenteric WAT, while significant 308 309 decreases in adipose levels of C/EBPa were observed in response to consumption of pu-erh tea, but not oolong and black tea in Experiment 2 (Figure 5). 310 To confirm this opposite result, we measured mRNA expression and plasma levels 311of adiponectin in Experiment 1. As shown in Figure 6, oolong, black and pu-erh tea 312313 significantly increased mRNA expression of adiponectin in mesenteric WAT. Black tea revealed a significant increase in the plasma adiponectin level and oolong and pu-erh 314tea also revealed the increasing tendency. 315316

317 Discussion

Tea is abundant in polyphenols such as catechins and theaflavins, which contribute 318to its various health-promoting effects 29,30 . In this study, we found that consumption in 319 320 mice of black, oolong and pu-erh tea for a period of one week suppressed adjointy (Table 2) through phosphorylation of AMPK as a key metabolic regulator in mesenteric 321322and subcutaneous WAT and BAT of ICR mice (Figure 1). The activation of AMPK led to increase the protein expression of UCP-1 (Figure 3) and IGFBP-1 (Figure 4). These 323324are well-characterized downstream events of AMPK activation and we observed consistent results in two independent animal experiments. Thus, we assert that 325activation of AMPK played an important role in suppressing adiposity in mice that 326 consumed oxidized tea, in particular black tea. 327 328 While previous studies of the effect of tea or catechins on activation of AMPK have been limited to the muscle or liver of animals, or to cultured adipocytes. For 329example, we previously reported that black, oolong and pu-erh tea activates AMPK in 330 skeletal muscle of ICR mice to improve glucose intolerance²⁶. Similarly, it has been 331

Page 17 of 38

Food & Function

332	reported that pu-erh, green, and black tea suppress hyperlipidemia, hyperleptinemia and
333	fatty acid synthesis via activation of AMPK in skeletal muscle of obese rats ³¹ . In
334	addition, administration of epigallocatechin gallate (EGCg) stimulates p-AMPK and
335	phosphorylated ACC levels in the livers of BALB/c mice, and in 3T3-L1 adipocytes ³² .
336	Moreover, fermented rooibos hot water extract has been shown to inhibit intracellular
337	lipid accumulation via induction of AMPK protein in 3T3-L1 cells ³³ . In contrast to
338	these studies, this is to our knowledge the first report that black and pu-erh tea
339	stimulates the phosphorylation of AMPK in mouse mesenteric and subcutaneous WAT,
340	setting off a series of downstream events that result in suppression of adiposity in these
341	animals. As the active compound in tea for activation of AMPK, caffeine is one of the
342	candidates in addition to catechins such as EGCg ³² , because caffeine activates AMPK in
343	skeletal muscle ³⁴ . It is, however, unclear whether caffeine also activates AMPK in
344	adipose tissue. In the current study, caffeine content was almost similar, but slightly
345	lower in oolong tea than that in black and pu-erh tea. Significant AMPK activation was
346	observed in mesenteric WAT of mice given black and pu-erh tea. Thus, it is possible that
347	slight differences in the caffeine contents may affect the activation of AMPK.
348	Members of the UCP family of mitochondrial inner membrane proton transporters
349	play a key role in thermogenesis and energy expenditure in BAT (primarily UCP-1),
350	WAT (UCP-1 and UCP-2) and other tissues ¹¹⁻¹⁴ . Increased UCP-1 expression has been
351	shown to accompany appearance of a BAT-like phenotype in WAT cells (called
352	browning) with overexpressing perilipin ³⁵ , a protein predominantly expressed on the
353	surface of lipid droplets in fat cells ³⁶ . To date, there have been certain studies describing
354	the induction by food components of UCP-1 expression in WAT. For example,
355	fucoxanthin from edible seaweed, Undaria pinnatifida, increases UCP-1 protein

356	expression in WAT ¹⁹ . A study from our group showed that a polyphenol-rich black
357	soybean seed coat extract induced UCP-1 in WAT ²⁰ , and catechins have been reported
358	to increase expression of the UCP-1 gene in rat BAT ³⁷ . Our study is the first to show
359	that an intake of black and pu-erh tea increases levels UCP-1 in mesenteric WAT
360	(Figure 3), and leads us to suggest that black and pu-erh tea increases thermogenesis
361	and energy expenditure through promotion of browning of WAT, which will be
362	involved in the reduction of WAT mass. With regard to expression of UCP-2, oxidized
363	tea used in this study showed increasing tendency. Caffeine and epigallocatechin gallate
364	have been reported to increase levels of UCP-2 in rodent BAT and WAT ^{38,39} . Since
365	activation of AMPK promotes expression of UCPs ⁴⁰ , we suggest that the increase in
366	UCP-1 level by black and pu-erh tea is due, at least in part, to activation of AMPK.
367	Taken together, the current data indicate that black and pu-erh tea increases energy
368	expenditure by activation of AMPK and subsequent induction of UCP-1 protein.
369	In this study, consumption of all types of oxidized tea resulted in increased protein
370	level of IGFBP-1 in mesenteric WAT (Figure 4), which also would be involved in the
371	reduction of WAT mass. IGFBP-1 inhibits the action of IGF in stimulating metabolism
372	and growth, and cross-sectional studies have associated lower levels of IGFBP-1 with
373	the onset of metabolic syndrome and cardiovascular disease ⁴¹⁻⁴³ . Since we have
374	previously shown that administration of green tea promotes IGFBP-1 levels in WAT ³ ,
375	we speculate that the reduced adiposity in response to consumption of oxidized tea that
376	we observed in the current study is related to up-regulation of IGFBP-1 in WAT.
377	IGFBP-1 is known to be induced by suppression of insulin levels, activation of PPARs,
378	and activation of AMPK ^{44,45} . Accordingly, although the mechanism by which oxidized
379	tea induced IGFBP-1 in the current study is unclear, we speculate that activation of

