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We study the stochastic nature of primary nucleation and how it manifests itself
in a crystallisation process at different scales and under different operating con-
ditions. Such characteristic of nucleation is evident in many experiments where
detection times of crystals are not identical, despite identical experimental condi-
tions, but are distributed around an average value. While abundant experimental
evidence has been reported in the literature, a clear theoretical understanding and
an appropriate modelling of this feature is still missing. In this contribution, we
present two models describing a batch cooling crystallisation, where the inter-
play between stochastic nucleation and deterministic crystal growth is described
differently. The nucleation and growth rate of the two models are estimated by a
comprehensive set of measurements of paracetamol crystallisation from aqueous
solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012,
72, 10-19]. Both models are applied to the cooling crystallisation process above
under different operating conditions, i.e. different volumes, initial concentra-
tions, cooling rates. The advantages and disadvantages of the two approaches
are illustrated and discussed, with particular reference to the use across scales of
nucleation rate measured in very small crystallisers.

1 Introduction

The importance of being able to describe and predict the course of primary nuc-
leation in crystallisation processes cannot be overestimated. This is however
challenging, both because monitoring and characterizing nucleation events is ex-
perimentally always difficult, and because scaling up information and models
obtained in the lab to the scale of industrial processes results to be often not
accurate enough.

Critical nuclei and sub-critical clusters are in fact nano-scale objects, which
can normally be detected not when formed upon nucleation, but only after grow-
ing to a size large enough to occupy a significant volume fraction of the suspen-
sion. Hence, the detection (or induction) time, td , follows the nucleation time,
tn, of a time interval that depends not only on the nucleation rate but also on the
growth rate, i.e. the speed at which newly formed nuclei grow while consuming
the solute in the mother liquor.

a ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, Zurich, Switzerland. Tel: ++41
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Moreover nucleation is on the one hand affected by mixing, heat transfer
limitations and materials, whose characteristics vary when scaling up, and on the
other hand exhibits poor reproducibility, in ways that are difficult to rationalise
and control.

There are two interpretations of such poor reproducibility. When viewing
nucleation and growth as deterministic phenomena, this is attributed to a high
sensitivity to experimental conditions, which are difficult to reproduce exactly in
repeated experiments. Such difficulty is well known to experimentalists, and is
indeed an issue to be taken in serious consideration.

Otherwise, variability in the outcome of nucleation experiments is attributed
to an intrinsic stochastic behaviour in the formation of critical nuclei, of which
there is abundant experimental evidence (see the references reported in Table
1). This manifests itself as the fact that nucleation times (or induction times)
are distributed statistically when many identical experiments are repeated, i.e.
something that is typically possible only using vessels of very small size, namely
in the nanolitre to millilitre range.

The conventional interpretation is that the formation of a critical nucleus is
a rare event, which can be classified as a Poisson process. As a consequence,
the number of nuclei obeys a Poisson distribution, and the nucleation times are
accordingly distributed as follows:

P(t) = 1− exp
(
−
∫ t

0
k(t ′)dt ′

)
(1)

where t is time; P(t) is the probability that nucleation (the formation of the first
stable nucleus) occurs between t = 0 and t; and k(t) is the rate constant of the
Poisson process, which is called homogeneous if k is time independent and in-
homogeneous otherwise. The rate constant k multiplied by a generic time interval
∆t gives the probability that an event, i.e. the formation of a new nucleus, occurs
in that time interval. Note that in the previous equation as well as in the following
ones, we assume that the system is saturated or supersaturated from t = 0 on.

In the present context k equals the product of the volume of the solution, V ,
where nucleation can occur, and of the rate of nucleation, J, given in number of
particles per unit time and unit volume, e.g. as derived within the classical nucle-
ation theory (CNT). A homogeneous Poisson process corresponds to nucleating
a solution at constant volume V and constant nucleation rate, J, i.e. constant
supersaturation and constant temperature. An inhomogeneous Poisson process
corresponds to nucleation triggered by cooling of the solution or solvent evapor-
ation, i.e. under conditions where supersaturation or temperature or volume or
combinations thereof change in time. The average nucleation time, tavg

n , and the
standard deviation of its distribution, sn, are calculated through the moments of
the derivative dP/dt of the cumulative distribution (1) as:

tavg
n =

∫
∞

0
tk(t)exp

(
−
∫ t

0
k(t ′)dt ′

)
dt (2)

sn =

(∫
∞

0
(t− tavg

n )2k(t)exp
(
−
∫ t

0
k(t ′)dt ′

)
dt
)1/2

(3)

Note that in the case of a homogeneous Poisson process tavg
n = sn = 1/k =
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1/(JV ). This shows that not only the average nucleation time, but also the stand-
ard deviation − hence the expected variability in measurements of nucleation
times decrease with volume.

From this interpretation a seemingly reassuring picture seems to emerge: the
stochastic nature of nucleation fades away as V increases, and the variability
in measured nucleation times vanishes accordingly. It is also worth noting that
in the frame of a deterministic description of nucleation, where JV gives the
deterministic rate of formation of new crystals per unit time in the volume V ,
the nucleation time, tn, can be predicted as the time when the first nucleus is
deterministically formed. This is the time at which the following integral, which
gives the number of crystals that have formed, equals 1:∫ tn

0
J(t)V (t)dt = 1 (4)

At constant nucleation rate and volume, tn = 1/(JV ), i.e. the nucleation time in
the deterministic interpretation of nucleation equals the average nucleation time
of Eq. (1) in the stochastic description (at constant supersaturation and volume).
The crucial difference is of course that in the former interpretation all nucleation
experiments are perfectly reproducible at any scale, whereas in the latter descrip-
tion nucleation times hence experimental outcomes are distributed, their degree
of variability decreasing monotonically with increasing system volume.

