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Abstract 

 

A thermodynamic equilibrium sensor is proposed that measures the ratio of the number of elementary charges z  

to the mass m  of charged solutes such as charged colloids and nano-particles. The sensor comprises a small, 

membrane-encapsulated salt solution volume that absorbs neutral salt molecules in response to release of mobile 

counter ions by charge carriers in the surrounding suspension. The sensor state emerges as a limiting case of the 

equilibrium salt imbalance, and the ensuing osmotic pressure difference, between arbitrary salt and suspension 

volumes. A weight concentration c of charge carriers is predicted to significantly increase the sensor’s salt number 

density from its initial value
,0s

ρ  to 
R

s
ρ , according to the relation ( )ρ ρ ρ− =

2

,0 ,0/ 1 /
R

s s szc m , under the 

assumption that the mobile ions involved in the thermodynamic sensor-suspension equilibrium are ideal and 

homogeneously distributed.  

 

 

Keywords: Charged colloids, charged nano-particles counter-ions, salt adsorption, osmotic pressure, charge 

determination, electrophoresis. 
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1. Introduction  

Gradients in ion concentrations and osmotic pressure are the inevitable consequence of charged colloids [1-3] and 

charged macro-molecules that equilibrate slowly in comparison to their rapidly diffusing co- and counter ions. The 

disparity in equilibration times often is imposed by an external, selective force such as gravity or a centrifugal force 

[4] that primarily acts on the heavy carriers, or a semi-permeable membrane that only allows ions to permeate. 

Salt and osmotic pressure gradients are abundant phenomena in nature and technology; from the many biological 

examples we mention the osmotic pressure difference between plant or animal cells and their surroundings, the 

regulation of which is essential for the cell’s functioning [5,6]. Regulation of gradients in salt and osmotic pressures 

of body fluids is also crucial for our health, with implications for numerous physiologic and pathologic phenomena, 

extensively reviewed in [7]; osmometry is therefore a basic clinical tool in both human [7] and veterinary medicine 

[8]. In membrane technology osmotic pressure and salt gradients are encountered in the purification of electrolyte 

solutions via dialysis and, on a very large scale, in the desalination of sea water via reversed or forward osmosis 

[9,10].  

Osmotic pressures and salt gradients [11,12] have been studied via the classical Donnan equilibrium, recently 

reviewed in [13], comprising a small volume of charge carriers in contact with an infinite electrolyte solution (the 

‘salt reservoir’) which keeps the chemical potential of the salt at a constant value. However, in the majority of 

practical cases the reservoir is finite such that its salt concentration adapts to the presence of charge carriers in the 

adjacent suspension. Typical examples of finite salt solutions are the biological cells mentioned above, the small 

supernatant volumes in contact with dense colloid sediments [14] and the finite salt solution compartments in 

membrane osmometers [15,16]. The variable salt concentration in a finite salt solution has, to our knowledge, not 

been investigated earlier and the main motivation for this paper is to fill this lacuna in our understanding of the 

ionic equilibria associated with charged colloids and nano-particles. 

Instead of the usual infinite reservoir in the thermodynamics of charged species [1,3,13,20], we focus here on the 

opposite case of a salt solution that is very much smaller than the suspension of charge carriers. Such small 

solutions are of particular interest because their salt concentration responds to any mobile counter ions that are 

released by charged solutes in their surroundings. In other words, a tiny salt solution may be employed as a sensor 

for the charge carried by solutes that cannot access the reservoir. The osmotic pressure difference between salt 

solution and surrounding suspension also contains information about the counter-ion concentration in a 

suspension. However, osmotic pressure determinations are often quite laborious, witness the extensive studies on 

magnetite nano-particles [17-18] and silica colloids [19]. In addition, osmotic pressures depend on colloids as well 

as small ions. One advantage in this respect of a salt solution sensor is absence of other species than small ions so 

measurements of ion concentrations via, for example, spectroscopy or electrical resistance, are not disturbed by 

the presence of charge carriers. 
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In the thermodynamics of the sensor treated in this paper, essential parameters are the sensor’s volume and salt 

concentration relative to the volume and salt concentration of the suspension. To develop a clear perspective on 

these parameters, we first analyze in section 2 the equilibrium salt imbalance between arbitrary volumes of 

suspension and salt solution. Next we consider in section 3, still for arbitrary volumes, the high-salt region where 

counter ion densities are much smaller than reservoir salt concentrations. The limit of a large reservoir is the 

subject of section 4, whereas the opposite case of a tiny salt solution is treated in section 5. For the latter case we 

show how the solution’s salt concentration monitors the density of mobile counter ions in the suspension bulk. 

Salt imbalance entails an osmotic pressure difference between suspensions and salt solutions that is dealt with in 

section 6. The Appendix documents the case of a membrane separating equal volumes of suspension and salt 

solution, a configuration that is relevant to consider as it also occurs in commercial osmometers [15,16]. 

2.  Salt transfer from suspension to reservoir solution
 

In this section we analyze salt transfer from a suspension to arbitrary volumes of salt solution.  Suspension and salt 

solution volumes are in all cases assumed to be electrically neutral, macroscopic volumes in which ideal ions 

experience only a constant electrical potential. Since ions diffuse in zero-electric field, they are homogenously 

distributed in both suspension and salt solution. It should be noted that this zero-field assumption, which 

considerably simplifies the calculation of the salt transfer, is realistic for sufficiently low charge densities on the 

charge carriers. This is shown, for example, for the case of interacting, parallel charged surfaces in [3], where zero-

field predictions are found to coincide with numerical solutions of the Poisson-Boltzmann equation for weakly 

charged surfaces. 