380	AMPK represents a strong possibility.
381	PPAR γ and C/EBP α are master transcriptional regulators of adipocyte
382	differentiation and lipogenesis ^{21,46} . In the current study, protein expression levels these
383	transcriptional regulators showed opposite results; i.e., they showed increasing tendency
384	by oxidized tea in mesenteric WAT of 5-week old mice, while they were decreased by
385	tea in mesenteric WAT of 7-week old mice. Regarding this inconsistency, we assume
386	that an intake of tea first increases the expression levels of PPAR γ and C/EBP α ,
387	resulting in the formation of small-size adipocytes to produce adiponectin. Indeed our
388	results demonstrated mRNA and plasama levels of adiponectin were increased by
389	oxidized tea (Figure 6). Subsequently released adiponectin activates AMPK, and then
390	activated AMPK down-regulates the expression of PPAR γ and C/EBP α . Response to
391	this sequential mechanism might differ from age of animal and observed expression
392	pattern of PPAR γ and C/EBP α were different in the current study. Results from previous
393	studies and the current study suggest a model in which activation of AMPK by tea leads
394	to increase the expression of IGFBP-1 and decrease the expression of PPAR γ and
395	$C/EBP\alpha$ in WAT, resulting in the suppression of adiposity. Time-dependent changes in
396	the expression of PPAR γ and C/EBP α and their expression levels in different growing
397	stage of animal after intake of tea are unclear, and further experiments are needed to
398	clarify these issues.
200	It has been non-orted that maken all communition in the varies among different

It has been reported that polyphenol composition in tea varies among different species and climate⁴⁷. The polyphenol composition in of oolong, black and pu-erh tea showed the almost same as that in our previous report²⁶. In the current study, we found that oolong and black tea contained higher amounts of catechins than pu-erh tea (Table 1). The level of GC and EGC were higher in oolong tea than in black tea, but that of

EGCg is almost same in both types of tea. Although EGCg plays an important role in 404the health-promoting effects of green tea⁴⁸, we speculate that the anti-adiposity effect of 405tea in the current study is not attributable to EGCg because the anti-adiposity effect of 406 407 black tea is stronger than that of oolong tea. The levels of theaflavins in black tea were much higher than those in either oolong or pu-erh tea as expected. Although the 408409 bioavailability of theaflavins is considered to be relatively low, the strong anti-adiposity 410effect of black tea in the current study may be attributable to theaflavins. Indeed 411 theaflavins have been shown to decrease hepatic lipid accumulation in HepG2 liver cells *in vitro*⁴⁹. In the case of pu-erh tea, since the active compound in its prevention of 412adiposity is currently unclear, future studies will address this issue. In addition to these 413 tea polyphenols, caffeine is also candidate of active compound. However, caffeine 414content was almost same level among tea used in the current study (Table 1). It is 415possible that caffeine may contribute to the suppression of adiposity by oxidized tea, 416 417because caffeine and its metabolite are reported to inhibit intracellular lipid accumulation without affecting adipocyte differentiation in 3T3-L1 adipocytes⁵⁰. 418In conclusion, intake of oolong, black and pu-erh tea for one week suppressed 419 adiposity via activation of AMPK-mediated signaling pathway including an increase of 420 UCP-1 expression as a marker for browning of WAT. Thus, the activation of AMPK is, 421422at least in part, involved in the underling molecular mechanism of anti-adiposity by oxidized tea. Our findings provide scientific evidence for the prevention of obesity by 423424oolong, black and pu-erh tea in addition to green tea. 425