It is worth noting that a stochastic behaviour in smaller volumes and a determ-
inistic behaviour in larger volumes are consistent with the mononuclear mechan-
ism and the polynuclear mechanism, respectively, used by Kashchiev, Verdoes
and van Rosmalen to describe nucleation and to derive expressions for the exper-
imental induction time in their seminal paper1.

Unfortunately, there are several pieces of evidence that urge us to challenge
the picture of nucleation above.

First, experimental evidence indicates that also in large vessels, i.e. where
the standard deviation of nucleation times should be so small to be effectively
negligible, nucleation is poorly reproducible2,3.

Secondly, the description of nucleation as a Poisson process is correct only if
the evolution of the system at any time does not depend on previous stochastic
events. This is true only for the formation of the first nucleus, but not for the next
ones, particularly when the further growth of nuclei that were previously formed
contributes to the depletion of supersaturation.

Finally, the nucleation time is in general not observable. What one can meas-
ure is the detection time td , which though differently defined depending on the
system and the measurement apparatus is typically the time when a certain frac-
tion of the solution volume is occupied by the newly formed crystals. In this
case, one needs information about crystal growth rate in order to interpret quant-
itatively the outcome of the experiments. Alternatively, and typically in micro-
fluidics, one uses optical microscopy to look at many micro-crystallisers and to
measure in how many of them at least one particle was formed. Both types of
information can be used to build a statistics, but they present different challenges
when one wants to interpret the data quantitatively using a model.

Though in many ways successful from an experimental or a theoretical per-
spective, the papers listed in Table 1 are not yet answering a question of key
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importance. Can the nucleation kinetics estimated in small volumes be used to
describe nucleation when scaling up the process? Although we are fully aware
that when scaling up many features of the crystalliser and of the process can lead
to deviations and differences, we do believe that there might be more than that to
justify the difficulties experienced and reported in the literature, e.g. in a recent
study carried out by a group at the Technical University of Delft (TU Delft). We
believe that there is a need to find ways to account for the stochastic behaviour
observed at smaller scale in the description of nucleation at larger scale, and this
is indeed the objective of this paper. First, we will summarise the results reported
earlier that will be used as backbone and benchmark of our analysis. Then, we
will use two different models to describe those data; a first model, which though
similar to what the TU Delft group proposed seems to us to be physically more
consistent, and a second one, which to the best of our knowledge is novel and
attempts to incorporate stochasticity also in the description of nucleation pro-
cesses where a large number of crystals are formed, in an arbitrary large volume
and non-constant temperature. Finally, we will discuss our findings and draw
conclusions.

2 Background

2.1 Literature review

The relevant literature for this work, i.e. concerning stochastic effects in nucle-
ation, is summarised in Table 1, where for each paper the system volume used,
the detection technique applied and the interpretation of the experiments provided
are reported.

Detection techniques can be divided into two main categories. The first relies
on direct observation of crystals via optical microscopy, where the detection of
crystals depends on the resolution of the optical instrument4–14. In the second
category, fall the experiments where a macroscopic system property (such as
transmittivity or turbidity), which is related to the volume fraction of the crystals,
is measured2,15–24. Crystals are detected, hence the detection time is measured,
when such volume fraction exceeds a specific threshold value. This latter tech-
nique suffers from two weaknesses: first, the quantitative relationship between
solid volume fraction and for instance turbidity is difficult to calibrate; secondly,
the threshold value is extremely difficult to estimate and might well be depend-
ent on a series of factors, e.g. instrument sensitivity, system intrinsic properties,
fluid-dynamic effects. Observation using optical microscopy is typically utilized
in very small volumes, whereas macroscopic measurements are exploited in lar-
ger volumes.

The time associated to the observation of crystals in the system, obtained
either by direct observation or by indirect measurements, can be used to quantify
nucleation kinetics. To this purpose, a physical and mathematical model of the
entire crystallisation process must be provided. Such model needs to account,
on the one hand, for the stochastic nature of nucleation itself, e.g. assigning a
statistics to describe the distribution of experimental data, and, on the other hand,
for the combined action of nuclei formation, which is stochastic, and growth until
detection, which is deterministic.
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Assumptions concerning the growth process are hence necessary to interpret
the experimental data. In microscopic systems, it is often possible to assume that
growth is much faster than nucleation, so that the time between particles forma-
tion and detection is negligible, i.e tn ≈ td 9–14. Alternatively, still in microscopic
volumes, one can decouple nucleation and growth and analyse them independ-
ently, as as for example by applying the so-called double-pulse technique4–8.

An example of a microfluidic study where an optical technique has been used
is the work of the group at the University of Illinois at Urbana-Champaign that
performed isothermal experiments on the crystallisation of paracetamol and lyso-
zyme from evaporating aqueous micro-droplets11. Assuming that growth is in-
finitely fast hence that the statistics of Eq. (1) can be directly applied to detection
times, they could estimate the parameters of the following classical nucleation
rate expression:

J(S) = q1Sc∗ exp
(
− q2

ln2 S

)
(5)

where c∗ is the solubility at the experimental temperature, S = c/c∗ is the su-
persaturation, and q1 and q2 are constant parameters. They could show that the
estimated nucleation rate exhibited good predictive capabilities when changing
operating conditions (but not the droplets’ volume).