2.1.  The salt transfer equation  

Consider a suspension volume iV  
containing charge carriers such as colloids, proteins or poly-electrolytes, 

separated from a salt solution volume RV  by a membrane (figure 1), permeable only to solvent and small ions. The 

initial state (figure 2) in absence of charge carriers is a volume 
i

V   that only contains salt such that in equilibrium 

the number density ,0ρs  of salt molecules in the suspension equals that of the salt solution. Assuming a fully 

dissociated 1:1 electrolyte such as NaCl , the total initial ion concentration then everywhere equals ,02ρs . The 

initial equilibrium state is perturbed (figure 2) by the addition of a number density cρ  of charge carriers to the 

suspension volume, each carrier subsequently producing a large anion and z positive (sodium) counter ions. The 

Na+  concentration in the suspension now exceeds its equilibrium value and, consequently, sodium ions 

spontaneously migrate to the salt solution, accompanied by Cl −  anions to maintain overall electro-neutrality. 

When thermodynamic equilibrium has been restored the anion density 
iρ−  in the suspension equals: 

Page 3 of 24 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



3 

 

 

,0    ; 0ρ ρ− = + <i

s i iL L                                                                                                                                                          (1) 

Here iL  is the salt transfer to the salt solution which equals the decrease in the suspension’s anion number 

density; note that 
iρ−  equals the concentration of salt molecules in the suspension. The equilibrium cation density 

iρ+  in the suspension is given by (figure 2): 

 
,0   ,i i

c c s iz z Lρ ρ ρ ρ ρ+ −= + = + +                                                                                                                                  (2) 

where czρ is the number density of mobile counter ions released by the charge carriers. The charge carriers are 

assumed to be strong electrolytes such that their valency z is constant: any charge regulation is disregarded here. 

The equilibrium number density of ions in the salt solution is: 

 
,0     ;   0    R R R

s s R RL Lρ ρ ρ ρ− += = = − <                                                                                                                    (3)                                                                  

Here RL−  is the increase in salt concentration due to salt molecules received from the suspension via the semi-

permeable membrane. Since suspension i and salt solution R jointly form a closed, isochoric system, salt is 

conserved such that the changes iL  and RL in salt concentrations are coupled via: 

     ;   i
R i

R

V
L L

V
θ θ= =                                                                                                                                                           (4)

The parameter θ , an essential quantity in what follows, is the ratio of the suspension volume to the volume of the 

salt solution. The equilibrium salt concentrations in suspension and solution are denoted by, respectively, 
iρ−  and 

R

s
ρ ; the difference 

i R

s
ρ ρ− − is the equilibrium salt imbalance. The latter should be distinguished from the salt 

transfer iL , i.e. the salt concentration expelled by the suspension needed to establish the salt imbalance. The 

relation between salt transfer and salt imbalance is: 

,0 ,0

1
( ) ( )  (1 ) ,

            

θ
ρ ρ ρ ρ θ

θ−

+ − = + − − = + =  
 

i R

s s i s R i RL L L L
                                                                       (5)

Here we have also made use of the salt conservation equation (4). Note that in (5) since < 0
i

L  the salt 

concentration in the solution always exceeds the suspension’s salt concentration. We will now investigate how salt 

transfer iL  depends on the volume ratioθ in (4) and the ion densities in suspension and solution. The chemical 

potential of ideal cations and anions is given by [20]: 
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,0

,0

lnkT e
ρ

µ µ
ρ

±
± ±

±

 
= + ± Ψ 

  
                                                                                                                                        (6) 

Here 
,0µ±  is the standard chemical potential for a reference number density ,0ρ± ; kT  is the thermal energy; e is 

the proton charge and Ψ is the constant electrical potential (also known as the Donnan potential [13]) in either 

suspension or salt solution. To maintain electro-neutrality only pairs of anions and cations can migrate from 

suspension to salt solution or vice versa. The corresponding chemical potential of neutral salt molecules is [20] 

, sµ µ µ+ −= + such that the Donnan potential terms from (6) cancel: 

2

,0 ,0 ,0 ,02

,0

ln      ; ( )  
( )

ρ ρ
µ µ ρ ρ ρ

ρ
+ −

+ −

 
= + = 

  
s s s

s

kT                                                                                                (7)

In equilibrium the salt chemical potential in the solutions at both sides of the membrane in figures 1 and 2 must be 

equal. Substitution of (7) in the equilibrium condition 
i R

s sµ µ=  yields: 

    ,i i R Rρ ρ ρ ρ+ − + −=                                                                                                                                                                     (8) 

 Substitution of equations (1) - (4) in (8) modifies this equilibrium condition to : 

( )( ) ( )ρ ρ ρ ρ θ+ + + = −
2

,0 ,0 ,0     ,  
c s i s i s i
z L L L

                                                     
 (9) 

from which we obtain the following quadratic for the salt concentration iL  expelled from suspension i  to salt 

solution R: 

2

2

,0 ,0 ,0

( 1) 2(1 ) 2 0      ;     and  
2

i i c i

s s s R

L L z V
y y y

V

ρ
θ θ θ

ρ ρ ρ

   
− − + + − = = =      

   
                                        (10) 