$\begin{array}{c} 427\\ 428 \end{array}$	Acknowledgment
429	This work was supported in part by Social Coordination Funds for Promoting
430	Science and Technology, Creation of Innovation Centers for Advanced
431	Interdisciplinary Research Area (Innovative Bioproduction Kobe), MEXT,
432	Japan.
433	
434	Abbreviations
435	acetyl CoA carboxylase, ACC; AMP-activated protein kinase, AMPK; brown adipose
436	tissue, BAT; CCAAT/enhancer binding protein a, C/EBPa; epigallocatechin gallate,
437	EGCg; epigallocatechin gallate, EGC; insulin-like growth factor binding protein
438	(IGFBP)-1, the aflavin, TF; Peroxisome proliferator-activated receptor $\gamma,$ PPAR $\gamma;$
439	Polyvinylidene difluoride, PVDF; uncoupling protein, UCP; white adipose tissue, WAT.
440	
441	Literature cited
442	1. S. Wolfram, Y. Wang and F. Thielecke, Mol Nutr Food Res, 2006, 50, 176-87.
443	2. T.M. Rains, S. Agarwal and K.C. Maki, J Nutr Biochem, 2011, 22, 1-7.
444	3. M. Ueda and H. Ashida, <i>J Agric Food Chem</i> . 2012, 60 , 8917-8923.
445	4. L. Ostrowska, J. Fiedorczuk and E. Adamska, Rocz Panstw Zakl Hig. 2013, 64,
446	61-66.
447	5. D.G. Hardie, S.A. Hawley and J.W. Scott, <i>Physiol</i> , 2006, 574 (Pt 1), 5747-5715.
448	6. N. Musi, M.F. Hirshman, J. Nygren, M. Svanfeldt, P. Bavenholm, O.
449	Rooyackers, G. Zhou, J.M. Williamson, O. Ljunqvist, S. Efendic, D.E. Moller,
450	A. Thorell and L.J. Goodyear, <i>Diabetes</i> , 2002, 51 2074-2081.
451	7. A. Gruzman, G. Babai and S. Sasson, Rev. Diabet, 2009, 6 13-36.

452	8. J.R. Speakman and S.E. Mitchell, Mol Aspects Med, 2011, 32, 159-221.
453	9. B.B. Kahn, T. Alquier, D. Carling and D.G. Hardie, Cell Metab, 2005, 1, 15–25
454	10. D.G. Hardie, <i>Endocrinology</i> , 2003, 144 , 5179–5183.
455	11. O. Boss, P. Muzzin and J-P. Giacobiono, Eur. J. Endocrinol, 1998, 139, 1-9.
456	12. D. Ricquier and F. Bouillaud, Bouillaud Biochem J, 2000, 345, 161-179.
457	13. C. Tiraby, G. Tavernier, F. Capel, A. Mairal, F. Crampes, J. Rami, C. Pujol, J.A.
458	Boutin and D. Langin, <i>Diabetologia</i> , 2007, 50 , 2190-2199.
459	14. N. Chen, R. Bezzina, E. Hinch, P.A. Lewandowski, D. Cameron-Smith, M.L.
460	Mathai, M. Jois, A.J. Sinclair, D.P. Begg, J.D. Wark, H.S. Weisinger and R.S.
461	Weisinger, Nutr Res, 2009, 29, 784-793.
462	15. C. Vernochet, S.B. Peres, K.E, Davis, M.E. McDonald, L. Qiang, H. Wang, P.E.
463	Scherer and S.R. Farmer, Mol Cell Biol, 2009, 29, 4714-4728
464	16. A.Fuster, P.Oliver, J. Sánchez, C. Picó and A.Palou, Comp Biochem Physiol A
465	Mol Integr Physiol, 2009, 153, 106-112.
466	17. N. Petrovic, T.B. Walden, I.G. Shabalina, J.A. Timmons, B. Cannon and J.
467	Nedergaard, J Biol Chem, 2010 285, 7153-7164.
468	18. M.L. Bonet, P. Oliver and A. Palou, Biochim Biophys Acta, 2013, 1831,
469	969-985.
470	19. H. Maeda, M. Hosokawa, T. Sasgima, K. Funayama and K. Miyashita, Biochem
471	Biophys Res Commun, 2005, 332, 392-397.
472	20. Y. Kanamoto, Y. Yamashita, F. Nanba, T. Yoshida, T. Tsuda, I. Fukuda, S.
473	Nakamura-Tsuruta and H. Ashida. J Agric Food Chem. 2011, 59, 8985-8993.
474	21. A. Ejaz, D. Wu, P. Kwan and M. Meydani, J Nutr. 2009, 139, 919–925.
475	22. M.S. Lewitt, Biochem Biophys Res Commun, 2001, 282, 1126-1131.