2.2 TU Delft study

The study carried out by a group at the TU Delft will be used in the following as a
benchmark2. They carried out a large number of experiments of cooling crystal-
lisation of paracetamol from aqueous solutions in vessels of different volumes. In
particular, in a 1 mL crystalliser they explored four different initial paracetamol
concentrations, always starting the linear cooling process from the correspond-
ing saturation temperature. Then, they carried out systematic experiments also
in larger crystallisers, namely of volumes of 500, 700, 900 and 1,000 mL. In
each experiment the detection time was measured, and cumulative distribution
curves of detection times were obtained at each initial concentration and for each
crystalliser volume. The two sets of data at the lowest and highest concentration
explored, namely 15 g/L and 47 g/L (the others being 22 g/L and 32 g/L) are
reported in Figure 1, where the cumulative probability is plotted as a function of
the temperature change between time zero and the detection time, ∆T . It can be
observed that the qualitative behaviour of the cumulative probability curves is in
accordance to equation (2) and (3), i.e. the average value of ∆T , hence of the
detection time, and the standard deviation decrease with increasing volume.

The data at 1 mL were then used to estimate the parameters of the model
that was finally applied to predict the data measured in larger volumes. The
model assumed that nucleation occurred through a mononuclear mechanism and
was followed by growth of the single crystal to a threshold size ra, where it
was finally shattered by attrition, causing a burst of secondary crystals, which
were immediately detected. Therefore the detection time, td , is the sum of the
nucleation time, tn, and of the deterministic growth time, tg. The latter is equal to
the ratio between the threshold size ra and a growth rate, G, which is assumed to
be the same for all the experiments at a given initial concentration. The nucleation
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Fig. 1 The TU Delft experimental data of detection times, expressed as cumulative
nucleation probability, P, vs the extent of cooling, ∆T , for the cooling crystallisation of
paracetamol from aqueous solution2. The experiments shown here represent two different
initial concentrations, 15 g/L (left) and 47 g/L (right), for crystallisers of five different
volumes. The lines connecting the data at larger volumes (from 500 to 1000 mL) are
drawn as guide for the eye.

time tn, on the other hand, is assumed to be distributed according to the Poisson
distribution of Eq. (1), with k(t) = V J(t); the nucleation rate depends on time
due to cooling and is given by the following expression:

J = aexp
(
− b

ln2 S

)
(6)

where a and b are in principle temperature dependent, but are assumed to be
constant for each initial concentration level, but different for the different initial
concentrations. The TU Delft group related the threshold size to a growth time,
tg by: tg = ra/G, with G = kg(S−1), the crystal growth rate. After determining
the threshold size through experiments, they estimated the three parameters kg,
a, and b for each of the four sets of 1 mL experiments, thus obtaining twelve
parameters in all (see Tables 1 and 2 in the original paper2).

Although the agreement between model results and experiments is quite sat-
isfactory, there are a number of issues. First, assuming temperature independ-
ent rates of nucleation and growth is clearly inconsistent with the experimental
evidence, where metastable zone widths between 20 and 30 K are observed.
Secondly, using different sets of parameters for different initial concentrations
and temperatures allows for a rather empiric account of temperature effects,
which makes it impossible to expect that the model parameters can be used in

1–24 | 7

Page 7 of 24 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



a predictive manner, e.g. to describe the effect of different initial concentrations
or different cooling rates. Finally, there is no quantitative agreement with the
measurements in the larger crystallisers (V = 500, 700, 900 and 1,000 mL); as
already noted by the authors, the Poisson model predicts a much faster transition
to a deterministic behaviour with increasing volume than the one experimentally
observed.

The difference between the model based on 1 mL experiments and the meas-
urements in larger volumes can be due to different reasons. For example, the
mixing in the vessel might not be good enough to assure that the desired tem-
perature profile is reproduced at all the tested scales. It could also be possible
that hot or cold spots form locally in the larger crystallisers, thus locally altering
the nucleation rate. Another explanation can be that, by changing the reactor, a
different surface is provided to the system, maybe changing the nucleation mech-
anism. Moreover, the different batches might have been influenced by a different
presence of dust or other impurities, hence preventing the possibility of a straight-
forward scaling. Finally, the detection limit determined in small volumes might
not be appropriate in larger volumes. This was explicitly discussed in the frame
of the theory of nucleation based on the mononuclear and polynuclear mechan-
ism? , but not considered in the work of the TU Delft group.

3 Modelling stochastic nucleation in crystallisation

Our goal is to analyse different approaches to modelling crystallisation processes
at different scales while accounting for stochastic nucleation. We will try and
improve on the TU Delft approach, and use their experimental data as a case
study and for benchmarking. More specifically, we will present and discuss two
different models that differ in how nucleation is described but are based on the
common assumptions that are discussed in the following.

We describe a crystallising system of constant volume V undergoing batch
cooling crystallisation, starting from an initial temperature T0 where the solution
is saturated and clear. During the cooling, an arbitrary number N of particles
can form. The size of the particles, having a single characteristic dimension L,
is distributed according to the 1D-particle size distribution (PSD) f (t,L); the
quantity f (t,L)dL is the concentration of particles of size between L and L+dL;
the jth-order moment of the PSD, φ j(t), is defined as:

φ j(t) =
∫

∞

0
L j f (t,L)dL (7)

The linear cooling process is characterized by the following relationship:

T (t) = T0−βt (8)

where the cooling rate β [K min-1] is constant; note that the initial solute concen-
tration c0 equals the solubility at the initial temperature, i.e. c∗(T0).

The zero-th order moment of the PSD, φ0(t), is the number of particles per
unit volume, hence

N(t) =V φ0(t) (9)
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The third order moment of the PSD, φ3(t) multiplied by kv, represents the volume
fraction of solids in the suspension; through the mass balance it is linked to the
solute concentration c(t) and to its initial concentration, c0:

c0 = c∗(T0) = c(t)+ kvρcφ3(t) (10)

where ρc is the crystal density [kg m−3], and kv the shape factor. In agreement
with the literature2,3, the detection time td is the time when kvφ3(t) reaches a
threshold value α, i.e.:

Vc(td)
V

= kvφ3(td) = α (11)

In the following we will always use the same value for such threshold, namely
α = 10−4.

Table 2 The coefficients and the physical parameters used in the present work.

