Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

^{*} Corresponding author at: College of Quartermaster Technology, Jilin University, Changchun, China, 130062, Tel: 0086-431-87836376, E-mail address: <u>yuanyuan1024@gmail.com (Y. Yuan)</u>

Food & Function Accepted Manusch

11 Abstract

12	Furan, a food contaminant formed by heating, is possible carcinogenic to humans. In this study,	Formatted: Font color: Auto
13	we discussed the effect of administration of apigenin on furan-induced toxicity by determining the	
14	ROS content, oxidative damage, cytokines, DNA damage, and the liver and kidney damage of	
15	mice model. Our data showed that the administered apigenin of 5, 10, and 20 mg kg ⁻¹ bw d^{-1} could	Formatted: Font color: Auto
16	decrease the toxicity induced by furan in different extent. On the one hand, apigenin has ability to	
17	increase the oxidative damage indexes of glutathione (GSH), glutathione S-transferase (GST),	
18	superoxide dismutase (SOD) activities but decrease myeloperoxidase (MPO) activities, and maleic	
19	dialdehyde (MDA) content in the liver and kidney of mice treated by furan. On the other hand, it	
20	could decrease cytokines of tumor necrosis factor α (TNF- α), interleukin (IL)-1 β , interleukin	
21	(IL)-6 content, increase interleukin (IL)-10 in the serum of furan-treated mice. Meanwhile,	
22	different concentrations of apigenin could decrease the ROS content, DNA damage index of	
23	8-hydroxy-desoxyguanosine (8-OHdG) content, and decrease the liver and kidney damage indexes	
24	of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH)	
25	activities, as well as blood urea nitrogen (BUN) and creatinine content in furan-treated miceThe	
26	protective effects of apigenin against furan-induced toxicity damage were mainly due to its_	Formatted: Font color: Auto
27	excellent ability to scavenge free radicals and lipid oxidation inhibition ability. This is important	
28	when considering the possibility of using apigenin as a dietary supplement in diets for a beneficial	
29	application in the chemoprevention against furan toxicity.	
30	Keywords: Furan, apigenin, radicals, antioxidant effect, protective effect, toxicity	
31	· · · · · · · · · · · · · · · · · · ·	Formatted: Font color: Auto

32 Introduction

33	Food processing involves many reactions, and many contaminants are generated during the
34	heating of foods. Furan is just a typical food contaminant which could have harmful effects on the
35	health of the human population. In 2004, the US FDA reported that furan occurred in a number of
36	canned and jarred foods which especially underwent heat-processed. ¹ Besides, almost all of the
37	baby food sold in jars and cans contained detectable furan. US FDA (2004) internet data showed
38	that furan concentrations in staple foods were below 18.8 ng g^{-1} , and in supplement foods were up
39	to 108 ng g ⁻¹ . ¹ In some certain foods, the level of furan is even higher than 5000 ng g ⁻¹ , especially Formatted : Font color: Auto
40	in roasted coffee powder. ² In our previous study, we found that furan was detected in almost all
41	analyzed samples in 191 selected food products obtained from the Chinese markets, and the higher
42	contents of furan were detected in traditional Chinese liquor (61.63 ng g ⁻¹), coffee (71.36 ng g ⁻¹),
43	tea (68.28 ng g ⁻¹) and pickle (85.63 ng g ⁻¹) ³ In recent years, the formation mechanisms of furan
44	have been raised by some researchers. The potential mechanisms about the formation of furan may
45	be due to the thermal degradation and rearrangement of sugars, amino acids, and the oxidation by
46	the reactive oxygen species (ROS) or lipoxygenase of polyunsaturated ⁴⁻⁸ ₄ However, up to now, no
47	conclusive remarks have been established regarding the main mechanism and major precursor of
48	furan formation in different kinds of food processed at high temperatures.
49	The toxicity of furan <i>in vitro</i> and <i>in vivo</i> has also been studied by some researches. The Formatted: Font color: Auto Formatted: Font color: Auto
50	International Agency for Research on Cancer (IARC) has classified furan as a possible human
51	carcinogen (Group 2B) ¹⁰ Furan has also been known as being both hepatoxic and carcinogenic in
52	rats and mice by the National Toxicology Program (NTP). ¹¹ In 90 days of gavaging experiments
53	about the lower dose of furan, which was close to the estimated human exposures, a NOAEL of

E A	0.12 mg $k\sigma^{-1}$ by was derived in the current study k^{-12} Selmenextly at all investigate the effects of	Formatted: Font color: Auto
54	0.12 mg kg bw was derived in the current studySemianogiu et al. investigate the effects of	Formatted: Font color: Auto
55	orally administered furan on liver and kidney in growing Wistar male rats for 90 days by determination	
56	of biochemical, morphological, histopathological and histomorphometrical examinations. Its results	
57	shown that furan may cause effects on the liver and kidney, and also could cause severe	
58	histopathological changes in the kidney in growing male rats. ¹³ As for the mechanistic aspects of the	C C
59	carcinogenicity of furan, studies have suggested that furan could act by both genotoxic and	n n
60	non-genotoxic mechanisms. More studies will be necessary in order to draw more precise	a
61	conclusions concerning this issue ⁹	Formatted: Font color: Auto
62	Since the toxicity of furan has harmful effects on the health of human, it is important to control	Formatted: Font color: Auto
63	or reduce the furan toxicity to humans. Recently, some natural bioactive components play	ot
64	important roles in controlling toxicity of the contaminants in mouse model. Zhang et al. and Wu et	Formatted: Font color: Auto
65	al. found that allicin could effectively reduce the toxicity induced by acrylamide; salidroside could	AO
66	protect the mice from the damage induced by furan toxicity. $\frac{14-16}{2}$ These results of recent studies as	Formatted: Font color: Auto
67	well as our previous study have stimulated our interest in investigating the protective effects of	tio
68	some natural bioactive components against furan-induced toxicity in vivo in mouse.	Formatted: Font color: Auto
69	Apigenin is a 4', 5, 7-trihydroxy flavones, widely found in a variety of fruits, vegetables, beans	3
70	and tea. Apigenin possesses various pharmacological functions such as controlling apoptosis gene,	ంచ
71	inhibiting the expression of proto-oncogenes, inhibiting cancer cell proliferation, as well as	σ
72	inhibiting cancer cell invasion and metastasis, ¹⁷⁻²⁰ Yang et al. investigate the protective effect of	Formatted: Font color: Auto
73	apigenin on acetaminophen-induced mouse acute liver injury and its potential mechanisms, which	Ľ.
74	concluded that apigenin could protect against acetaminophen-induced acute liver injury in mice,	
75	and the mechanisms might be associated with enhancing hepatic GSH content via increment of	