476	23. K. Rajkumar, T. Modric and L.J. Murphy, <i>J Endocrinol</i> . 1999, 162 , 457-465.
477	24. Y.H. Tseng, A.J. Butte, E. Kokkotou, V.K. Yechoor, C.M. Taniguchi, K.M.
478	Kriauciunas, A.M. Cypess, M. Niinobe, K. Yoshikawa, M. E. Patti and C.R.
479	Kahn, Nat Cell Biol, 2005, 7, 601-611.
480	25. B.B. Kahn, T. Alquier, D. Carling and D.G. Hardie, Cell Metab, 2005, 1, 15–25.
481	26. Y. Yamashita, L. Wang, Z. Tinshun, T. Nakamura and H. Ashida, J Agric Food
482	<i>Chem.</i> 2012, 60 , 11366-11371.
483	27. Y. Yamashita, M. Okabe, M. Natsume and H. Ashida. Arch Biochem Biophys,
484	2012, 527 , 95-104.
485	28. K.J. Livak and T.D. Schmittgen, Methods, 2001,25, 402-408.
486	29. H.H. Chow and I.A. Hakim, Pharmacol Res, 2011, 64, 105-112.
487	30. J.M. Hodgson and K.D. Croft, <i>Mol Aspects Med</i> , 2010, 31 , 495-502.
488	31. H.C. Huang and J.K. Lin, Food Funct, 2012, 3,170-177.
489	32. T. Murase, K. Misawa, S. Haramizu and T. Hase, Biochem Pharmacol, 2009 78,
490	78-84.
491	33. M. Sanderson, S.E. Mazibuko, E. Joubert, D. de Beer, R. Johnson, C. Pheiffer, J.
492	Louw and C.J. Muller. Phytomedicine, 2014, 21, 109-117.
493	34. T. Egawa, T. Hamada, X. Ma, K. Karaike, N. Kameda, S. Masuda, N. Iwanaka
494	and T. Hayashi. Acta Physiol (Oxf), 2011, 201, 227-238.
495	35. T. Sawada, H. Miyoshi, K. Shimada, A. Suzuki and Y. Okamatsu-Ogura, PLoS
496	<i>One</i> , 2010, 5 , e14006.
497	36. A.S. Greenberg, J.J. Egan, S.A. Wek, N.B. Garty and E.J. Blanchette-Mackie, J
498	<i>Biol Chem</i> , 1991, 266 , 11341-11346.
499	37. S. Nomura, T. Ichinose, M. Jinde, Y. Kawashima, K. Tachiyashiki and K.

500	Imaizumi, J Nutr Biochem, 2008, 19, 840-847.
501	38. A. Kogure, N. Sakane, Y. Takakura, T. Umekawa, K. Yoshioka, H. Nishino, T.
502	Yamamoto, T. Kawada, T. Yoshikawa and T. Yoshida, Clin Exp Pharmacol
503	<i>Physiol</i> , 2002, 29 , 391-394.
504	39. N. Chen, R. Bezzina, E. Hinch, P.A. Lewandowski, D. Cameron-Smith, M.L.
505	Mathai, M. Jois, A.J. Sinclair, D.P. Begg, J.D. Wark, H.S. Weisinger and R.S.
506	Weisinger. Nutr Res, 2009, 29, 784-793.
507	40. S. Klaus, S. Keipert, M. Rossmeisl and J. Kopecky, Genes Nutr. 2012, 7,
508	369-386.
509	41. A.H. Heald, J.K. Cruickshank, L.K. Riste, J.E. Cade, S. Anderson, A.
510	Greenhalgh, J. Sampayo, W. Taylor and W. Fraser, Diabetologia, 2001. 44,
511	333–339.
512	42. T. Kalme, M. Seppala, Q. Qiao, R. Koistinen, A. Nissinen, M. Harrela, M.
513	Loukovaara, P. Leinonen and J. Tuomilehto, J Clin Endocrinol Metab, 2005, 90
514	1550–1556.
515	43. S.N. Rajpathak, A.P. McGinn, H.D. Strickler, T.E. Rohan, M. Pollak, A.R.
516	Cappola, L. Kuller, X. Xue, A.B. Newman, E.S. Strotmeyer, B.M. Psaty and
517	R.C. Kaplan, Growth Horm IGF Res, 2008, 8, 166–173.
518	44. T.G. Unterman, D.T. Oehler, L.J. Murphy and R.G. Lacson, Endocrinology,
519	1991, 128 , 2693–2701.
520	45. A. Hilding, K. Hall, J. Skogsberg, E. Ehrenborg and M.S. Lewitt, Biochem
521	Biophys Res Commun. 2003, 303, 693-699.
522	46. Y. Gao, Y. Zhou, A. Xu and D. Wu, Biol Pharm Bull, 2008, 31, 1716–1722.
523	47. Y.L. Lin, I.M. Juan, Y.L. Chen, Y.C. Liang and J.K. Lin, J Agric Food Chem,

524	1996, 44 , 1387-1394.
525	48. J.H. Weisburger and F.L. Chung. Food Chem Toxicol. 2002, 40, 1145-1154.
526	49. C.L. Lin, H.C. Huang and J.K. Lin, J Lipid Res. 2007, 48, 2334-2343.
527	50. H. Nakabayashi, T. Hashimoto, H. Ashida, S. Nishiumi and K. Kanazawa.
528	Biofactors. 2008, 34, 293-302.
529	
530	