Parameter Value

β [K min-1] 0.5
ρc [kg m-3] 1260
kv [-] π/6
Γ0 [g L-1] 7.147
Γ1 [g L-1 K-1] 1.986 10 -1

Γ2 [g L-1 K-2] 5.048 10 -3

Γ3 [g L-1 K-3] -1.273 10-4

Γ4 [g L-1 K-4] 3.0188 10-6

In this work, as an exemplification but without loss of generality, we use the
nucleation rate, J, and the growth rate, G, based on the classical nucleation theory
and on the (size independent) birth and spread growth model, respectively3,25.
They are expressed in such a way that their temperature dependence is explicitly
accounted for:

J(S,T ) = A0Sexp
(
−A1

T

)
exp

(
− B

T 3 ln2 S

)
(12)

G(S,T ) = K0 exp
(
−K1

T

)
(S−1)2/3(lnS)1/6 exp

(
− K2

T 2 lnS

)
(13)

Both rates depend on three independent parameters each, namely A0, A1 and B
for the nucleation rate, and K0, K1 and K2 for the growth rate, and on the su-
persaturation, defined as S = c/c∗(T ), using an empirical temperature dependent
solubility, namely that of paracetamol in water, which is given by the following
polynomial expression26:

c∗(T ) =
4

∑
i=0

Γi(T −273.15)i (14)

The parameters Γi have been fitted on experimental data from the literature2.
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3.1 Model 1: stochastic onset of nucleation

In Model 1, we assume that the first nucleation event, i.e. the formation of the
first nucleus, occurs as a Poisson process, i.e. following the statistics of Eq. (1),
and triggers the start of a deterministic process, through which new nuclei are
formed while existing ones grow; the deterministic part of the process can be
modelled using a deterministic population balance equation (PBE). Additionally,
we assume perfect mixing, no secondary nucleation, no agglomeration and no
breakage. Such model is consistent with the mononuclear nucleation mechanism,
whereby in small volumes and for slowly nucleating substances, the appearance
of the first nucleus triggers a change of regime, i.e. a transition from a metastable
state to a deterministic evolution1. It bears also an obvious similarity to the
simplified model proposed by the TU Delft group and summarised in section2.22.

The process is described as follows. The cooling crystallisation process starts
at t = 0, with the temperature following the linear cooling profile of Eq. (8) and
the solute concentration constant at c = c0; no crystals are present. At time tn
the first nucleus appears; since nucleation is assumed to be a non-homogeneous
Poisson process, the statistics of tn follow Eq. (1), given in the form:

P(tn) = 1− exp
(
−V

∫ tn

0
J(t ′)dt ′

)
(15)

with J given by Eq. (12). After time tn, the system evolves in a deterministic
manner following the equations reported below, whose initial conditions are as-
signed at t = tn. Note that in term of PSD, and its moments, at tn only one crystal
of negligible size is present.

To describe the evolution of the crystals from tn on, we use a 1D-PBE or,
alternatively but equivalently, the associated Equations of Moments (MoM equa-
tions)27,28. The standard 1D-PBE for a batch crystalliser where growth is size
independent is:

∂ f
∂t

+G
∂ f
∂L

= 0 (16)

with G calculated through Eq. (13), and initial and boundary conditions given by:

f (t = tn,L) =
δ(t− tn,L)

V

f (t,L = 0) =
J
G

(17)

The corresponding MoM equations are:

dφ j

dt
= Jδ j0 + jGφ j−1 j = 0,1,2, ... (18)

where δ j0 is the Kronecker symbol and φ−1(t) = 0; the initial conditions are:

φ0(tn) =
1
V

φ j(tn) = 0 j > 0
(19)
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Since here we are interested only in computing the values of td according to
Eq. (11) and in some average properties, we solve the MoM equations (18) for
j = 0,1,2,3.

It is rather clear that this model, which might be realistic in a very small
volume of solution, loses credibility when the suspension volume increases. It
is in fact counter-intuitive that the formation of a critical nucleus in a specific
position in the solution volume impacts immediately the course of nucleation in
the whole volume and renders the formation of further nuclei fully deterministic.
Therefore, the sharp separation between a stochastic nucleation mechanism for
the first crystal and a deterministic growth mechanism (as assumed here and in
the TU Delft model) seems to be unphysical; this observation motivates us to
pursue an alternative description where stochasticity and determinism coexist at
least during the early stages of the crystallisation process.

3.2 Model 2: stochastic primary nucleation

In the case of Model 2, we assume that all nuclei, not only the first one as in
Model 1, are formed stochastically. After formation, each nucleus grows inde-
pendently and deterministically, thus giving its deterministic contribution to the
depletion of the supersaturation in solution. In such a framework, the time when
older nuclei were stochastically born influences the conditions at which future
nuclei are stochastically born.

Such effect of the past on the future leads to a new type of stochastic process,
namely the so called self-exciting point process29, which can be viewed as a gen-
eralization of a non-homogeneous Poisson process (see Eq. (1)) where the func-
tion k(t) is stochastic, as it depends on a sequence of past stochastic events. In the
case of self-exciting point processes in fact, the distribution of the time intervals
between two subsequent nucleation events is the same as in a Poisson process, but
the relevant value of k(t) is not only time-dependent but also stochastic. In other
words k(t) depends on more than time t only. Therefore the self-exciting point
process can be understood as a step-by-step non-homogeneous Poisson process.
Therefore the probability, P1. that at least one new nucleus forms in the time
interval ∆t = ti− ti−1 is the complement to one of the probability that in the same
time interval no new nuclei form, P0; one can thus write:

P1(ti−1; ti) = 1−P0(ti−1; ti) = 1− exp
(
−V

∫ ti

ti−1

J(t ′)dt ′
)

(20)

where the time dependence of the nucleation rate, J, is affected by the formation
of nuclei in the previous time interval from 0 to t = ti.