This quadratic shows that salt transfer from suspension to salt solution only depends on two dimensionless ratio’s, 

namely the volume ratio θ  introduced in equation (4) and the ratio y between the number density 
c

zρ  of 

mobile counter ions to the total ion number density 
,02

s
ρ  in the initial colloid-free salt solution. We will return to 

these ratio’s in later sections ; here we continue with the two solutions of the quadratic (10):

    

  

( ) ( )22 2

,0

( 1) 1 1 2( 1)              i

s

L
y y yθ θ θ θ

ρ
− = + + ± + + + −                                                                        (11)

The physically correct solution from (11) follows from the requirement that 0iL < : the suspension expels salt to 
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the solution, not vice versa. This rules out the positive root in (11) which entails that 0iL >  for volume ratio’s 

1.θ >  The solution with the negative root can be rewritten to 

 

2

,0

( 1) 1 1 2     ,           
1 1 1

i

s

L y y y
θ θ

ρ θ θ θ
     − = + − + +     + + +     

                                                           (12)     

which is a convenient form to address the various limiting cases in later sections. The salt concentration increase 

− RL  in the salt solution directly follows from substitution of (4) in (12). Both iL and RL are plotted in figures 3 and 

4 that are further discussed in sections 4 and 5. From measurements of salt concentrations in a reservoir with 

known volume one could determine y - and thus the particle charge – via a fit to equation (12). In section 5.2 we 

will examine the ‘sensor’ condition under which the expression for RL  simplifies to a simple relation between RL

and y that is independent of the reservoir volume. 

2.2  Limiting solution volumes and salt concentrations 

With respect to the volume ratio θ  introduced in (4) the two limiting cases of interest are the large-reservoir limit

1θ � and the small-solution limit 1θ � ; the intermediate case 1θ =  of equal suspension and reservoir 

volumes is treated in the Appendix. The large-reservoir limit denotes a salt solution volume sufficiently large to 

maintain a constant salt concentration while the suspension’s salt concentration decreases; in the small-solution 

limit 1θ �    it is the suspension’s salt concentration that remains constant while the solution’s salt concentration 

increases. The inequality 1θ � is of special interest here because a minute solution can be employed as an 

analytical tool for the charged solutes as will become clear in section 5. The large-reservoir limit 1θ � includes 

the asymptote 0θ →  because the salt solution can be arbitrary large as in the case of a salt water ocean in which 

a suspension filled dialysis bag is immersed. In the opposite sensor limit 1θ � , however, the salt solution cannot 

be arbitrary small because of the assumptions underlying salt transfer equation (12):  the reservoir must remain a 

macroscopic, neutral volume with negligible fluctuations in ion densities. 

One limiting case for concentrations of ions and colloids is the high-salt region, defined as the concentration 

domain where the following inequality is satisfied: 

s,0

,0

1     2     ;  
2

c
c

s

z
y z y

ρ
ρ ρ

ρ
⇒ =� �                                                                                                                     (13) 

In words, in the high-salt region the initial salt concentration in solution and suspension volumes is much higher 

than the counter ion densities released by charge carriers added to the suspension. As specified in (13) via 0θ ≥ , 

the high-salt region in the suspension occurs for any solution volume, as will be demonstrated in section 3. In 
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addition to their common high-salt region, large and small salt solutions also have their own distinct salt-region. 

Only large reservoirs can enter the low-salt region where the reservoir has absorbed most of the suspension’s salt 

such that counter-ions are the dominating ions in the suspension. This ‘desalination’ of a suspension cannot be 

achieved by solutions that are smaller than the suspension volume; the low-salt region is accordingly defined as  

1  and  1 ;  0i

R

V
y

V
θ θ< = ≥�                                                                                                                                      (14) 

The distinguishing salt region in the small-reservoir limit is the sensor-salt region where the following inequalities 

are valid: 

  and  1y θ θ� �                                                                                                                                                               (15) 

In the sensor-salt region the salt concentration increase RL  in the small solution is independent of the solution 

volume such that RL depends only on the ion density ratio y , as further explained in section 5.2. 

3. Arbitrary reservoir volumes 0θ ≥  in the high-salt region 1y �  

One interesting feature of the high-salt region is that the salt transfer iL  from suspension to solution is described 

by an expansion of (12) that is valid for any solution volume. This results from the expansion of the square-root 

term in (12) for the high-salt inequality 1y << : 

2 2

21
1 2    = 1+   + (1 ) + ........  , for  y << 1       

1 1 1 2 1

y y y y
θ θ θ

θ θ θ θ
       + + −       + + + +       

       (16) 

Since the term 2 / (1 )yθ θ+ is bounded by 

0 2 2   ,  for 0     ,    
1

y
yθ θ

θ
 ≤ ≤ ≥ + 

                                                                                                   (17) 

it follows that for 1y <<  the small-parameter expansion in (16) is applicable for any value of θ ; that is to say, the 

high-salt expansion (16) holds for arbitrary solution volumes. Substitution of (16) in (12) yields for the salt transfer 

from suspension to solution in the high-salt limit: 

2

,0

1
(1 )   + ...... , for 1  ;  0

2

i

s

L
y y yθ θ

ρ
+ = − + << ≥                                                                                             (18)                                                                                   
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Equation (18) describes a small perturbation of the initial salt concentration ,0sρ  by the addition of small numbers 

of (weakly) charged colloids. Though 1y � we have included in (18) the quadratic
2y  because it is this term that 

yields the first non-zero contribution to the osmotic pressure in the high-salt limit, as further discussed in section 