531 Figure legends

532	Figure 1. Effects of oolong, black and pu-erh tea on p-AMPK levels in WAT and BAT.
533	ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
534	one week. Lysate was prepared from WAT and BAT and subjected to western blotting
535	analysis to detect p-AMPK and AMPK expression. (A), mesenteric and subcutaneous
536	WAT and BAT in Experiment 1; and (B), mesenteric WAT in Experiment 2. Each panel
537	shows a typical result from five (Experiment 1) or four (Experiment 2) animals. Open,
538	diagonal line, closed, and hatched bars represent the band densities for mice given water,
539	oolong tea, black tea, and pu-erh tea, respectively. Values are means \pm SE (n=4 or 5).
540	*Significantly different from the corresponding control (water) group ($p < 0.05$;
541	Dunnett's test).
542	
543	Figure 2. Effects of oolong, black and pu-erh tea on ACC α expression and p-ACC α
544	levels in mesenteric WAT.
545	ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
546	one week. (A), mRNA was prepared from WAT and carried out real-time PCR to
547	estimate gene expression of ACCa. (B), WAT lysate was prepared and subjected to
548	western blotting analysis to detect p-ACC α and ACC α expression. Each panel shows a
549	typical result from five animals. Open, diagonal line, closed, and hatched bars represent
550	relative (A) gene expression or (B) the band densities of protein for mice given water,
551	oolong tea, black tea, and pu-erh tea, respectively. Values are means \pm SE (n=5).
552	*Significantly different from the corresponding control (water) group ($p < 0.05$;
553	Dunnett's test).
554	

555	Figure 3. Effects of oolong, black and pu-erh tea on levels of UCP-1 and UCP-2 in
556	mesenteric WAT.
557	ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
558	1 week. (A), Lysate was prepared WAT (Cont), BAT and 3T3-L1 adopocytes (L1 cells)
559	and subjected to western blotting analysis to detect protein expression of UCP1. (B),
560	mRNA was prepared from WAT and carried out real-time PCR to estimate gene
561	expression of UCP-1 and β -actin. (C), WAT lysate was prepared and subjected to
562	western blotting analysis to detect protein expression of UCP-1, UCP-2 and β -actin.
563	Each panel shows a typical result from five (Experiment 1) or four (Experiment 2)
564	animals. Open, diagonal line, closed, and hatched bars represent the band densities for
565	mice given water, oolong tea, black tea, and pu-erh tea, respectively. Values are means \pm
566	SE (n=4 or 5). *Significantly different from the corresponding control (water) group (p
567	< 0.05; Dunnett's test).
$\frac{567}{568}$	< 0.05; Dunnett's test).
	< 0.05; Dunnett's test). Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric
568	
568 569	Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric
568 569 570	Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT.
568 569 570 571	Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT. ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
568 569 570 571 572	 Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT. ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for 1 week. WAT lysate was prepared and subjected to western blotting analysis to detect
568 569 570 571 572 573	 Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT. ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for 1 week. WAT lysate was prepared and subjected to western blotting analysis to detect IGFBP-1 and β-actin expression. Each panel shows a typical result from five
568 569 570 571 572 573 574	 Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT. ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for 1 week. WAT lysate was prepared and subjected to western blotting analysis to detect IGFBP-1 and β-actin expression. Each panel shows a typical result from five (Experiment 1) or four (Experiment 2) animals. Open, diagonal line, closed, and
568 569 570 571 572 573 574 575	Figure 4. Effects of oolong, black and pu-erh tea on levels of IGFBP-1 in mesenteric WAT. ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for 1 week. WAT lysate was prepared and subjected to western blotting analysis to detect IGFBP-1 and β -actin expression. Each panel shows a typical result from five (Experiment 1) or four (Experiment 2) animals. Open, diagonal line, closed, and hatched bars represent the band densities for mice given water, oolong tea, black tea,

Food & Function Accepted Manuscript

579	Figure 5. Effects of oolong, black and pu-erh tea on levels of PPAR γ and C/EBP α in
580	mesenteric WAT.
581	ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
582	1 week. WAT lysate was prepared and subjected to western blotting analysis to detect
583	PPAR γ , C/EBP α and β -actin expression. Each panel shows a typical result from five
584	(Experiment 1) or four (Experiment 2) animals. Open, diagonal line, closed, and
585	hatched bars represent the band densities for mice given water, oolong tea, black tea,
586	and pu-erh tea, respectively. Values are means \pm SE (n=4 or 5). *Significantly different
587	from the corresponding control (water) group ($p < 0.05$; Dunnett's test).
588	
589	Figure 6. Effects of oolong, black and pu-erh tea on adiponectin gene expression levels
590	in mesenteric WAT and released adiponectin levels in plasma.
591	ICR mice were given water (W), oolong tea (O), black tea (B), or pu-erh tea (P) for
592	one week. (A), mRNA was prepared from WAT and carried out real-time PCR to
593	estimate gene expression of adiponectin. (B), Plasma was prepared and subjected to
594	ELISA to determine released adiponectin levels. Open, diagonal line, closed, and
595	hatched bars represent (A) gene expression or (B) plasma adiponectin levels for mice
596	given water, oolong tea, black tea, and pu-erh tea, respectively. Values are means \pm SE
597	(n=5). *Significantly different from the corresponding control (water) group ($p < 0.05$;
598	Dunnett's test).
599	