76	GR activity. ²¹ However, no study has evaluated the protective effects of apigenin treatment against	
77	furan-induced toxicity damage using a mouse model. The present study tried to reveal the	
78	protective effect of apigenin from ROS content, oxidative damage, cytokines, DNA damage, and	
79	liver and kidney damage in furan-treated mouse in the absence or presence of apigenin to test the	
80	protective effect of apigenin against furan-induced toxicity. The antioxidant activity of apigenin	
81	was also evaluated in our present study. The dose of furan was chosen according to the 2-year	Formatted: Font color: Auto
82	study conducted by NTP (1993), and the doses of apigenin were on the basis of pre experiment we	
83	did before. ¹¹	
84	Materials and methods	Formatted: Font color: Auto
85	Materials	
86	Furan (CAS: 110-00-9, purity>98.0%) and apigenin (520-36-5, purity>99%) were purchased	
87	from Sigma-Aldrich (St. Louis, Mo., U.S.A.). Apigenin was dissolved in normal saline to give a	
88	final concentration of 0.5, 1 and 2 mg mL ⁻¹ , respectively. Furan was diluted in normal saline to	
89	give a final concentration of 5 mg mL ⁻¹ . The dosing volumes of apigenin and furan solutions were	
90	based on each animal's body weight, on a basis of a volume of 0.2 mL for a mouse of 20 g.	
91	Animals and experimental design	Formatted: Font color: Auto
92	Fifty male healthy BALB/c mice (weighing $20 \pm 5g$) aged 4 to 5 weeks were utilized in this	Formatted: Font color: Auto
93	study, and they were provided by Laboratory Animals Center of Jilin University (Changchun,	
94	China). The research was carried out in accordance with the Guideline for Animal	
95	Experimentation of Jilin University (ChangChun, China). Animals were housed (10 mice each	
96	cage) in an air-conditioned room at 22 \pm 2 °C and 30 \pm 10% relative humidity. The animals were	
97	observed for general condition for 7 days during the quarantine and acclimation period to confirm	

98 that there were no abnormalities.

99	After a quarantine period of 7 days, 50 mice were randomly divided into five groups, each	
100	consisting of ten animals. Group I was treated with saline by oral gavage for 14 consecutive days	
101	and was denoted as the control group a Group II was treated intragastrically by gavage with saline	Formatted: Font color: Auto
102	for 7 consecutive days. On the 8 th day, after the oral gavage saline, the mice were intraperitoneal	
103	injected with furan solution (8 mg kg ⁻¹ bw d ⁻¹) for another 7 days and denoted as the Group furan.	
104	The dose of furan was chosen according to the 2-year study conducted by NTP (1993). ¹¹ Groups	Formatted: Font color: Auto
105	III, IV, and V were treated intragastrically by gavage with apigenin (5, 10 and 20 mg kg ⁻¹ bw d ⁻¹),	
106	respectively, for 7 days (once daily). On the 8 th day, Groups III-V were adiministered	
107	intragastrically by gavage with apigenin (5, 10 and 20 mg kg ⁻¹ bw d ⁻¹) and intraperitoneal injected	
108	with a single dose of furan (8 mg kg ⁻¹ bw d^{-1}) for another 7 days. The bodyweight of the animals	
109	was measured daily and the doses of furan and apigenin were recorded according to the body	
110	weight of the animals.	
111	On the 15 th day, the animals were sacrificed within 24h after the last treatment, the whole blood	
112	of mice was collected into heparinized test tubes and centrifuged at 2500 × g for 15 min at 4 °C to	
113	separate serum, and the serum was stored at -70 °C freezer for further analysis. The kidney and	
114	liver were excised immediately from the mice, washed thoroughly with ice-cold normal saline.	
115	The tissues were homogenized with 10% pre-chilled normal saline in a tissue homogenizer, and	
116	then centrifuged at 2500 \times g for 10 min at 4 °C. The supernatant was used for subsequent	
117	biochemical analyses.	
118	ROS assay	Formatted: Font color: Auto
119	The ROS content of mice in the serum was detected by the commercial ELISA kits, which was	

I		Formatted: Font color: Auto	
120	described by the reference of Zhang et al. (2013). ¹⁵	 Tormatica. Font color. Auto)
121	Oxidative damage assay	 Formatted: Font color: Auto	
122	The oxidative damage was evaluated by the activities of GSH, GST, SOD, MPO, and the		
123	content of MDA in the serum, which were detected by the commercial kits obtained from Beijing		ip
124	Dingguo Changsheng Biotechnology Co., Ltd. (Beijing, China) according to the manufacturer's		C
125	instructions. The detail of the methods was described by the reference of Zhang et al. (2013). ¹⁵	 Formatted: Font color: Auto	
126	<u>Cytokine assay</u>	 Formatted: Font color: Auto	
127	The cytokines in the serum of treated mice were evaluated by the changes of cytokine content,		Σ
128	TNF- α , (IL)-1 β , (IL)-6 and (IL)-10, which was described by the reference of Zhang et al. (2013). ¹⁵	 Formatted: Font color: Auto	6
129	DNA damage assay	 Formatted: Font color: Auto	pt
130	The contents of DNA damage was evaluated by the change of 8-OHdG in the serum by the		Ce
131	commercial ELISA kits, which was obtained in Beijing Dingguo Changsheng Biotechnology Co.,		Ac
132	Ltd. (Beijing, China). The method was also described in the reference of Zhang et al. (2013). ¹⁵	 Formatted: Font color: Auto	
133	The damage of liver and kidney assay	 Formatted: Font color: Auto	tio
134	The activities of AST, ALT, LDH and the content of BUN and creatinine, as well as protein_	 Formatted: Font color: Auto	D C
135	content were determined by commercial kits obtained from Beijing Dingguo Changsheng		Б
136	Biotechnology Co., Ltd. (Beijing, China) according to the manufacturer's instructions.		రం
137	Antioxidant activity analysis of apigenin	 Formatted: Font color: Auto	
138	The antioxidant analysis of apigenin was evaluated by scavenging ABTS radical, hydroxyl	 Field Code Changed	0
139	radical (•OH), DPPH radical, and superoxideanion (• O_2 ⁻), which were followed by the method of		L
140	Yuan et al (2013). ¹⁶ The lipid oxidation inhibition assay of apigenin was measured using the	 Formatted: Font color: Auto Field Code Changed	
141	method of Muñiz-Márquez et al. (2013). ²²	 Formatted: Font color: Auto	