5. Omitting here this quadratic we find on substitution of 
,0

i i

i sL ρ ρ− −= −  in (18) : 

,0  , for 1  ;  0 
2(1 )

i c
s

z
y

ρ
ρ ρ θ

θ− = − ≥
+

�                                                                                                                 (19) 

This interesting result shows that in the high-salt concentration domain a fraction 1/ 2(1 )θ+  of the number 

density czρ of mobile counter ions is expelled to the salt solution via neutral salt molecules. The maximal fraction  

1/ 2  occurs for salt transfer to a large reservoir ( 1θ � ) whereas in the small-solution limit 1θ �  salt expulsion 

vanishes for the obvious reason that a tiny reservoir cannot desalinate a large suspension volume 

4. The large-reservoir limit 1θ �  

4.1 Arbitrary salt concentration 0y ≥  

In an infinite reservoir the salt concentration remains constant, as indeed follows from substitution of 0θ =  in 

the salt conservation (4): 

,0

0  , for 0θ
ρ

= →R

s

L
                                                                                                                                                           (20)

For the suspension, however, the absorption remains finite; from the salt transfer equation (12) we find in the 

large-reservoir limit θ → 0 :                                                                                                        

2

,0

1 1   ,  for 0i

s

L
y y θ

ρ
= − + + − →

                                                              

 (21) 

This result has also been derived in [13] where more discussion can be found on this salt expulsion to an infinite 

reservoir.  Note that since ρ ρ−= − ,0

i

i s
L the salt concentration ρ−

i
 in the suspension is: 

ρ
θ

ρ
− = + − →2

,0

1    ,  for 0
i

s

y y                                                                                                                                            (22)   

For 0y >  the RHS of (22)  is always smaller than unity, which expresses that charged colloids always decrease the 

salt concentration  in the suspension by salt expulsion to a reservoir.  
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4.2 High- and low-salt regions 

From the salt transfer equation (21) we can infer that in the high-salt region 1y �  the addition of charged 

colloids leads only to the small salt expulsion given by : 

,0

,0

1
    =   , for 0  and  1   ,

2

ii
s c

s

L
y z yρ ρ ρ θ

ρ −= − ⇒ − → �                                                                         (23) 

as also follows from the general result (19). 

On entering the low-salt region the colloids expel significant salt concentrations to the large reservoir; for 1y �  

the salt-transfer from equation (21) approaches: 

θ
ρ

  
= + − − − →  

  
� �

2

,0

1 1
1 1 1  1   ,  for 0  and  1

2 2

   

i

s

L
y y

y y                                                                              (24)         

Figure 3 illustrates that for the large reservoirθ → 0 , (24) is already a good approximation for the salt transfer to 

the reservoir at moderate y − values. For example, (24) yields ,0/  0.875i sL ρ = − for 4y = which is quite close 

to the salt expulsion obtained from the full equation (12), see the curve for θ = 0  in the lower part of figure 3. 

Even for 1y =  the value ,0/  0.5i sL ρ = − from (24) is near the value from equation (12) , as can be seen for the 

curve θ = 0  in the upper part of figure 3. For small salt solutions, however, the low-salt region is out of reach. In 

figure 3 we can observe that already for 1θ = , i.e. for a reservoir as large as the suspension, unrealistically large 

y − values are needed for the suspension to enter the low-salt region. This underlines the statement made in 

section 2.2 that the low-salt region is distinctive for the large-reservoir limit. Note from (24)  that in the low-salt 

region the salt concentration expelled   by the suspension to reservoir asymptotes to
s,oiL ρ→ − which in view of 

the definition of iL  in equation (1) is equivalent to 0iρ− → : the limit in which all anions have left the suspension. 

5. The small-solution limit 1θ �  

5.1 Arbitrary salt concentration 0y ≥  

In the limit 1θ � for a tiny solution the negative salt adsorption iL  of the suspension in (12) asymptotes to 

,0

,0

0   ,           ;   for 1   ii
s

s

L
ρ ρ θ

ρ −= ⇒ = �                                                                                                          
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(25)The outcome in (25) is clear: the salt concentration in the suspension volume hardly changes when the 

suspension can only expel a small amount of salt to a tiny solution; see also the curve for 100θ =  in figure 3. 

However, in contrast to the salt expulsion iL  from the bulk suspension in (25), the salt adsorption RL  by the tiny 

salt solution is quite substantial. For 1θ �  we find from (4) and (12) the general result for the salt concentration 

rise in a tiny solution: 

2

,0

1 1 2  ,  for  1 and 0R

s

L y y
y yθ

ρ θ θ
 = + − + + ≥ 
 

�                                                                                         (26)                                              

Here we have made explicit via 0y ≥  that the salt-concentration increase in the small solution according to (26) is 

still valid for any value of the ion density ratio y .  