Composition	oolong tea	black tea	pu-erh tea
Catechins (mg/l)			
С	4.86±0.85	6.86±1.11	3.25±1.23
EC	1.56±1.32	2.22±2.19	1.86±1.10
GC	19.37±5.80	5.61±1.58	4.85±1.22
EGC	13.39±2.01	5.15±0.85	5.86±0.84
ECg	4.32±1.82	9.18±5.46	2.80±1.20
Cg	0.18±0.05	0.20±0.01	0.01±0.01
EGCg	24.64±3.82	25.76±0.74	1.21±0.83
GCg	0.67±0.25	0.10±0.01	0.46±0.05
Total catechins	68.99±2.19	55.08±1.89	20.30±2.48
Theaflavins (mg/l)			
TF	0.24±0.12	20.40±1.25	0.02±0.01
TF3g	0.03±0.01	13.73±0.84	0.01±0.01
TF3'g	0.01±0.01	6.96±0.59	0.01±0.01
TF3,3'dg	0.02±0.01	8.55±0.54	0.02±0.01
Total theaflavins	0.30±0.08	49.64±0.13	0.08±0.01
Catechins plus theaflavins (mg/l)	69.16±2.27	104.72±2.01	20.38±2.49
Total polyphenol* (mEq/l)	223	893	348
Caffein (mg/l)	291±24	338±24	341±1

1 able 1. Composition of catechin, theathavin and cateline in tea	600	Table 1. Composition of catechin, theaflavin and caffeine in tea
---	-----	--

601

603 The catechin and theaflavin composition of tea was determined by LC-MS/MS, while 604 caffeine content was by HPLC. Data are means \pm standard deviation (n=3). The total 605 polyphenol content was measured by the Folin-Ciocalteu method. *Total polyphenol 606 content is expressed as mEq gallic acid/l.

C, catechin; EC, epicatechin; GC, gallocatechin; EGC, epigallocatechin; ECg
epicatechin gallate; Cg, catechin gallate; EGCg, epigallocatechin gallate;

609 GCg, gallocatechin gallate; TF, theaflavin; TF3g, theaflavin-3-gallate; TF3'g,

610 theaflavin-3'-gallate; TF-3,3'-dg, theaflavin-3,3'-digallate.

611

⁶⁰²

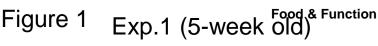
	0
	U
	CD .
	5
	σ
	YU .
	Ο
	0
	0
	()
	D
	C C C
	\mathbf{O}
	0
	O
- 1	
	0
	5
ĥ	7
ì	5
l	7
l	7
	L L
	7
	L L
0	& Fu
	& Fu
0	Х FU
0	d & Fu
0	d & Fu
0	DO & FU
0	od & Fu
0	d & Fu
0	od & Fu

Table 2. Effect of oolong, black and pu-erh tea on body weight, food and beverage intake and white adipose tissue (WAT) weight 613