Each new crystal, which is born at t = tn,k and is labelled k (∀k = 1,2, ...),
grows independently according to the following deterministic equation:

Lk = 0 t ≤ tn,k (21)
dLk

dt
= G(S,T ) t > tn,k

The population of crystals is in this case discrete and the crystal volume fraction,
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which is proportional to its third moment, is given by:

Vc(t)
V

= kvφ3(t) =
kv ∑

N(t)
j=1 L3

j(t)

V
(22)

with N(t), the number of crystals at time t. With this definition, the mass balance
of Eq. (10), and the detection condition, Eq. (11), can be computed. Note that
N(t) is a monotonically increasing staircase function, with N(0) = 0 and all the
step increments equal to 1.

Modelling primary nucleation as a self-exciting point process has two im-
portant consequences. First, from a physical point of view, the self-exciting
point process of Model 2 applied to the formation of all crystals in the system
should exhibit a higher degree of variability than the Poisson process of Model 1,
which applies only to the first nucleus. This is a straightforward consequence of
the coexistence of stochastic and deterministic mechanisms during the formation
and the growth of all the particles in suspension. It should nevertheless be no-
ticed that, in line with experimental evidence, the overall variability still reduces
with increasing volume since the probability of particle formation is governed by
Eq. (20) where the volume appears in the exponent and with a negative sign.

The second consequence is of numerical nature: the self-exciting processes
can be simulated exactly when their intensity rate k(t) is known, as in our case, by
applying an inversion algorithm. Starting from the initial condition, N0 = 0, we
generate a uniformly distributed random number and find the time corresponding
to it drawn from the exponential distribution given in (20), i.e., we compute the
time interval ∆t elapsing before the first nucleation event occurs, (∆t = tn,1−0).
We afterwards update the system, which now counts one particle and compute
the new time interval for the nucleation of the second particle, ∆t = tn,2− tn,1,
this time solving also Eq. (21) and (22) at each time step, while using Eq. (20).
The procedure is repeated until the detection condition is met. This simulation
technique is fundamentally different from the Monte Carlo algorithm suggested
by Biscans et al .10, based on a rejection method. In a Monte Carlo algorithm
the integration step, ∆t, determines the number of time the rejection process is
called. Too fine or too coarse choices can over- or under-estimate the number of
nuclei that form. A large number of simulations is needed simply to validate the
correct time step, seriously limiting the applicability of this specific method for
regressing nucleation parameters.

4 Results

In this section the results obtained with the two models described above are re-
ported. First, Model 1 is used to regress the experimental data from TU Delft;
the quality of the fitting, its predictive capabilities and the correlation among the
parameters of the nucleation and growth rate expressions are discussed. Then the
obtained parameters are used in Model 2; similarities and differences between
the two models are analysed, and simulation illustrating the effect of changing
cooling rate is reported and discussed. Since the focus is on stochastic nucleation
and scaling from small to large volumes, all results will be presented so as the
reader is informed not only about average properties of the crystallisation process
but also about their statistic distribution.
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4.1 Model 1: parameters’ estimation

Model 1 has been applied to estimate the six parameters in the nucleation and
growth rate expressions of Eqs. (12) and (13) by fitting the experimental de-
tection times measured by the TU Delft group in the 1 mL crystalliser at two
different initial concentrations, namely 15 and 47 g/L, with the calculated ones.
The values of the six estimated parameters are reported as Reference kinetics in
the second column of Table 3. Figure 2 shows the experimental cumulative dis-
tributions of detection times, the corresponding calculated distributions, as well
as the calculated distributions of nucleation times.

Table 3 Kinetic parameters obtained from fitting the 1 mL-crystalliser data of TU Delft 2.

Parameter Reference kinetics Faster growth Slower growth

A0 [m-3 s-1] 7.55×10 3 8.410×103 5.5×103

A1 [K] 660 570 630
B [K3] 7.35×105 2.15×106 1.3×105

K0 [m s-1] 1.67×10-4 1.67×10-3 8.35×10-5

K1 [K] 1.0×103 1.0×103 1.0×103

K2 [K2] 3.22×103 3.22×103 3.22×103
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Fig. 2 Results of Model 1 and experimental data of TU Delft 2 in 1 mL vessel. Symbols:
experimental data; solid lines: detection time probability curves; dashed lines: nucleation
time probability curves (given by Eq. (1)).
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A few remarks are worth making. The model predicts a detection time, which
is between 0 s and about 400 s larger than the nucleation time. This indicates the
importance of growth in these crystallisation experiments on paracetamol from
aqueous solution. It is also worth noting that due to cooling, the later the nuc-
leation, the lower the temperature and the higher the supersaturation at which it
occurs; higher supersaturation (that speeds growth up) prevails on lower temper-
ature (that slows it down), thus leading to a decrease in growth times for larger
values of tn (from about 400 s, when nucleation is the fastest, to essentially 0 s,
i.e. instantaneous growth to the detection size, when tn ≈ 4,000 s).

The agreement between measured and simulated detection times is rather
good, not only at the initial concentrations of 15 g/L and 47 g/L, but also at
22 g/L and at 32 g/L (data not shown here). This is an important result, because
such a good fitting has been obtained with temperature dependent rate models
for nucleation and growth, where only six parameters have been estimated. The
resulting model can reliably be used to predict crystallisation at different initial
concentrations and for different cooling rates, i.e. something not possible with
the TU Delft model and their twelve estimated parameters.

When looking more in detail, at c0 = 47 g/L a deviation between experi-
ments and simulations can be observed at values of the detection time beyond
about 1,800 s. In fact the experimental data for td > 1,800 s seem to follow a
different trend with respect to those for td < 1,800 s. Considering that upon cool-
ing supersaturation increases, a change of nucleation mechanism might explain
the deviation, particularly considering that the supersaturation is as high as 1.8
when nucleation leading to td = 1,800 s occurs. However more experimental data
would be needed to demonstrate this property thoroughly.