5.2 Sensor-salt region y θ�  

Next we narrow down the domain of y to the region where the ion density ratio y is smaller than the volume ratio 

θ ; for this region (26) becomes: 

,0

1 1 2  ,  for  1 and 0R

s

L y
y yθ θ

ρ θ
= + − + ≤ ≤�                                                                                                (27) 

Figure 4 shows that (27) is a very accurate approximation for the salt concentration increase RL  in a small 

solution,  up to the maximal ion density ratio 40y = in the lower part of the figure. The solid blue line in figure 4 

also illustrates that the dependence in (27) on the small solution volume via the term /y θ represents only a 

minor correction on the salt concentration increase RL that can be omitted when we further restrict the y -region 

by imposing the inequality y θ� :   

,0

1 1 2  ,  for  1 and 0R

s

L
y yθ θ

ρ
= − + ≤� �                                                                                                        (28) 

We will use the term ‘sensor-salt region’ for the ion density range y θ�  : it is in this region that the salt-uptake 

by the small solution acts as a sensor, meaning that the salt uptake stands in a simple relation to y that is 

independent of the solution volume. The usage of (28) to determine the number of mobile counter ions, z , 

released by a colloid is further examined in section 7. Note that the sensor-salt region includes the high-salt case 

1y �  where RL from (28) further simplifies to: 

Page 10 of 24Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



10 

 

 

  
2

,0

1
y +... y,  for 1 and 0 1
2

R

s

L
y yθ

ρ
= − + − ≤� � �                                                                                         (29) 

This is an instance of the high-salt region already encountered in eq. (18) ; substitution of (1 ) i i RL L Lθ θ+ ≈ = in 

eq.(18) indeed yields (29). It is important to note that equation (28) spans quite a wide range of y-values since the 

volume ratio in an experimental set-up [11] may be as large as 1000θ �  so the inequality θ�   y will easily be 

satisfied. The wide y- validity range is further illustrated by figure 4, which shows the salt concentration increase in 

the reservoir according to equations (4) and (12) as function of y. For a small reservoir with 100θ = one observes 

that equation (28), plotted as the red drawn line in figure 4, is very accurate up to 10y ≈ , and still a reasonably 

good approximation even up to 15y ≈ ; thus a wide range of colloid concentration can in principle be accessed.  

6. Osmotic  pressure differences between suspensions and reservoir 

6.1 Arbitrary reservoir volumes 0θ ≥   

The salt migration quantified by equation (12) also determines the excess osmotic pressure of the suspension 

relative to the salt solution. To derive this excess osmotic pressure Π  we start with the Donnan equation of state, 

reviewed in [13]:     

( 0)
  +  2ρ ρ ρ− +

Π Π =
= + −i i R

s

y

kT kT
                                                                                                                             (30) 

Here ( 0)yΠ =  is the osmotic pressure exerted by the charge carriers in their uncharged state, supplemented by 

the pressure due to excess ions in the suspension. Incidentally, the contribution ( 0)yΠ =  does not assume that 

the carriers are ideal: their shape, size and concentration are arbitrary, as derived and discussed in detail in [13]. 

The assumptions underlying (30) are that ions are ideal and homogeneously distributed [13],  the same 

assumptions that are also employed in section 2: osmotic pressure and salt imbalance are treated here exactly on 

the same level of approximation. On substitution of equations (1)-(4) in the Donnan osmotic pressure (30) we 

obtain: 

 

,0 ,0 ,0

 

( 0)
(1 )        ;  =    ;  

2 2

                                      

i i c

s s R s

L V zy
y y

kT V

ρ
θ θ

ρ ρ ρ
Π −Π =

= + + =                                                                          (31) 
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Here pressures are rescaled on the osmotic pressure ,02ρs kT  of the initial colloid-free salt solution. The osmotic 

pressure in the form of (31) clearly illustrates its physical basis: when the carriers are uncharged, both  and iy L  in 

(31) are zero such that ( 0)yΠ = Π = . When the carriers with number density cρ  are charged-up to a valency 

z , the maximal pressure rise due to released counter ions is ( 0) cy z kTρΠ−Π = = . However, the pressure 

difference across the membrane is diminished by 0
i

L <  in (31) due to the migration of salt from the suspension to 

the salt solution. 

6.2 Arbitrary reservoir volumes 0θ ≥  in the high-salt region 1y �    

The osmotic pressure drop across the membrane between suspension and solution when the suspension is in the 

high-salt region follows from substitution of salt transfer equation (18)  in  (31): 

2

,0

( 0) 1
     ,     for  y 1   ;  0 

2 2s

y
y

kT
θ

ρ
Π−Π =

= ≥�                                                                                                (32) 

Thus the excess osmotic pressure of the suspension is a quadratic that is independent of the solution volume. 

Equation (32) can be rewritten to:

 

2
2

,0

( 0)
    ,  for  y 1   ;  0

4
c

s

y z

kT
ρ θ

ρ

 Π −Π =
= ≥  
 

�

                                                                                         (33)   

This quadratic in the colloid density represents the first-order correction to the osmotic pressure of uncharged 

colloids relative to the reservoir. Previously this quadratic has only been derived for colloids in a suspension that is 

connected to an infinite salt reservoir [13]; we find here that this first-order correction is actually independent of 

reservoir size. Figure 5 (top) clearly illustrates this independence: when plotted against y
2
, osmotic pressures 

merge to one linear curve on approach of the uncharged colloids at y=0.