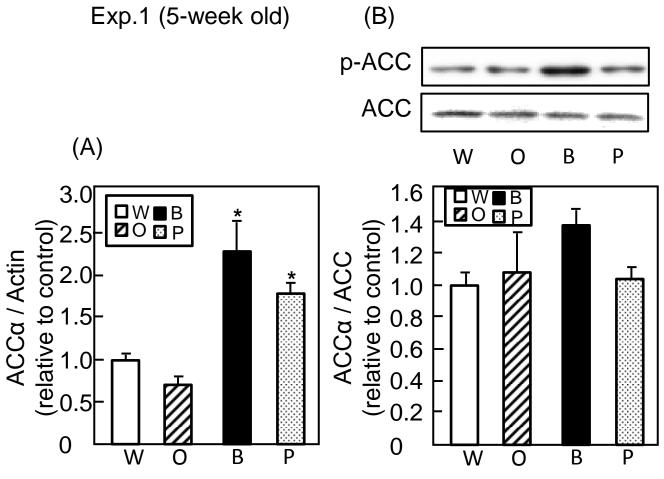
614

615

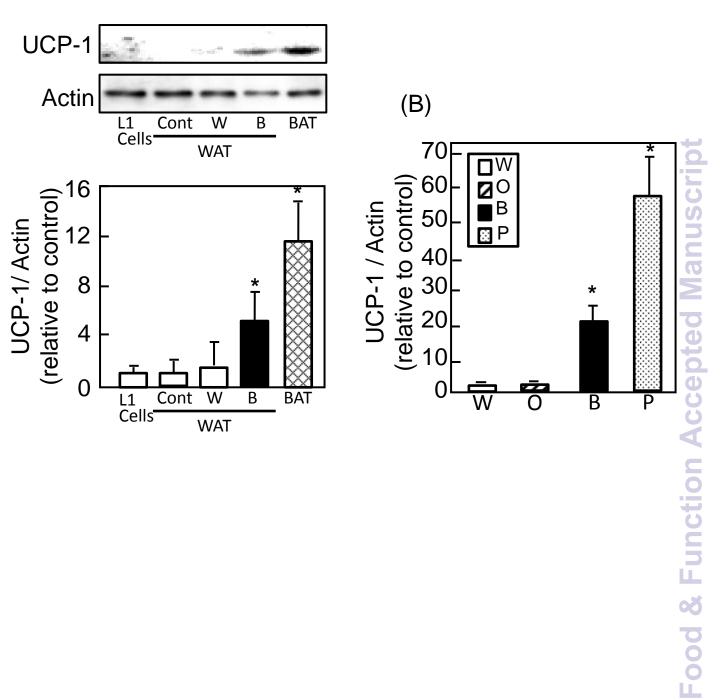
	water	oolong tea	black tea	pu-erh tea
[Exp. 1]				
Body weight (g)	34.6±0.6	35.2±0.7	32.4±0.3	33.7±0.6
Lean body mass (g)	33.1±0.4	34.2±0.7	31.8±0.3	32.8±0.5
WAT weight (g/ 100 g body weight)				
Retroperitoneal	0.53±0.12	0.20±0.03*	0.16±0.03*	0.29±0.08
Epididymal	1.83±0.28	1.28±0.16	1.03±0.07*	1.36±0.08
Mesenteric	0.63±0.11	0.36±0.06	0.19±0.04*	0.25±0.05*
Subcutaneous	1.23±0.39	1.03±0.08	0.57±0.12	0.87±0.14
Food intake (g/day/head)	5.18±0.23	5.56±1.48	5.59±1.20	5.22±1.11
Beverage intake (ml/day/head)	8.79±1.27	8.48±1.07	7.70±1.76	8.10±1.11
[Exp. 2]				
Body weight (g)	39.3±0.6	38.8±0.6	37.5±0.8	38.4±0.5
WAT weight (g/ 100 g body wei	ight)			
Retroperitoneal	0.77±0.06	0.37±0.06*	0.31±0.03*	0.43±0.07*
Epididymal	1.72±0.13	1.10±0.08*	0.99±0.07*	1.27±0.07*
Mesenteric	0.84±0.03	0.56±0.06*	0.52±0.06*	0.56±0.04*
Food intake (g/day/head)	6.65±0.18	6.55±0.15	5.95±0.23	6.50±0.11
Beverage intake (ml/day/head)	9.46±0.28	10.53±0.44	10.13±0.56	10.13±0.18

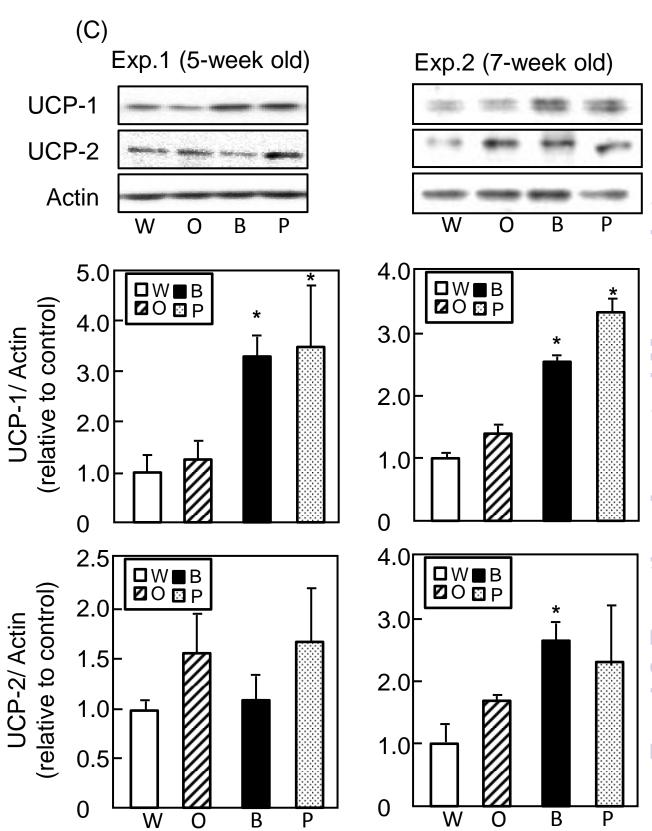

ICR mice were given oolong, black and pu-erh tea for one week. Body weight, food and beverage intakes were measured every day. The data are expressed as the mean \pm SE. 616

