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Additives are used to control nucleation in many natural and industrial environ-
ments. However, the mechanisms by which additives inhibit or accelerate solute
precipitate nucleation are not well understood. We propose an equation that pre-
dicts changes in nucleation barriers based on the adsorption properties and con-
centrations of trace additives. The equation shows that nucleant efficacy depends
on the product of an adsorption equilibrium constant and the reduction in inter-
facial tension. Moreover, the two factors that determine potency of additives are
related to each other, suggesting that assays of just one property might facilitate
additive design. We test the design equation for a Potts-lattice gas model with
surfactant-like additives in addition to solutes and solvents.

1 Introduction

Metastable phases of matter include liquids that can be supercooled without
freezing, vapors that can be supercooled without condensing, and solids that can
exist as multiple polymorphs. Some metastable phases can survive for long times
because the more stable phase cannot form without first surmounting an activa-
tion barrier for nucleation. Nucleation is a stochastic process that forms the first
growing embryo of the more stable phase. Nucleation and growth from single
component systems have been extensively studied, but there has been relatively
little theoretical and computational work on solute precipitate nucleation. Even
fewer studies have focused on nucleation in the presence of additives.

Additives are important in nucleation and growth in many natural and in-
dustrial processes including ice formation,1–5 pharmaceutical crystallization,6–8

biomineralization,9–16 and material synthesis.17–20 For example, pharmaceutical
companies use nucleants, growth promoters, and inhibitors to drive the selec-
tive crystallization of the desired polymorph.21–24 Oil and gas companies in-
vest millions of dollars on inhibitors to prevent methane hydrates from clog-
ging pipelines.25–27 Others have investigated additives to accelerate gas hydrate
formation for gas storage at moderate temperatures and pressures.28–31 In biol-
ogy, salts, metabolytes, and proteins prevent the formation of urinary stones32,33
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and ice in Antarctic fish.34–36 Therefore, there is substantial scientific and indus-
trial interest in designing additives for controlling nucleation and growth. Addi-
tives are currently discovered by trial-and-error experiments rather than focused
searches guided by physical models.

Classical nucleation theory (CNT) predicts that nucleation rates are primarily
dependent on two competing factors: (1) the bulk chemical potential difference
between the stable and metastable phases and (2) the interfacial free energy be-
tween the two phases.37,38 The first factor is the nucleation driving force and is
often written in terms of supersaturation (i.e. ∆µ = kBT lnS). The second
factor, interfacial free energy, is directly responsible for the nucleation barrier.
Although the nucleation barrier can be adjusted by modulating supersaturation,
we are primarily interested in additives that selectively bind to the nucleus and
lower the interfacial free energy. Surface-active additives can potentially have
strong effects on nucleation at trace concentrations.

Most experimental and theoretical research on trace additives focus on crystal
growth, not nucleation. For example, Weissbuch and coworkers have experimen-
tally studied ”tailor-made” stereospecfic promoters and inhibitors that drive the
selective crystallization of polymorphs.39,40 Ward and coworkers studied molec-
ular inhibitors that bind stereospecifically to growing crystal faces and suppress
growth.33,41 Storr et al.26 and Anderson et al.25 used molecular simulations to
compare binding energies of hydrate growth inhibitors. All of these works inves-
tigate the effect of additives on large crystal surfaces instead of the microscopic
clusters present during the nucleation stage.

A few recent theoretical studies investigated the effect of additives on nucle-
ation, but these did not separately consider the interfacial and solubility contri-
butions to the free energy barrier. Anwar et al. used short unbiased molecular
simulations of a ternary Leonard Jones (LJ) system (i.e. solute-solvent-additive)
to compare nucleation rates for different additive interaction and size parame-
ters.42 Duff et al. developed an alchemical transformation approach to compare
the effects of NaCl on the interfacial free energy of nuclei for two polymorphs of
glycine.43 However, Duff et al. did not compute the effect of salt on the solubility
of glycine in solution, a separately important effect of adding salt.