142	Statistical analysis	Formatted: Font color: Auto
143	Statistical analysis was performed using SPSS 11.5 software (Chicago, USA). The significance	
144	of difference was calculated by one-way ANOVA test, and the results with $p<0.05$ were	
145	considered to be statistically significant. Graphs were drawn with OriginPro 8.0 software	i pi
146	(OriginLab Corporation, Northampton, MA, USA).	C C
147	Results	Formatted: Font color: Auto
148	Effect of apigenin on the ROS content	al
149	We examined the effect of apigenin on the ROS content of furan-treated mice by using an	Σ
150	ELISA kit. As shown in Fig. 1, the lowest ROS content ($68.78 \pm 0.56 \text{ U mL}^{-1}$) was observed in the	eq
151	control group. The ROS content was significantly increased in the furan-treated group compared	bt
152	with those in the control group (p < 0.05). The highest level of ROS (181.71 \pm 3.55 U mL ⁻¹) was	C
153	observed when the mice were treated with furan alone. The ROS content then decreased	Ac
154	accordingly with the increase of apigenin concentrations at the range of 5 to 20 mg kg ⁻¹ bw d^{-1} .	Formatted: Font color: Auto
155	The administration of apigenin at concentrations of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ significant	tic
156	reduced the ROS content by 15.0%, 30.9%, and 50.5%, respectively, compared to the group	Formatted: Font color: Auto
157	treated by furan. But the ROS content in the groups treated with 20 mg kg ⁻¹ bw d ⁻¹ apigenin was	L L
158	still markedly higher than that in control group ($p < 0.05$).	<u></u>
159	Effect of apigenin on the oxidative damage in the liver and kidney	Field Code Changed
160	The effect of apigenin and furan on the oxidative damage in the liver and kidney of mice was	Formatted: Font color: Auto
161	evaluated by the indexes of GSH, GST, SOD, MPO, as well as the content of MDA, which were	Formatted: Font color: Auto
162	shown in Fig. 2 (A-E). The treatment of furan caused significant reduction of GSH, GST, and	Formatted: Font color: Auto
163	SOD activities in the livers and kidneys of male Balb/C mice, respectively, when compared to	Formatted: Font color: Auto

164	control group (p <0.05). Enhancement of GSH level was observed in the groups treated with 5 mg	
165	kg^{-1} bw d^{-1} , 10 mg kg^{-1} bw d^{-1} , and 20 mg kg^{-1} bw d^{-1} of apigenin, respectively, compared with	
166	those treated by furan alone ($p < 0.05$). As for the activity of GST and SOD, similar trend was	
167	found to the change of GSH. The administration of 20 mg $\rm kg^{-1}$ bw $\rm d^{-1}$ of apigenin, results in a	
168	significant elevation of GST activity compared to furan group, which increased by 45.42% and	 Formatted: Font color: Auto
169	78.6% in liver and kidney respectively, and also the SOD activity increased by 114.52% in liver	
170	and 108.40% in kidney. Increase of MPO activity and MDA content were observed in the group	
171	treated by furan compared with that of control group (p <0.05).However, treatment with different	
172	doses of apigenin have decreased significantly MPO activity and MDA content both in liver and	
173	kidney compared tothat of furan-treated mice (p <0.05) in different extent.	
174	Effect of apigenin on the cytokines	 Field Code Changed
175	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury	
175 176	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in	 Formatted: Font color: Auto
175 176 177	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1β, and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1β, and	 Formatted: Font color: Auto
175 176 177 178	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05).	 Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content	 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179 180	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content of (IL)-6 was effectively reduced (p < 0.05), while the treatment of 20 mg kg ⁻¹ bw d ⁻¹ of apigenin	 Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179 180 181	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content of (IL)-6 was effectively reduced (p < 0.05), while the treatment of 20 mg kg ⁻¹ bw d ⁻¹ of apigenin effectively reduced the (IL)-6 level from 82.08±0.94 pg mL ⁻¹ to 46.67±0.89 pg mL ⁻¹ close to that	Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179 180 181 182	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content of (IL)-6 was effectively reduced (p < 0.05), while the treatment of 20 mg kg ⁻¹ bw d ⁻¹ of apigenin effectively reduced the (IL)-6 level from 82.08±0.94 pg mL ⁻¹ to 46.67±0.89 pg mL ⁻¹ close to that of the furan-treated group (p < 0.05). Meanwhile, the apigenin concentration of 20 mg kg ⁻¹ bw d ⁻¹ .	Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179 180 181 182 183	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (p <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content of (IL)-6 was effectively reduced (p < 0.05), while the treatment of 20 mg kg ⁻¹ bw d ⁻¹ of apigenin effectively reduced the (IL)-6 level from 82.08±0.94 pg mL ⁻¹ to 46.67±0.89 pg mL ⁻¹ close to that of the furan-treated group (p < 0.05). Meanwhile, the apigenin concentration of 20 mg kg ⁻¹ bw d ⁻¹ was also found to be very effective in causing drasticly decrease on the level of (IL)-1 β and	Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto
175 176 177 178 179 180 181 182 183 184	Four cytokines were detected for evaluating the effect of apigenin on the immunologic injury induced by furan, which were interleukins (IL)-6, (IL)-10, (IL)-1 β , and TNF-a. As shown in Table 1, administration of furan showed significant increase of the content of (IL)-6, (IL)-1 β , and TNF-a, and significant reduction of (IL)-10 content compared to the control group (<i>p</i> <0.05). Through the administration of apigenin with the dose of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the content of (IL)-6 was effectively reduced (p < 0.05), while the treatment of 20 mg kg ⁻¹ bw d ⁻¹ of apigenin effectively reduced the (IL)-6 level from 82.08±0.94 pg mL ⁻¹ to 46.67±0.89 pg mL ⁻¹ close to that of the furan-treated group (p < 0.05). Meanwhile, the apigenin concentration of 20 mg kg ⁻¹ bw d ⁻¹ was also found to be very effective in causing drasticly decrease on the level of (IL)-1 β and TNF- α (<i>p</i> < 0.05)After treated with 20 mg kg ⁻¹ bw d ⁻¹ apigenin, the level of TNF- α and (IL)-1 β	Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto

186	contrary, the (IL)-10 levels of the groups treated with 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ of apigenin	
187	showed values of 109.16 ± 5.57 , 123.21 ± 3.56 , and 144.64 ± 3.41 pg mL ⁻¹ , respectively, which	
188	were significantly higher than those in the furan treated group (p < 0.05). When the mice were	
189	treated with 20 mg kg ⁻¹ bw d ⁻¹ of apigenin, its level of (IL)-10 was nearly back to the level of the	ip
190	control group.	C
191	Effect of apigenin on the DNA damage	Field Code Changed
192	To evaluate the effect of apigenin on the DNA damage in the serum of furan-treated mice, we	a
193	assessed the changes of 8-OHdG content with different concentrations of apigenin. As shown in	Σ
194	Fig. 3, after being treated with furan (8 mg kg ⁻¹ bw d ⁻¹) for 7 days, a significant increase of	ed
195	8-OHdG content was observed compared to the control group ($p < 0.05$), which reached at 33.74 ±	pt
196	1.04 ng mL ⁻¹ , nearly three times higher compared with the control group. After being treated with	Formatted: Font color: Auto
197	different concentrations of apigenin, the effect of furan on 8-OHdG content was exhibited	Ac
198	significantly, with 8-OHdG value 24.35 \pm 1.30 ng mL ⁻¹ for 5 mg kg ⁻¹ bw d ⁻¹ , 17.64 \pm 0.63 ng mL ⁻¹	
199	for 10 mg kg ⁻¹ bw d ⁻¹ and 14.29 \pm 0.42 ng mL ⁻¹ for 20 mg kg ⁻¹ bw d ⁻¹ , respectively.	tio
200	Effect of apigenin on the damage of liver and kidney	Field Code Changed
201	The effect of apigenin on the damage of liver and kidney in the serum of furan-treated mice was	Formatted: Font color: Auto
202	evaluated by the parameters of AST, ALT, LDH, BUN and creatinine. As shown in Table 2,_	Formatted: Font color: Auto
203	pretreatment with the doses of 8 mg kg ⁻¹ bw d ⁻¹ of furan significantly elevated the activities of	Formatted: Font color: Auto
204	AST, ALT, LDH, and the levels of BUN and creatinine compared to the control group ($p < 0.05$).	Formatted: Font color: Auto
205	The activities of AST and ALT have been considered as effective indicator of hepatic injury for a	Formatted: Font color: Auto
206	long time. In the current study, pretreatment with apigenin dramatically reduced the AST and ALT	
207	activities in the serum compared to the furan-treated group ($p \le 0.05$). As for the activity of AST,	Formatted: Font color: Auto

208	when the mice were treated with 20 mg kg ⁻¹ bw d ⁻¹ of apigenin, the activity of AST (12.79 \pm 0.94 U	Formatted: Font color: Auto
209	L^{-1}) was still significant higher than it incontrol group(8.98±0.37 U L ⁻¹) (p<0.05). Meanwhile,the	
210	group treated with 20 mg kg ⁻¹ bw d ⁻¹ of apigenin showed the most effective protective effect from	ų.
211	hepatic injury induced by furan, with the values of ALT activity of 14.53±0.65 U L ⁻¹ , nearly back	ġ
212	to the level of the control group. The effect of apigenin on the damage of the kidney in the serum	SCI
213	of furan-treated mice was evaluated by the changes of BUN, LDH, and creatinine. The results in	ini
214	Table 2 showed that treatment with 8 mg kg ⁻¹ bw d ⁻¹ of furan for 7 days, the activity of LDH and	ar
215	the levels of BUN and creatinine were significantly increased compared tocontrol group ($p < 0.05$).	Formatted: Font color: Auto
216	Treatment with 20 mg kg ⁻¹ bw d ⁻¹ of apigenin for 14 days prevented the LDH activity to 26.3%,	eq
217	the BUN level to 23.2%, and the creatinine level to 36.8% in the serum, respectively.	pt
218	Antioxidant activity of apigenin	Field Code Changed
219	The antioxidant activity of apigenin was evaluated using five methods, and the results were	Ac
220	shown in Table 3. The ABTS radical scavenging ability, •OH-scavenging ability, DPPH radical	2
221	scavenging ability, $\bullet O_2^-$ scavenging ability and lipid oxidation inhibition increased with the	Formatted: Font color: Auto
222	increase concentration of apigenin. The IC_{50} values of various antioxidant assays were used to	LC L
223	evaluate the antioxidant level of apigenin. The IC_{50} values of apigenin concentration for the DPPH	D LL
224	radical, ABTS radical, •OH, and •O ₂ ⁻ were 6.42, 5.61, 0.004, and 0.01 mg mL ⁻¹ , respectively.	ంర
225	Discussion	σ
226	Our study provides the first evidence of a potential protective effect of apigenin on the toxicity	
227	induced by furan in Balb/C mice modle. This protection is related to the concentration of apigenin	Formatted: Font color: Auto
228	ranging from 5 to 20 mg kg ⁻¹ bw d ⁻¹ .	
229	In recent studies, the reactive oxygen species (ROS), such as superoxide anion ($\bullet O_2$), hydrogen	

230	peroxide (H2O2), and hydroxyl radical (•OH), have been associated with many diseases in the
231	human body. ²³ In the current paper, we first studied the effect of furan and apigenin on the ROS in
222	Formatted: Font color: Auto
232	male mice model. The data revealed that treating mice with juran of 8 mg kg bw d for 7 days
233	significantly increased the content of ROS in the serum (p <0.05, Fig.1), the ROS level was
234	2.6-fold higher than that in the control group. After treatment with apigenin, the ROS content was
235	decreased with a clear dose-dependency trend. In the vitro experiment on the determination of
236	antioxidant activity of apigenin, lower IC_{50} values indicated that apigenin had excellent
237	antioxidant properties. Among the assays, the best inhibiting capacity of apigenin was observed in
238	•OH (0.004 mg mL ⁻¹). In lipid oxidation inhibition assay, the general ability of apigenin to prevent
239	lipid oxidant was tested, and a 32.91 ± 1.25% lipid oxidation inhibition was observed, which
240	showed the apigenin also could inhibit lipid oxidation effectively. That is to say, apigenin has
241	great ability to free radical scavenging, such as $\cdot OH$, and $\cdot O_2$ free radical, and it is maybe an
242	important reason for apigenin to decrease the ROS content induced by furan.
243	The oxidative damage of furan was also evaluated by determining the activities of GST, SOD,
244	MPO, and the changes of GSH and MDA levels in the liver and kidney of furan-treated mice.
245	GSH is as an essential intracellular reducing substance for the maintenance of thiol groups on
246	intracellular proteins and antioxidant molecules in living organisms. ²⁴ Furan is metabolized by
247	cytochrome P450 enzymes to its major metabolite cis-2-butene-1,4-dial (BDA), ²⁵ which has been
248	shown to react with cellular nucleophiles such as GSH and amino acids and to cause cross-links
249	between thiols and amino groups. ²⁶ GSH plays an important role in protecting several tissues and
250	cell lines against injuries by oxidants and reactive electrophiles. ²⁷ GSH activities both in the liver
251	and in the kidney treated by furan were significantly decreased (p<0.05), showed that the GSH