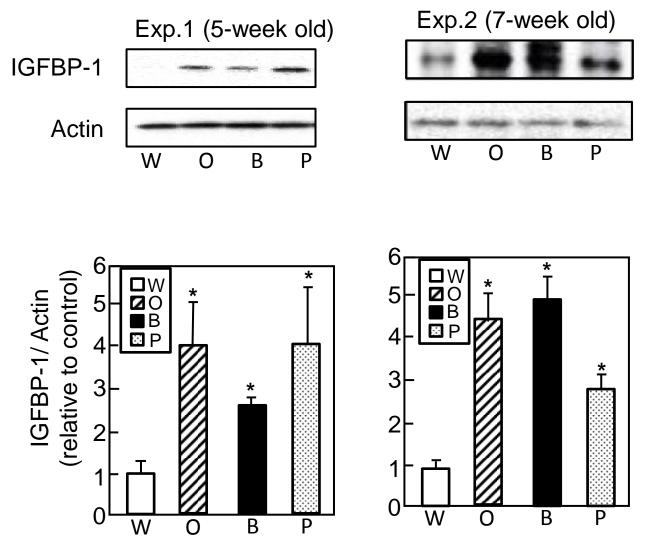
	water	oolong tea	black tea	pu-erh tea
[Exp. 1]				
Plasma				
Cholesterol (mg/dl)	91.9±13.0	82.3±6.4	65.8±7.7*	82.8±7.8
Triglyceride (mg/dl)	181.5±17.6	165.9±20.0	153.6±12.1	169.4±17.4
[Exp. 2]				
Plasma				
Cholesterol (mg/dl)	143.2±3.6	130.2±3.9*	123.3±3.0*	124.4±3.1°
Triglyceride (mg/dl)	241.9±6.9	227.2±10.6	229.4±9.8	260±10.6
Feces				
Total lipid (mg/g)	26±1	31±2	24±1	27±3
Cholesterol (mg/g)	5.43±0.17	6.12±0.34	5.58±0.29	5.56±0.37
Triglyceride (mg/g)	7.93±0.34	9.23±0.92	8.04±0.26	7.75±0.25

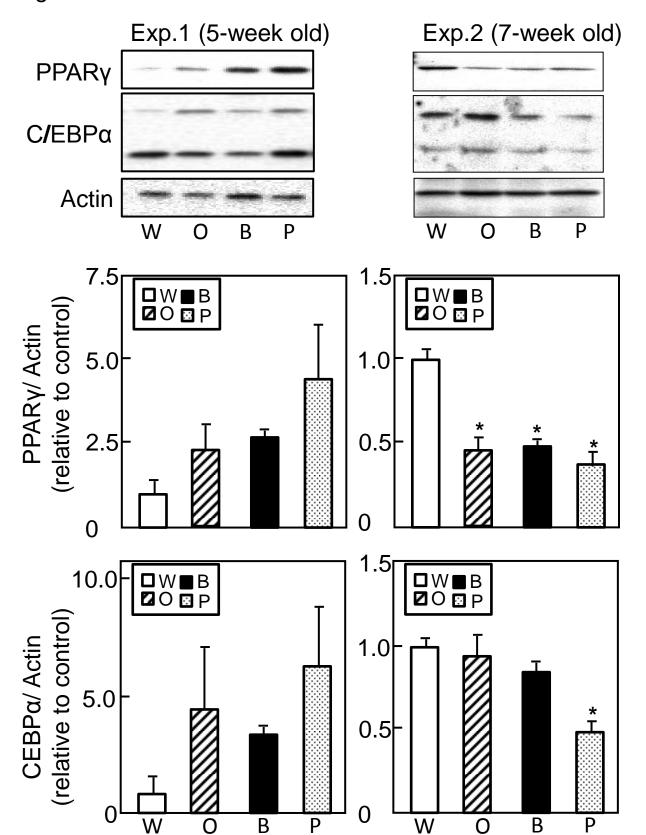

Table 3. Effect of oolong, black and pu-erh tea on blood and fecal lipid concentration

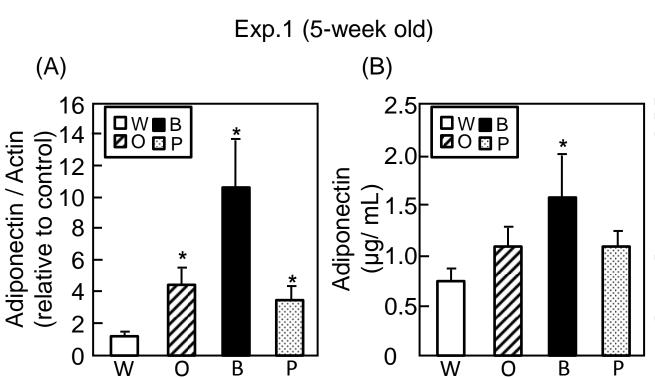
620 ICR mice were given oolong, black and pu-erh tea for 1 week. During the feeding


621 period, the feces were collected and the lipid content analyzed. Data are expressed as 622 the mean \pm SE.








(A) Exp.1 (5-week old)