4.2 Model 1: effect of volume

Figure 3 illustrates results for larger crystalliser volumes, namely 500, 700, 900,
and 1,000 mL; each diagram refers to a specific volume as indicated, and shows
the experimental cumulative distributions of detection times (for the two initial
concentrations, namely 15 g/L and 47 g/L associated to larger and smaller de-
tection times, respectively), and the corresponding distributions of both detection
times and nucleation times calculated using Model 1 with the Reference kinetics
parameters.

It is rather clear that the model is in general not able to describe the experi-
ments, as it happens in the case of the model developed by the TU Delft group2.
The model is unable to consistently predict the average detection times, and un-
derestimates their variability; The experiments exhibit a much larger variability
than predicted by the model. This behaviour might be due to a model mismatch
that makes the extrapolation to larger volumes infeasible, or to the same reasons
spelled out above with reference to the attempts made by the TU Delft group (see
section 2.2). We also tried to specifically fit the measurements in larger volumes
with a set of ad hoc parameters different from the Reference kinetics in Table 3,
without achieving satisfactory results though.
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Fig. 3 Results of Model 1 and experimental data of TU Delft 2, in 4 different volumes.
Initial concentrations are 15 (red) and 47 (blue) g/L. Symbols: experimental data; solid
lines: detection time probability curves; dashed lines: nucleation time probability curves
(given by Eq. (1)).

4.3 Model 1: correlation among parameters

The set of parameters indicated as Reference kinetics in Table 3 have been ob-
tained by minimizing the deviation between experiments and simulations using
a standard optimizer. By analysing the results, one realizes that the objective
function for this problem is rather flat, and the minimum rather shallow. In fact,
the estimated model parameters are correlated; in other words, very similar dis-
tributions of detection times as the one plotted in Figure 2 can be obtained by
increasing the growth rate and reducing the nucleation rate, or vice versa.

To demonstrate this, we have selected two different sets of values for the
growth rate parameters, and estimate the nucleation rate parameters to minim-
ize the error between experiments and simulations. As reported in Table 3, the
growth rate constant K0 has been set to a value ten times larger (column 3, Faster
growth) and to a value two times smaller (column 4, Slower growth) than that
of the Reference kinetics, whereas K1 and K2 have been kept unchanged. After
fitting, the nucleation rate parameters A0, A1 and B have attained the new values
also reported in Table 3.

Figure 4 illustrates the results, by showing the experimental detection time
distributions at the two concentrations considered in the 1mL crystalliser, to-
gether with the same distributions calculated with the three different sets of para-
meters; it is rather clear that the fitting accuracy is quite comparable. In the insets,
the distributions of nucleation times for the two initial concentration levels (on
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Fig. 4 Results of Model 1 with three different sets of kinetic parameters (cfr. Table 3) and
experimental data of TU Delft 2 in 1 mL. In the main figure, symbols: experimental data;
solid lines: detection time probabilities. In the figure insets, dashed lines: nucleation time
probability (given by Eq. (1)). For c0 = 15 and 47 g/L (red and blue shades, respectively),
G increases from the lightest to the darkest colour.

the l.h.s. and on the r.h.s. the larger and the smaller concentration, respectively),
as calculated with the three sets of parameters are also plotted. One can readily
observe that indeed nucleation times are the longest for the set of Faster growth
parameters, whereas the Reference kinetics yields intermediate values of tn.

Thus concluding, estimating nucleation and growth rate parameters from stat-
istics of detection times only is not possible, because the two groups of paramet-
ers are highly correlated, which is a mathematical property reflecting the physical
reality that both nucleation and growth contribute to determine detection times.
To overcome this problem, either independent growth measurements or addi-
tional, different pieces of information (e.g. the number of particles or the average
particle size at some time t) are required.

Interestingly though, the simulation results indicate that, if in 1 mL the differ-
ent sets of kinetic parameters yield very similar distributions of detection times,
in larger volumes the corresponding distributions are well distinct. This is illus-
trated in Fig. 5 for the case of c0 = 47 g/L, where the cumulative distributions of
nucleation and induction times obtained for the three sets of kinetic parameters
are plotted and compared with the experimental distributions. It is worth noting
that by and large the Faster growth parameters do a better job than the two other
sets. Although one might be tempted to argue that the volume effect could be
used to identify the best among different sets of parameters, in reality one should
be cautious and rule out first the possible causes of differences in measured de-
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tection times when scaling up the system volume, as discussed in section 2.2.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

P
[-
]

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

P
[-
]

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

t [s]

P
[-
]

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

t [s]

P
[-
]

900 mL

500 mL 700 mL

1000 mL

Fig. 5 Results of Model 1 with 3 different sets of kinetic parameters (cfr. Table3) and
experimental data, in 4 different volumes, for c0 = 47 g/L. Symbols: experimental data
of TU Delft 2; solid lines: detection time probabilities (given by Model 1); dashed lines:
nucleation time probability (given by Eq. (1)). G increases with colour from light blue to
black.

4.4 Model 2: comparison with Model 1

Let us now consider Model 2; for the sake of comparison with Model 1, rather
than estimating a new set of kinetic parameters, we have used the Reference
kinetics set of parameters in Table 3 and carried out simulations of nucleation and
growth with both models, starting from the two reference initial concentration
values and for a number of system volumes between 1 mL and 1,000 mL. Each
simulation using Model 1 or Model 2 has been performed independently and, for
each volume V at each initial concentration c0, at least one thousand simulations
have been carried out in order to build reliable statistics.