252	activities were maybe strained by the formation of cross-links between BDA and GSH. GST,	
253	previously known as ligandins, comprises a family of eukaryotic and prokaryotic phase II	Field Code
254	metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of	Field Code
255	GSH to xenobiotic substrates for the purpose of detoxification. GST activity is a sensitive factor	Field Code
256	that reflects the damage of the body. We observed a significant decrease in GST activity both in	Field Code
257	the liver and in the kidney of furan-treated mouse compared to the control group $(p < 0.05)$,	Formattee
258	showing that furan had damaged the liver hepatocyte and kidney to some extent. As GST increases	Formattee
259	the solubility of hydrophobic substances, it also plays an important role in the storage and	
260	excretion of xenobiotics. Compounds that increase the activity of GST, which metabolizes toxic	
261	compounds to non-toxic, protect the liver 28 In the current study GST activity was inhibited by the	Formattee
201	addition of furan in the hady showing that furan could induce the democe on the important	Formattee
202		Formattee
263	detoxification enzymes and further cause damage to the body. However, the addition of apigenin	Formattee
264	has inhibited the decrease of GSH level and GST activity induced by furan, showing that apigenin	
265	paly a role on reduce the damage from furan. This results are consistent with the study of Yang et	
266	al., which research about the protective effect of apigenin on mouse acute liver injury induced by	
267	acetaminophen and its associate with increment of hepatic glutathione reductase activity. ²¹	
268	Antioxidant enzymes such as SOD are capable of catalyzing the dismutation of superoxide $(\bullet O_2)$	Field Code
269	into oxygen and hydrogen peroxide. Thus, they are an important antioxidant defense in nearly all	Field Code
270	cells exposed to oxygen and often used to evaluate the oxidative stress of organism. ²⁹ Furan with	Field Code
271	a concentration of 8 mg kg ⁻¹ bw d ⁻¹ for 7 days significantly decreased the activities of SOD in the	Formattee
272	liver and kidney of treated mice compared to the control group ($p < 0.05$), shown that furan	Formattee Formattee
273	occurred the oxidative stress. Myeloperoxidase (MPO) is a peroxidase enzyme, which is an	Formattee Field Code
		Field Code

e Changed e Changed e Changed e Changed e Changed d: Font color: Auto d: Font color: Auto epted Ma d: Font color: Auto d: Font color: Auto d: Font color: Auto nction A d: Font color: Auto e Changed e Changed e Changed e Changed e Changed e Changed d: Font color: Auto d: Font color: Auto d: Font color: Auto d: Font color: Auto e Changed e Changed

274	endogenous lysosomal enzyme that removes H2O2 and catalyzes the formation of toxic
275	hypochlorous acid. The current study revealed that the MPO activities were significantly increased
276	by furan in its current concentration. MPO and its oxidative products play key roles in the lipid
277	peroxidation in liver damage. Lipid peroxidation generates a complex variety of products, many of
278	which are reactive electrophiles. Some of these react with protein and DNA and cause toxicity and
279	mutagenicity. ³⁰ Some peroxidaious study showed the correlation between the levels of neutrophil
280	and MDA, the latter was an indicator of free radical-mediated lipid peroxidation damage. ³¹ MDA
281	is the end product of lipid peroxidation. Elevated liver MDA levels imply that enhanced peroxidation
282	causes tissue damage and the breakdown of antioxidant defense mechanisms, thus preventing the
283	formation of superabundant free radicals. ³² Our data showed the treatment with furan caused
284	significantly increased MDA levels compared with the control group (Fig. 2). In our study, the
285	food contaminant of furan has the ability to enhance the oxidative stress and ROS content in the
286	mice, it could know from the changes of the abilities of GST, SOD, MPO, and the levels of GSH, Formatted: Font color: Auto
287	MDA and ROS, which is consistent with the study of Cordelli et al. , ²⁹ they revealed from gene
288	expression analysis that ROS/ oxidative stress production (Gstm1, Gstm3, Gyp4a10, and Cyp4a14)
289	genes were significantly up-regulated in furan-treated mice with a concentration of 15 mg kg ⁻¹ bw
290	d ⁻¹ for 28 days. Hickling et al ³³ also found that furan-induced changes in the expression of
291	various genes were associated with oxidative stress, DNA damage, and cell cycle control. After the
292	mice were treated with apigenin at 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ , the activities of oxidative stress
293	related enzymes, such as GSH, GST, and SOD, were increased with a dose-dependency trend.
294	MPO enzymes are associated with the lipid peroxidation, which is regarded as one of the basic
295	mechanisms of tissue damage caused by free radicals ³⁴ The general ability of apigenin to prevent

296	lipid oxidant was $(32.91 \pm 1.25)\%$ of lipid oxidation inhibition, showing the apigenin also have	 Formatted: Font color: Auto	
297	ability to inhibit lipid oxidation. This might be an effective inhibitor in reducing the MPO abilities	 Formatted: Font color: Auto	
298	and MDA formation. Singh et al. ³⁵ also found that apigenin is able to quench the lipid peroxidation	 Formatted: Font color: Auto	
299	chain and is capable of shielding the membrane from free radicals which cause injuries.		Q
300	Cytokines play important roles in the normal physiology of cells. They are related with the	 Formatted: Font color: Auto	
301	immune response, inflammation, and tissue injury or repair. ³⁶ Our data about cytokines including		Sn
302	TNF- α , (IL)-1 β , (IL)-6 and (IL)-10, showed that furan activated inflammatory cells and		a D
303	subsequently amplified the inflammatory response by releasing various cytokines. When the mice		Σ
304	were intragastrically given apigenin, the contents of TNF- α , (IL)-1 β and (IL)-6 were markedly		ed
305	decreased and the (IL)-10 level was increased in mice serum. These results suggested that		bt
306	apigenin could alleviate tissue injury caused by furan through suppressing inflammatory response.		C
307	Furan could induce inflammatory response by increasing expression of cytokines and other		
308	inflammation-associated genes, such as (IL)-1 β , (IL)-6, and (IL)-10, as was confirmed by our		
309	present study. ^{12, 34, 37} Gerritsen et al and Takano-Ishikawa et al ^{38,39} revealed that apigenin	 Formatted: Font color: Auto	L D
310	inhibited the expression of inflammation-related molecules, such as intercellular adhesion		U
311	molecule-1, vascular cell adhesion molecule-1, and E-selectin, induced by TNF- α and IL-1 α . Lee	 Formatted: Font color: Auto	5
312	et al (2007) 40 studied that apigenin profoundly reduced the tumor necrosis factor- α		LL QX
313	(TNF- α)-induced adhesion of monocytes to HUVEC monolayer, further suggesting that apigenin		7
314	has significant anti-inflammatory activity that is involved in blocking NO-mediated COX-2		
315	expression and monocyte adherence. Funakoshi-Tago et al 41 found that apigenin significantly	 Formatted: Font color: Auto	
316	inhibited TNF- α -induced NF- κ B transcriptional activation. Similarly, in the study of Rithidech et	 Formatted: Font color: Auto	
317	al, ⁴² apigenin at dosage of 10mg kg ⁻¹ bw d ⁻¹ significantly inhibited cytokines such as TNF, IL-1		