 

6.3 The large-reservoir limit 1θ �  

The osmotic pressure difference between a small suspension volume and a large salt reservoir is part of the 

classical Donnan equilibrium reviewed in [13]; here we briefly recapitulate some results, also for comparison to  

the pressure exerted on a sensor in section 6.4. The osmotic pressure difference between a small suspension 

volume and a large salt reservoir readily follows from substitution of (21) in (31)  
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2

,0

( 0)
1 1   ,   for   0  , 

2 s

y
y

kT
θ

ρ
Π−Π =

= + − →
                                                                                                                  (34)  

which indeed equals the Donnan osmotic pressure difference between a suspension and an infinite salt reservoir 

as derived in [13]. The low-salt region 1y �  follows from substitution of the salt transfer ,0( / )i sL ρ  from 

equation (24) in (31): 

 

,0

( 0) 1
+  1  ~ y ,  for  1  and 1

2 2s

y
y y

kT y
θ

ρ
Π−Π =

= − � �                                                                               (35)  

Equation (35) confirms that in the low-salt region the pressure difference  across the membrane is dominated by 

the counter ions via the linear y − term. As noted earlier a suspension can only access the low-salt domain when 

connected to an electrolyte reservoir of larger volume. In figure 5 one indeed observes that the excess osmotic 

suspension pressure for an infinite reservoirs ( 0)θ → easily reaches the no-salt region where the pressure 

increases linearly with y according to (35).  However, for a small solution with 100θ = (open triangles in figure 5), 

the pressure remains below the no-salt limit, even for the largest y-value in figure 5: the suspension is unable to 

expel all co-ions to the small solution.  

6.4 The small-solution limit 1θ �  

The osmotic pressure exerted by a bulk suspension on a small salt solution follows from (31) and the salt 

conservation in (4): 

 
,0 ,0 ,0

( 0) 1
      ;   for 1 

2

R R

s s s

L Ly
y y

kT

θ
θ

ρ ρ θ ρ
Π−Π = +

= + = + �
                    (36)                                                         

Substitution of the salt absorption RL  of the small sensor from equation (28) in (36)  yields: 

θ θ
ρ

Π−Π =
= + − + � �

,0

( 0)
1 1 2      ,    for 1  and  

2 s

y
y y y

kT
                                                                                    (37)                                                                                      

On comparison of this pressure exerted on a small solution volume to the excess osmotic pressure (34) applied by 

a suspension on a large reservoir, a comparison also made in figure 5, we notice that in the high-salt region 1y �

both pressures are the same. However, outside the high-salt region the pressure exerted on a sensor is always 

smaller than that applied by the same suspension on a large reservoir. This migitation of the pressure on a sensor 

is apparently due to the rise of the sensor’s salt concentration which diminishes the salt imbalance between 

suspension and solution. 
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7. Discussion 

The main result from the analysis in section 2 is the general expression (12) for salt transfer from a suspension to a 

salt solution, general in the sense that it holds for arbitrary salt and suspension volumes and that it is a rigorous 

consequence from the assumptions that salt is in equilibrium according to equation (8) and conserved according to 

equation (4). 

Figure 3 illustrates that for a small reservoir ( 100)θ =  the salt concentration in the suspension remains virtually 

constant and that for a given value of the colloid concentration, i.e. a given y , the suspension is able to expel 

more salt when the salt solution volume increases , see the curves for 1θ = and 0θ =  in figure 3. Figure 4 shows 

that the equilibrium salt concentration in an infinite reservoir remains constant, as could be expected. For 

decreasing salt solution volumes at a given y  the solution absorbs an increasing salt concentration. Note in figure 

4 that for a small salt solution with 100θ =  (in practice [11] one easily realizes 1000θ ≈ ) the salt concentration 

increase in the sensor is considerable, even at small y − values. This is important for the utilization of a small salt 

solution volume as a charge sensor as further discussed below. 

In the analysis of the salt equilibrium between suspension and salt solution, we have employed a semi-permeable 

membrane, as indicated in figures 1 and 2. From a thermodynamic viewpoint such a membrane is not necessary 

[13]:  the sole requirement is that ions equilibrate fast on the time scale of the much slower colloids. It does not 

matter what makes the colloids slow: their large size, an external field such as gravity [4] or a restriction in the 

form of a membrane. However, for the case of a suspension in contact with a small volume of salt solution, the 

required separation of time scales for colloids and ions becomes problematic as the small solution will be quickly 

infiltrated by diffusing colloids unless, indeed, a membrane prevents this colloid infusion. 

From measurements of the salt concentration increase RL  in a solution with known volume ratio θ  one could 

determine 
s,0/ 2cy zρ ρ= - and thus the particle charge z  – via a fit to RL from equations (4) and (12). This fit is 

valid for any value of y  , as long as ions are ideal and homogeneously distributed, as assumed in the derivation of 

(12). In section 5.2 we found that for small solutions 1θ �  in the sensor-salt region y θ�  equation (28) is 

valid; its implication is that the salt concentration increase RL only depends on the number z  of mobile counter 

ions released per charge carrier provided, of course, the colloid concentration is known. The experimental 

concentration measure is the colloid weight concentration c  so it is convenient to rewrite  to (28): 

ρ
θ θ

ρ ρ
= + � �

,0 ,0

1    ,   for 1  and  y       ,
R

s

s s

z c

m
                                                                                                     (38)  
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where m  is the mass of the charge carriers. The high-salt limit of (38) is: 

ρ
θ

ρ ρ
= + � �

,0 ,0

1   ,   for 1  and  1  ,    
2

R

s

s s

z c
y

m
                                                                                                     (39) 

We see in (38) and (39) that the salt concentration
R

s
ρ  in the sensor actually probes the charge-to-mass ratio of 

the charged species that cannot permeate the membrane separating the sensor from the adjacent suspension. 