The key differences between the results obtained with the two models can
be appreciated by examining Figure 6, which plots the total number of particles
present at the detection time, i.e. N(td), for simulations carried out at different
initial concentration, c0, and different system volume, V . Let us focus on the
results for c0 = 15 g/L and V = 100 mL; similar considerations can be made
for all the other cases. There are two sets of points: the aligned brown (darker)
symbols on the l.h.s. obtained through Model 1, and the red (lighter) symbols,
forming a cloud on the r.h.s. and calculated using Model 2.
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Fig. 6 Results of simulations of Model 2 given as number of crystals, N, formed at
the detection time, td , for different volumes. Two different initial concentrations, 15 and
47 g/L, are represented in red and blue, respectively, for volumes from 10 to 1000 mL.
Results of simulations in 1 mL volume, largely overlapping for both initial concentrations,
are all represented in black. Results of simulations of Model 1 for 100, 250, 350, 500, 700,
and 1000 mL are indicated as violet and brown points (for c0 = 47 g/L and c0 = 15 g/L,
respectively).

In the case of Model 1, the stochasticity of nucleation yields a range of de-
tection times and of number of particles as discussed above; however, for each
stochastic value of the nucleation time, there are only one value of the detection
time and one number of particles, because after the birth of the first nucleus the
evolution of the system is deterministic.

In the case of Model 2 on the contrary, the same detection time may cor-
respond to different numbers of particles, and vice versa; this is indeed the con-
sequence of the co-existence of stochastic nucleation and of deterministic growth
after the formation of the first nucleus.

It is also worth observing that, as a consequence of the different structure
of the two models, the average detection time and number of particles obtained
with Model 2 are larger than those calculated using Model 1. On the one hand,
the variability of the detection times decreases with increasing volume for both
models, i.e. the self-exciting point process of Model 2 behaves in that respect
like the inhomogeneous Poisson process of Model 1. On the other hand, the
variability (or the standard deviation) of the Model 2 statistics of detection times
is larger than that of Model 1.

Considering the statistics of the number of particles, with increasing volume
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Fig. 7 Results of simulations of Model 2, c0 = 47 15 g/L (blue), and c0 = 15 g/L (red),
and Model 1, c0 = 47g/L (violet), and c0 = 15 g/L (orange), given as average values of
detection times, td . In the left figure, the volume ranges from 0 to 120 mL; in the right one,
from 450 to 1100 mL. The error bars indicate the standard deviation of the corresponding
average td value.

the variability of the number of particles calculated with Model 2 increases a lot.
It can also be noted that for V = 1 mL, i.e. the volume on which the quantitat-
ive study of the TU Delft group is based, only a very few number of particles
are formed, typically less than five, which correspond to a very broad range of
detection times (see Figure 2 for the cumulative probability distribution of the
detection times measured and calculated with Model 1 under the same condi-
tions); from V = 250 mL on, the number of particles exceeds about one hundred.
This result gives a quantitative confirmation and a visual illustration of how at
different system volumes a mononuclear or a polynuclear mechanism may be the
better way to describe nucleation1. It shows also that the mononuclear mechan-
ism implicit in the TU Delft model and in our Model 1 is inadequate to describe
volumes above 10 mL, in this case.

The same results are illustrated in a different manner for the same two ini-
tial concentration values in Figure 7, which shows as a function of the volume,
V , the mean detection time, td , together with error bars, that are calculated by
adding and subtracting from the mean td the value of the relevant standard devi-
ation of the td distribution. It is worth noting that the two models behave very
similarly when V = 1 mL, as expected since at that volume a few particles only
are formed; since the first nucleus follows the same statistics for both models,
with such a small number of particles to be formed, the differences between the
results obtained with the two models can only be very small.
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4.5 Model 2: sensitivity to kinetic parameters

Simulations using Model 2 have been repeated for the Faster growth parameters
in Table 3, i.e. the parameters that when using Model 1 exhibited the best accur-
acy in describing measurements at higher system volumes (see Fig.5). Figure 8
shows as a function of the volume, V , the mean detection time, td , together with
error bars, calculated as in Figure 7. For each initial concentration value two
curves obtained using the two different sets of kinetic parameters are plotted.
Moreover, the average detection times observed in the TU Delft experiments in
crystallisers with V = 500 mL, 700 mL, 900 mL and 1,000 mL are plotted.
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Fig. 8 Comparison of simulations of Model 2, in 1 mL crystalliser, given as average
detection times, td . Two different sets of parameters, Reference kinetics (blue and red,
c0 = 47 g/L and c0 = 15 g/L, respectively) and Faster growth (black and brown, c0 = 47
g/L and c0 = 15 g/L, respectively) have been used (see Table 3). In the left figure, the
volume ranges from 0 to 120 mL; in the right one, from 450 to 1100 mL. The symbols
indicate the experimental data of TU Delft2 at the corresponding volumes. The error bars
indicate the standard deviation of the corresponding average td value. The overlapping of
the brown and blue line observed here is a coincidence of this particular system, and does
not represent a specific feature of the model.

As already observed using Model 1, the two sets of parameters yield very
similar results when V = 1 mL, but diverge progressively as the volume increases.
At both concentrations the Faster growth parameters yield lower values of the
average detection time (about 500 s less and 300 s less at 15 g/L and at 47 g/L,
respectively) and larger values of the standard deviation (which is typical for
slower nucleation rates, as discussed in the Introduction when summarizing the
main features of a homogeneous Poisson process) than the Reference kinetics
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parameters.
When comparing in Figure 8 the simulation results and the experimental data,

one notices that the experimental data fall in the region delimited by the two
curves calculated with the Reference kinetics and with the Faster growth para-
meters; the former set works better in the 500 mL crystalliser, whereas the latter
in the 900 mL and 1,000 mL crystallisers. Even though the standard deviation
calculated with Model 2 is larger than that predicted by Model 1, it is still much
smaller than the experimental one.