318	and IL-6 expression in vivo given to mice after irradiation. Man et al ⁴³ demonstrated that all	Formatted: Font color: Auto
319	these anti-inflammatory effects induced by apigenin were likely attributed to its antioxidant	
	······································	
320	properties. Our research showed that apigenin had great antioxidant abilities. The best inhibiting	
321	capacity of apigenin was observed in $\cdot OH$ and $\cdot O_2$, which would contribute to the	0
322	anti-inflammatory effect of apigenin on that induced by furan in mice model.	Formatted: Font color: Auto
323	8-OHdG is a marker of oxidative damage, and mutations may arise from the formation of	Sn
324	8-OHdG involving $G \cdot C \rightarrow T \cdot A$ transversions, ^{44,45} We found that 8-OHdG levels were dramatically	Formatted: Font color: Auto
325	enhanced by furan with a concentration of 8 mg kg ⁻¹ bw d ⁻¹ for 7 days compared to the control	Σ
326	group ($p < 0.05$, Fig. 4). In the study of Hickling et al (2010), ³³ there was a marked association	Formatted: Font color: Auto
327	between CYP2E1 expression and DNA oxidation (8-OHdG) in areas of centrilobular hepatocyte	pte
328	necrosis seen after a single dose of furan of 30 mg kg ⁻¹ bw d^{-1} daily doses per week for three	C C
329	months. After one month of recovery experiments from three-month treatment, 8-OHdG was still	D D
330	observed in areas of furan-induced cholangiofibrosis. The present study also demonstrated that	
331	apigenin could significantly decrease the level of 8-OHdG in furan-treated mice. We also found	ti
332	that the highest dose of apigenin (20 mg kg ⁻¹ bw d ⁻¹) had the best protective effect ($p < 0.05$).	
333	Furan is a typical hepatotoxicity compound, and the liver is the main target organ of	3
334	furan-induced toxicity in rats and mice with a clear dose-dependency and probably acting by a	2
335	genotoxic mechanism. ¹¹ In our present study, we evaluated the hepatic enzymes, such as ALT and	σ
336	AST, as the biochemical markers for the detection of early acute hepatic damage. Their increased	
337	levels in serum indicated the increased permeability and damage and/or necrosis of hepatocytes. In	L.
338	our present study, furan caused a significant increase in the activities of AST and ALT (Table 1),	Formatted: Font color: Auto
339	which was attributed to the severe damage of the tissue membrane. This results are consistent with	Formatted: Font color: Auto

340	the study of Moser et al. and Hamadeh et al. ^{46,47} After an administration of apigenin, the activities		
341	of AST and ALT decreased in the serum of mice. Similarly, the increased level of LDH that is an		
342	intracellular enzyme in serum is an indicator of a cell damage. ⁴⁸ The findings suggested apigenin		Formatted: Font color: Auto
343	was effective in preventing the furan-induced hepatocyte damage. We also evaluated the changes		
344	of BUN and creatinine levels of apigenin treated mice to study the kidney damage induced by		
345	furan. BUN is an indirect and rough measurement to the metabolic function of the liver and		
346	excretory function of the kidney. Furan could significantly increase the BUN content in the serum,		
347	which is consistent with the study of Gill et al $\frac{12}{12}$ Treatment with apigenin with the concentration	1	Formatted: Font color: Auto
		<u></u>	Formatted: Font color: Auto
348	of 5, 10, and 20 mg kg ⁻¹ bw d ⁻¹ could restrain the increase of BUN level compared to the		Formatted: Font color: Auto
240	furan treated group. Similarly, we found a dramatically increase of cratining layels in the mice	1.1	Formatted: Font color: Auto
545	rutan-ucated group. Similarly, we found a dramatearly increase of cretinine revers in the integ		
350	treated by furan compared to the control group ($p < 0.05$). While in the study of Gill et al , ¹² who		Formatted: Font color: Auto
351	founded that creatinine was not affected in females, whereas in males it showed an increase linear		
352	trend with the furan concentration of 0.0, 0.03, 0.12, 0.5, 2.0, and 8.0mg kg ⁻¹ bw d ⁻¹ . Apigenin		
353	significantly prevented the rises of creatinine levels in serum among the furan-treated mice,		
354	suggesting the apigenin potently protected against the kidney toxicity induced by furan.		
355	Conclusion		
356	In conclusion, this study was first to investigate the effects of apigenin on the toxicity induced	1	Formatted: Font color: Auto
357	by furan in mice model. By evaluating the ROS content, oxidative damage, cytokines, DNA		Formatted: Font color: Auto
358	damage, and liver and kidney damage, our data demonstrated that apigenin possessed a powerful		Formatted: Font color: Auto
359	protective capacity from the toxicity and damage induced by furan. Taken together, these results	11	Formatted: Font color: Auto
360	strongly suggest that apigenin is an effective agent to protect the exogenous toxic compound, such		
361	as furan, but further investigation will be needed to clarify the exact mechanisms. At least we can		Formatted: Font color: Auto

anuscr

C

nction Acdep

r.

Food & Function Accepted Manuscript

362	clear that taking food rich in apigenin or supplementing with apigenin might be health beneficial	
363	for the individuals who are at risk of furan toxicity.	
364		
365	Acknowledgements	
366	This work was supported by the Fund of National Basic Research Program of China ("973"	
367	Program, 2012CB720805), National High Technology Research and Development Program of	
368	China ("863" Project, 2011AA100806). Accordingly, the authors gratefully acknowledge the	
369	funds supports.	
370		
371	References	Formatted: Font color: Auto
372	1 US Food Safety Authority, 2004.	
373	http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/ChemicalContaminants/F	
374	uran/ucm078469.htm	
375	2 A. Arisseto, E. Vicente, M. Ueno, and M.C. Toledo, Toxicol. Let., 2010, 1968, S332.	
376	3 S. J. Wu, E.T. Wang, and Y. Yuan. Food Chem. Toxicol., 2014, 64, 34-40.	
377	4 C.P. Perez Locas, and V.A. Yaylayan, J. Agric. Food Chem., 2004, 52, 6830-6836.	
378	5 A. Beclaski, and S. Seaman, J. AOAC. Int., 2005, 88, 102-106.	
379	6 A. Limacher, J. Kerler, T. Davidek, F. Schmalzried, and I. Blank, J. Agric. Food Chem., 2008, 56,	
380	3639-3647.	
381	7 A. Owczared-Fendor, B. De Meuleaner, G. Scholl, A. Adma, F. van Lancker, G. Eppe, E. De	
382	Pauw, M. Scippo, and N. De Kimpe, Food Chem., 2012, 133, 816-821.	
383	8 F. van Lancker, A. Adams, A. Owczarek-Fendor, B. De Meuienaer, and N. De Limpe., J. Agric.	