Note that / 2z m  is the initial slope in the sensor’s salt concentration versus weight concentration of added 

colloids; in the limit 0c→  salt is always dominating the counter ions. 

The square-root dependence of the sensor’s salt concentration on the ion ratio y in equation (38) is expected to be 

valid for a substantial range in y, as we already noted in the discussion of figure 4. Thus for a small sensor, the fit to 

(38) is predicted to apply up to fairly high colloid concentrations – at least as long as the assumption of 

homogeneously distributed, ideal ions remains valid. Several other interesting features of a sensor based on 

equation (38) are the following. First, (38) is independent of θ  : the sensor’s volume is irrelevant as long as the 

volume is small in comparison to the suspension volume. Secondly, the charge-to-mass ratio z/m is the only 

unknown and only the salt concentration change RL  of the sensor needs to be measured which can be done 

accurately via the sensor’s electrical conductivity. A third point to notice with respect to equation (38) is that the 

species carrying the fixed surface charge are not restricted to solid colloids: also poly-electrolytes and proteins, in 

short any charge carrier that cannot permeate the membrane, can be the charge carrier here. In addition, also 

their shape and concentration are irrelevant because they only affect in equation (31) the reference pressure 

( 0)yΠ =  of uncharged colloids. Thus the sensor could also be used to probe the charge-to-mass ratio of, for 

example, a poly-electrolyte gel or a network of flocculated colloids.  

Osmotic pressure differences between suspensions and salt solutions can also be utilized to determine the ion 

density ratio y and therefore the particle charge [4,19]; one could employ the pressure difference (34) between a 

suspension and a large reservoir or the osmotic pressure difference (37)  between a suspension and a sensor. The 

latter, incidentally, is smaller than the pressure difference between suspension and a large reservoir (see also 

figure 5) except in the high-salt region where the pressure is the same quadratic (32) for all reservoir volumes. One 

disadvantage of osmometry in comparison to a sensor is the colloid contribution to the osmotic pressure whereas 

measurements of salt concentrations in a sensor are not affected by the presence of any other species than small 

ions. This difference between osmometry and a charge sensor, it should be noted, is an experimental one – the 

thermodynamics underlying both methods is the same. The thermodynamic connection between salt imbalance 

and osmotic pressure difference, here embodied by equation (31), is further examined elsewhere [13]. This 

thermodynamic basis makes charge determination via the sensor (and osmometry) in principle more 
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straightforward than the usual kinetic electrophoresis methods which are quite involved in practice as well as in 

theory [21,22] and which, in addition, are quite restricted with respect to colloid shape and concentration. 

8. Conclusions and outlook 

We have analyzed the thermodynamic equilibrium between a suspension of charge carriers such as charge colloids 

or nano-particles, and a salt solution, both containing ideal, homogeneously distributed ions. The osmotic pressure 

difference between suspension and salt solution is shown to be independent of the solution volume in the high-

salt domain where salt is dominating counter ions. In the limit 0θ →  for an infinite reservoir we recover known 

results from the Donnan equilibrium [13]. For the opposite case 1θ � , however, we find a new result: a minute 

region of salt solution that acts as a charge sensor for the charge carriers in the suspension bulk. The sensor’s salt 

concentration is linked to the ion density ratio y via the square-root dependence in equation (38) which is 

predicted to hold even for fairly high colloid concentrations, provided the assumption of homogeneously 

distributed, ideal ions remains valid.  

The analysis in this paper applies to charge carriers with a constant number of surface charges. In addition, the 

carrier volume fraction in the suspension volume iV  is small such that iV approximately equals the available free 

volume for ions. Extension of the salt sensor to concentrated suspensions of carriers with regulated surface charge 

will be the subject of a future paper. The assumption that ions are ideal and homogeneously distributed will break 

down at sufficiently high ion densities and sufficiently high charge number densities on the carriers. To assess the 

validity range of results in this paper, computer simulations as for poly-electrolytes in [23] would be very helpful to 

include the effects of ion correlations and electrical double-layers surrounding the charge carriers. Experiments are 

in progress to test equation (38) using a charge sensor monitoring salt increase in time via the sensor’s electrical 

impedance [11]. One system under investigation is an aqueous dispersion of charged silica nano-particles [11]. For 

apolar fluids it would be interesting to investigate PbSe quantum dots that are suspected to carry charge in 

decaline [24], though changes in resistivity might be too small here for a reliable gauge of mobile counter ions. 

Appendix A  Equal suspension and salt volumes  (θθθθ = 1) 

In the main text we have analyzed salt transfer to arbitrary salt solution volumes ( 0θ ≥ ), and considered the 

specific cases of an infinite reservoir, and a very small solution. Here we will document the case of equal salt and 

suspension volumes; this is practically relevant as commercial osmometers are available [15,16] where volumes at 

both sides of the membrane are indeed of comparable magnitude. To find the salt transfer for the case 1θ = , 

consider a small deviationε  from 1θ = :   

1    ;  0 1θ ε ε= + ≤ �                                                                                                                                                    (40) 
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Substitution of  (40) in (12)  yields: 

( )2,0

4
2 (2 ) 1 1    for  1  , 

2

            

i

s

L y
y

y

ε
ε ε
ρ

 
 = + − +
 + 

�
                                                                                         (41) 

which upon linearization of the square-root leads to the salt expulsion to an equal-sized reservoir: 

θ
ρ

−
= =

+,0

,    for  1
2

i

s

L y

y
                                                                            

 (42) 