Thus concluding, though Model 2 is a clear improvement with respect to
Model 1 in terms of physical consistency, based on the TU Delft experimental
results in large crystallisers only it is not possible to demonstrate that Model
2 is able to capture completely the effects due to the change from very small,
microfluidic volumes, to larger ones. It is clear that to this aim more experiments,
following a well designed experimental protocol will have to be performed.

4.6 Effect of cooling rate

Being intrinsically temperature dependent, both Model 1 and Model 2 can be
used to study the effect of the cooling rate on the crystallisation process, on the
nucleation stochasticity, and on the metastable zone width (MZW), i.e. the re-
gion of the phase diagram where the solution is supersaturated but nucleation is
kinetically hindered.

We have investigated such effect using Model 2 and illustrated it in Figure 9,
where the average difference between the temperature at time zero and at the
detection time, ∆T (td), i.e. the observed MZW, with its variability (error bars) is
plotted vs. the system volume. These have been calculated using the parameters
corresponding to the Reference kinetics for the initial concentration of 47 g/L and
three different cooling rates, namely β = 0.25 K/min, 0.5 K/min (the value used
in all simulations reported so far), and 1 K/min; therefore, the data corresponding
to β = 0.5 K/min have already been reported in terms of average detection time
both in Figure 7 and in Figure 8. Such average detection times at large volumes
are reported also in Figure 9 beside the corresponding ∆T (td) vs. V curve.

As expected based on physical intuition, larger cooling rates lead to larger
values of the MZW (and of its variability) and correspondingly smaller values
of the detection time. This is due to the fact that the MZW is determined by
the competition between a supersaturation generating mechanism, i.e. cooling,
and a supersaturation depleting process, namely particle formation and growth.
Changing the cooling rate affects the former but not the latter, thus yielding larger
values of MZW, the reduction of the detection time being a mere consequence of
the fact that the same temperature change requires less time when the cooling
rate is larger.

Our time-dependent model is also able to describe the effect of the stochastic
nature of nucleation on the MZW in very small volumes, namely that the MZW
and its variability are larger in very small volumes than in large volumes. In
volumes beyond a system specific threshold value the MZW reaches an asymp-
totic value for each cooling rate, and in principle its variability vanishes.
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Fig. 9 Results of simulations of Model 2, at different volumes, for c0 = 47 g/L, with three
different cooling rates, β, reported as average Metastable Zone Width, ∆T . In the right-
hand-side box, at larger volumes, the asymptotic values of the average td for each cooling
rate are indicated. In the left figure, the volume ranges from 0 to 120 mL; in the right one,
from 450 to 1100 mL. The error bars indicate the standard deviation of the corresponding
average ∆T value.

5 Discussion and conclusions

This contribution focuses on studying the variability of detection times observed
in cooling crystallisation experiments. Such variability has been assumed to be
primarily the consequence of an intrinsic stochastic nature of nuclei formation:
nucleation is thus mathematically defined as a stochastic process.

Based particularly on the data of paracetamol crystallisation in water, meas-
ured by the TU Delft group2 in small, well-mixed 1 mL reactors, we have de-
veloped two different models (Section 3.1 and 3.2) combining the statistical
formation of primary nuclei with their deterministic growth to fully-grown, de-
tectable crystals. Both models not only account for dynamic profiles of temper-
ature and concentration, but they also can be easily modified to describe system
with a non-constant volume. Consequently, they can be used directly to analyse
isothermal as well as non-isothermal nucleation experiments, and crystallisation
where the driving force is not due to cooling, but, e.g., solvent evaporation or
anti-solvent addition.

Model 1 (Section 3.1) assumes that the stochastic nature of nucleation, mod-
elled as a Poisson process, influences only the very beginning of the crystallisa-
tion, i.e. the formation of the first particle, whereas the subsequent nuclei form-
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ation is perfectly deterministic and described by a Population Balance Equation
or, equivalently, by the method of moments. The effect of nucleation stochasti-
city determines only the time when the system shifts to the deterministic regime.
Model 2 (3.2), on the contrary, considers that the formation of all nuclei, not only
the first one, is stochastic, whereas their growth is deterministic.

As suggested by physical considerations and experimental evidence, the mag-
nitude of detection time variance reduces with increasing system volume in both
models. However, due to the different stochastic process used to describe nucle-
ation, the second model exhibits always a larger detection time variability.

Model 1 has been used for regressing nucleation and growth kinetic paramet-
ers, whose correlation has also been investigated. We concluded that a unique set
of parameters cannot be obtained from one series of experiments, if only inform-
ation concerning the detection times in one single volume is provided. Under
these conditions, independent growth measurements are necessary to avoid para-
meters correlation. Nevertheless, both models show that different sets of kinetic
parameters, which yield very similar detection times at the specific volume they
have been obtained, produce clearly different results when the system volume
changes. The correct kinetics could thus be discriminated by simply repeating
detection time experiments at different system sizes.

In conclusion, the two models developed and studied in this contribution al-
low to analyse in detail nucleation experiments at different initial conditions and
with different temperature profiles. The models provide a general framework to
describe the effect of volume on nucleation, while accounting also for crystal
growth. Assuming scale-independent kinetics, they can be thus used to simu-
late the behaviour of the system at different volumes, thus gaining a better un-
derstanding of the effects of scaling-up. Thus, the two models allow to assess
the feasibility of extrapolating kinetic information obtained in small, controlled
volumes to larger values by directly comparing experimental data and simulation
results at different scales.

General mathematical descriptions are necessary to understand better the
physics of nucleation, and to obtain reliable kinetic parameters for process design
and control. We believe that the models presented in this work can be a valid con-
tribution toward the development of sound and reliable protocols for designing,
analysing, and interpreting nucleation experiments.
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