384	Food Chem.,	2011,	59 ,	229-235.
-----	-------------	-------	-------------	----------

- 385 9 M.S. Mariotti, K. Granby, J. Rozowski, F. Pedreschi, Food Funct., 2013, 4, 1001-1015.
- 386 10 IARC, Lyon, 1995, pp 3194-3407.
- 387 11 NTP (National Toxicology Program). 1993. NTP Technical report No. 402.
- 388 12 S. Gill, M. Kavanagh, M. Barker, M. Weld, E. Vavasour, Y. Hou, and G.M. Cooke, *Toxicol.*389 *Pathol.*, 2011, **39**, 787-794.
- 390 13. G. Selmanoğlu, E. Karacaoğlu, A. Kiliç, E.A. Koçkaya, M.T. Akay, *Environ Toxicol*, 2012,27,
 391 613-622.
- 392 14 L.L. Zhang, E.T. Wang, F. Chen, H.Y. Yan, and Y. Yuan, *Food Funct.*, 2013, 4, 1229-1236.
- 393 15 L.L. Zhang, H.J. Zhang, Y.T. Miao, S.J. Wu, H.Q. Ye and Y. Yuan, Food Chem. Toxicol.,
- **394** 2012, **50**, 3306-3312.
- 395 16 Y. Yuan, S.J. Wu, X. Liu, and L.L. Zhang, *Food Funct.*, 2013, 4, 763-769.
- 396 17 C.S. Chung, Y. Jiang, D. Cheng, and D.F. Birt, *Mol. Carcinog.*, 2007, 46, 773-782.
- 397 18 C.A. Franzen, E. Amargo, V. Todorovic, B.V. Desai, S. Huda, S. Mirzoeva, K. Chiu, B.A.
- 398 Grzybowski, T.L. Chew, K.J. Green, and J.C. Pellin, *Cancer Prev. Res.*, 2009, 2, 830-843.
- 399 19 J.C. King, Q.Y. Lu, G. Li, A. Moro, H. Takahashi, M. Chen, V.L. Go, H.A. Reber, G. Eibl, and
- 400 O.J. Hines, Biochim. Biophy. Acta., 2012, 1823, 593-604.
- 401 20 S. Shukla, and S. Gupta, Free Rad. Biol. Med., 2008, 44, 1833-1845.
- 402 21 J.Yang, X.Y.Wang, J.Xue, Z.L.Xie, *Food Funct.*,2013,4(6),939-943.
- 403 22 D.B. Muñiz-Márquez, G.C. Martínez-Ávila, J.E. Wong-Paz, R. Belmares-Cerda, R.
- 404 Rodríguez-Herrera, and C.N. Aguilar, *Ultrason. Sonochem.*, 2013, **20**, 1149-1154.
- 405 23 X.Wen, J.M. Wu, F.T. Wang, B.Liu, C.H.Huang, Y.Q.Wei. Free Radical Bio

406	Med.,2013,65,402-410
-----	----------------------

- 407 24 L.A. Peterson, M.E. Cummings, C.C. Vu, and B.A. Matter, , *Drug Metab. Dispos.*, 2005, 33,
- 408 1453-1458.
- 409 25 T. Chen, T. D. Williams, A. Mally, C. Hamberger, L. Mirbahai, K. Hickling and J. K. Chipman,
- 410 *Toxicology.*, 2012, **292**, 63-70.
- 411 26 K.J. Lee, and H.G. Jenog, *Food Chem. Toxicol.*, 2002, 40, 517-525.
- 412 27 X.Q. Shan, T.Y. Aw, D.P. Jones, *Pharmacol. Ther.*, 1990, 47, 61–71.
- 413 28 C.M. Liu, J.Q. Ma, and Y. Lou, *Food Chem. Toxicol.*, 2010, 48, 2809-2817.
- 414 29 A. Belboul, C. Lofgren, C. Storm, and M. Jungbeck, *Eur. J. Cardiothorac. Surg.*, 2000, 17,
 415 580-586.
- 416 30 L.J. Marnett, *Mutat Res.*, 1999, **424**,83–95.
- 417 31 E. Cordelli, P. Leopardi, P. Villani, F. Marcon, C. Macii, S. Caicla, E. Siniscalchi, L. Conti, P.
- 418 Eleuteri, F. Malchiodi-Albedi, and R. Crebelli, *Mutagenesis.*, 2010, 25, 305-314.
- 419 32 Y.W. Hsu, C.F.Tsai, W.K.Chen, Food Chem. Toxicol., 2009, 47, 2281–2288.
- 420 33 K.C. Hickling, J.M. Hitchcock, V. Oreffo, A. Mally, T.G. Hammond, J.G. Evans, J.K. Chipman,
- 421 and *Toxicol. Pathol.*, 2010, **38**, 230-243.
- 422 34 H. Eserbauer, and R.J. Schaur, *Free Rad. Biol. Med.*, 1991, 11, 81-128.
- 423 35 J.P.V. Singh, K. Selvendiran, S.M. Banu, R. Padmavathi, and D. Sakthisekaran, *Phytomedicine.*,
 424 2004, 11, 309-314.
- 425 36 L.A. DeCicco, L.E. Rikans, C.G, Tutor. K.R. Hornbrook, *Toxicol Lett.*, 1998, 98, 115–121.
- 426 37 S. Moro, J.K. Chipman, J.W. Wegener, C. Hamberger, W. Dekant, and A. Mally, *Mol. Nutr.*427 *Food Res.*, 2012, 56, 1197-1211.