Figure 3 illustrates that the case θ =1 already represents a significant decrease in the salt expulsion in comparison 

to the large reservoir θ = 0 : finite reservoir size in an osmometer cannot be ignored. When mobile counter ions 

from the colloids in the suspension outnumber salt ions such that 1y >> , equation (42) approaches : 

,0

2
1 +  +....  ~ 1   ,   for 1  and  1     ,i

s

L
y

y
θ

ρ
= − − = >>

      

                                                                              (43)     

which asymptotes to ,0i sL ρ= −  , i.e. the limit in which the suspension has expelled all its salt to a reservoir of 

equal size. On the other hand, for the high-salt inequality 1y � , equation (42) yields: 

 

2

,0

1 1
y + y  + ... for 1  and  1     ,
2 4

       

i

s

L
yθ

ρ
= − = <<

                                                                                             (44) 

in accordance with (18). From the leading term we find: 

,0

,0

1 1
         z   ,   for 1  and  1 

2 4
ρ ρ ρ θ

ρ −− ⇒ = − = <<�
ii

s c

s

L
y y                                                               (45) 

In words, in the high-salt domain, charge carriers expel 25% of their counter-ions as salt molecules to a salt 

solution with the same volume as the suspension. Taking 1θ =  we find on substitution of the salt expulsion from 

(42) in (31) the osmotic pressure difference 

2

,0 ,0

( 0)
    , for =1  ;  

2 2 2

ρ
θ

ρ ρ
Π −Π =

= =
+

c

s s

zy y
y

kT y
                                                                                                     (46) 

The maximal osmotic pressure difference between a suspension and a solution of equal volume occurs in the low-

salt domain:  
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,0

( 0)
    , for =1  and  1 , 

2
θ

ρ
Π −Π =

= �

s

y
y y

kT
                                                                                                           (47) 

One easily verifies that salt addition always lowers the Donnan pressure: the pressure in (46) is always below (47). 

In the salt-dominated regime equation (46) modifies to   

  

2
2 2

2

,0 s,0

( 0) 1
y       , for =1  and  1

2 2 8
c

s

y z
y

kT
ρ θ

ρ ρ
Π −Π =

= = �                                                                      (48) 

Also for equal volumes we obtain the quadratic first-order correction to the pressure of uncharged carriers, as 

could be expected because the quadratic correction is independent of the reservoir size, as was shown in the 

derivation of equation (32) in the main text. 
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Figure 1. A small salt solution volume 
R

V  separated from a large suspension volume θ=  
i R

V V with 1θ � by  a 

membrane (dashed line) permeable only to solvent and ions but impermeable to charge carriers. The volume 
R

V

adsorbs neutral salt molecules from the suspension in response to mobile counter ions released by the charge 

carriers. Connected to some device D (for example, a conductivity meter) that measures the salt adsorption, the 

volume 
R

V acts as a sensor for the valency of the charge carriers, as further explained in section 5.  
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Figure 2. Scheme for the derivation of salt transfer in section 2.1. Top: initially the equilibrium salt concentration 

everywhere equals 
,0s

ρ . Bottom: when charge carriers with valency z are added to the suspension volume iV , a 

counter ion number density czρ  is released, inducing an expulsion iL  of salt concentration to the salt solution 

volume RV  where the equilibrium salt concentration increases with an amount RL− . 
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Figure 3  A suspension volume
i

V  contains an initial salt number density 
,0s

ρ ; after addition of a number density 

c
ρ of z-valent charge carriers, a salt concentration 

i
L  is expelled to a salt solution with volume /

R i
V V θ= . 

Shown here is 
i

L  from eq.(12) versus the ion density ratio 
,0

/ 2
c s

y zρ ρ=  for various values of the volume ratio 

θ .  In the high-salt region 1y � , 
i

L  decreases linearly with y in accordance with eq.(18). The bottom figure 

shows that the low-salt region ρ ≈ −
,0

/ 1
i s

L , where most initial salt has been expelled from the suspension, is 

only accessible for a large reservoir for which θ≤ <0 1 .  
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Figure 4 Salt concentration increase in a reservoir, 
R

L− from eqs (4) and (12), versus ion density ratio 

ρ ρ=
,0

/ 2
c s

y z  for three volume ratio’s θ . The square-root dependence ,0/ 1 1 2
R s

L yρ = − +  from equation 

(28) –solid red line– is valid for 1θ � and y θ� such that for a tiny sensor ( )1θ � (28) is applicable to fairly 

high y − values. Addition of the first correction term /y θ in (27) leads for 100θ = to the solid blue line: a 

perfect match to 
R

L− from eqs (4) and (12) up to 40y = . Note that even in the high-salt region 1y < , the 

sensor picks up significant salt concentrations allowing, in principle, an accurate charge determination at even 

quite low colloid densities.  
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Figure 5. Top: osmotic pressure difference from (31) versus the square of the ion density ratio y , for various 

volume ratio’s θ . In the high-salt domain 1y �  the pressure increases as 
2

(1 / 2)y  independent of the salt 

solution volume in accordance with (32). Bottom: only large reservoirs access the low-salt region where the 

pressure increases linearly with y ;  for small solution volumes ( 1)θ �  this low-salt region is out of reach as 

shown here for the case θ =100 . Note that reducing reservoir size for given y also reduces the osmotic pressure 

drop  across the membrane between suspension and salt solution. 
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