428	38 M.E. Gerritsen, W.W. Carley, G.E. Ranges, C.P. Shen, S.A. Phan, and C.A. Perry, Am. J.
429	Pathol., 1995, 147, 278-292.
430	39 Y. Takano-Ishikawa, Y.M. Goto, and K. Yamaki, Phytother. Res., 2003, 17, 1224-1227.
431	40 J. Lee, H.Y. Zhou, S.Y. Cho, Y.S. Kim, Y.S. Lee, and C.S. Jeong, Arch. Pharm. Res., 2007, 30,
432	1318-1327.
433	41 M. Funakoshi-Tago, K. Nakamura, K. Tago, T. Mashino, and T. Kasahara, Int.
434	Immunopharmacol., 2011, 11, 1150-1159.
435	42 K.N. Rithidech, M. Tugiai, P. Reunqpatthanaphong, L. Honikel, and S.R. Simon, Mutat. Res.,
436	2012, 749 , 29-38.
437	43 M.Q. Man, M. Hupe, R. Sun, G. Man, T. Mauro, and P.M. Elias, Evid-Based Compl Alt., 2012,
438	Article ID 912028, 1-7.
439	44 H. Kasai, Mut. Res., 1997, 387 , 147-163.
440	45 M. Moriya, P. Natl. Acad. Sci. USA., 1993, 90, 1122-1126.
441	46 G.J. Moser, J. Foley, M. Burnett, T.L. Goldsworthy, R. Maronpot, <i>Exp Toxicol Pathol.</i> , 2009,
442	61 ,101–111.
443	47 H.K. Hamadeh, S. Jayadev, E.T. Gaillard, Q. Huang, R. Stoll, K. Blanchard, J. Chou, C.J.
444	Tucker, J. Collins, R. Maronpot, P. Bushel, C.A. Afshari, Mutat Res., 2004, 549,169–183.
445	48 K. A. Kim, W. K. Lee, J. K. Kim, M. S. Seo, Y. Lim, Y. Lee, and Y. Chung, Int. Arch Occup.
446	Environ. Health, 2001, 74, 9-15.
447	

448

449

450	Figure captions:
451	Fig. 1 Effects of apigenin on ROS content in the serum of furan-treated mice.
452	All values are expressed as means \pm standard deviation (n = 8). Values in the same with
453	different superscript upper case letters are significantly ($p < 0.05$) different.
454	
455	Fig.2 Effects of apigenin on the activities of GSH, GST, SOD, MPO, and MDA content in the liver
456	and kidney of furan-treated mice. (A) GSH; (B) GST; (C) SOD; (D) MPO; (E) MDA.
457	All values are expressed as means \pm standard deviation (n = 8). Values in the same with
458	different superscript upper case letters are significantly ($p < 0.05$) different.
459	
460	Fig.3 Effects of apigenin on 8-OHdG content in the serum of furan-treated mice.
461	All values are expressed as means \pm standard deviation (n = 8). Values in the same with
462	different superscript upper case letters are significantly ($p < 0.05$) different.
463	
464	

465	
466	Table captions:
467	Table 1 Effects of apigenin on the content of (IL)-6, (IL)-10, (IL)-1 β , and TNF- α in the serum of
468	furan-treated mice.
469	
470	Table 2 Effects of apigenin on activity of AST, ALT and LDH, as well as levels of BUN and
471	creatininein in the serum of furan-treated mice.
472	
473	Table 3 Antioxidant activity of apigenin by scavenging free radicals.
474 475	

Table 1

Groups	IL-6 (pg mL ⁻¹)	IL-10 (pg mL ⁻¹)	IL-1 β (pg mL ⁻¹)	TNF-a (pg mL ⁻¹)
Control	32.46±0.67 ^a	152.30±3.42 ^a	37.99±1.41 ^a	188.75±0.73 ^a
Furan (8 mg kg ⁻¹ bw d^{-1})	82.08 ± 0.94^{b}	103.99±4.18 ^b	93.33±2.05 ^b	351.50±2.05 ^b
Furan (8 mg kg ⁻¹ bw d ⁻¹) +Apigenin (5 mg kg ⁻¹ bw d ⁻¹)	71.42±1.03 ^b	109.16±5.57 ^b	84.62±2.73 ^b	302.95±2.35 ^c
Furan (8 mg kg ⁻¹ bw d ⁻¹) + Apigenin (10 mg kg ⁻¹ bw d ⁻¹)	58.87±1.08 ^c	123.21±3.56 ^c	62.15±0.52 ^c	272.21 ± 1.34^{d}
Furan (8 mg kg ⁻¹ bw d ⁻¹) +Apigenin (20 mg kg ⁻¹ bw d ⁻¹)	46.67±0.89 ^{ac}	144.64±3.41 ^a	52.45±1.08 ^c	242.63±2.23 ^e

All values are expressed as means \pm standard deviation (n = 8). Values in the same column with different superscript upper case letters are significantly (p < 0.05)

different.

Table 2

Groups	AST	ALT	LDH	BUN	Creatinine
	(U L ⁻¹)	(U L ⁻¹)	(U L ⁻¹)	$(mg L^{-1})$	(µmol L ⁻¹)
Control	8.98±0.37 ^a	12.45±0.82 ^a	350.14±1.76 ^a	87.41±0.62 ^a	60.18±0.35 ^a
Furan (8 mg kg ⁻¹ bw d^{-1})	27.01±0.88 ^b	30.80±1.37 ^b	489.81±1.65 ^b	119.20±0.39 ^b	101.75±1.36 ^b
Furan (8 mg kg ⁻¹ bw d ⁻¹) +Apigenin (5 mg kg ⁻¹ bw d ⁻¹)	21.95±0.53 °	25.84±0.53 ^b	423.90±2.30 ^c	113.69±0.70 ^b	87.18±1.80 ^c
Furan (8 mg kg ⁻¹ bw d ⁻¹) + Apigenin (10 mg kg ⁻¹ bw d ⁻¹)	17.40±1.02 °	19.63±0.35 °	391.18 ± 1.04^{d}	103.49±0.81 °	76.45±1.39°
Furan (8 mg kg ⁻¹ bw d ⁻¹) +Apigenin (20 mg kg ⁻¹ bw d ⁻¹)	12.79±0.94 ^d	14.53±0.65 ^a	361.20±1.15 ^a	91.49±1.28 ^a	64.35±1.00 ^a

All values are expressed as means \pm standard deviation (n = 8). Values in the same column with different superscript upper case letters are significantly (p < 0.05)

different.

Table 3

Free radical	Concentration apigenin	Scavenging	$IC_{50} ({\rm mg \ mL}^{-1})$
	(mg mL)	Rate (%)	
DPPH	1	43	6.42
	5	44	
	10	52	
	15	72	
ABTS	2	17	5.61
	4	47	
	6	59	
	8	60	
•OH	0.001	9	0.004
	0.002	38	
	0.004	49	
	0.006	71	
•O ₂ ⁻	0.03	6	0.01
	0.06	11	
	0.09	23	
	0.12	65	