This paper proposes a theoretically-motivated additive design equation that
applies to low dosage nucleation promoters that strongly interact with the solution-
precipitate interface. The equation is motivated by (1) the barrier’s strong depen-
dence on interfacial tension, (2) the drop in interfacial tension with increasing
additive interfacial coverage, and (3) the increase in coverage with increasing
additive concentration. It predicts a drop in barrier height proportional to trace
additive concentration. The proportionality constant is the product of two mea-
surable quantities: an equilibrium constant for adsorption and the reduction in
interfacial tension per unit coverage. These two quantities are related to each
other, so a method to quickly determine either property for a set of trial additives
could help design potent nucleation promoters.
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2 Theory

CNT predicts that the reversible work to grow a nucleus from n = 1 building
units to a size n is:37,38,44–47

F (n) = −n∆µ+ γaφn2/3 (1)

where the free energyF (n) depends on the chemical potential difference between
the metastable and stable phases (∆µ), the interfacial tension (γ), the area per
adsorption site (a), and a shape factor (φ) such that Nsite = φn2/3 is the number
of adsorption sites on the interface. The qualitative dependence of free energy on
cluster size in Equation 1 is supported by many previous simulations.48–57

According to Equation 1, the free energy barrier scales with the cube of in-
terfacial tension:

F ‡ =
4

27

[
(γaφ)

3

∆µ2

]
(2)

whereF ‡ is the work required to create a critical nucleus of size n‡ = (2γaφ/3∆µ)3

at which ∂F/∂n = 0. While the free energy barrier is strongly dependent on the
driving force, large loadings of additives would generally be required to alter the
driving force. By contrast, additives that selectively interact with the interface
can lower the interfacial tension and therefore promote nucleation at low concen-
trations. CNT predicts the change in the free energy barrier due to a change in
the interfacial tension when the driving force is held constant is:

F ‡ − F ‡0
F ‡0

=

(
γ

γ0

)3

− 1 (3)

where the subscript 0 indicates the reference value with no additives present.
In the simplest case, suppose additive adsorption follows the Langmuir isotherm:

θ =
Kx

1 +Kx
(4)

where θ is the fraction of adsorption sites occupied by additives, K is the Lang-
muir constant, and x is the additive concentration.58,59 Langmuir type adsorp-
tion assumes localized adsorption onto uniform surface sites and no interaction
between adsorbed molecules, which are both reasonable assumptions for dilute
adsorbates. In the dilute limit (i.e. Kx � 1), Equation 4 is simplified to a
relationship resembling Henry’s law:58,59

θ ≈ Kx (5)

where K is now just the equilibrium constant of adsorption.
The change in interfacial energy upon addition of additives γ − γ0 can be

related to additive coverage on the interface θ as depicted in the thermodynamic
cycle of Figure 1:

[γ (θ)− γ0] a = θ∆F ◦ads (6)

where ∆F ◦ads is the average interfacial free energy change for adsorption at the
reference state and θ is the fraction of adsorption sites occupied by an additive.
Since ∆F ◦ads = −kBT lnK,58 Equation 6 can be simplified to:
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Fig. 1 The reversible work to double the area of a partially covered surface (blue path)
is equivalent to the work to (1) remove the additives from the surface, (2) double the
surface area, and (3) adsorb the same fraction of additives on the surface (green path).

γ (θ)− γ0 = −K lnK

a
x (7)

which, in agreement with the Gibbs adsorption isotherm,58,59 shows that interfa-
cial tension decreases if additives favorably adsorb to the interface. Equation 7 is
also consistent with the linear reduction in surface tension for small concentra-
tions of surfactants.60

Note, however, that Equations 6 and 7 are only valid in the dilute limit when
the adsorbed additives do not interact. The model must break down for suffi-
ciently large θ else negative γ would result. Additionally, Equation 7 ignores the
effects of additives that can dissolve into the solid precipitate and additives that
preferentially bind at surface defects like kinks, steps, and pits.

For our idealized model in which dilute additives sparingly cover smooth
surfaces of the nuclei, Equations 3 and 7 can be combined to obtain:

F ‡(x)− F ‡0
F ‡0

≈ −3
K lnK

βaγ0
x (8)

where β = 1/kBT . Equation 8 predicts relative changes in free energy barriers
with additive concentration. Instead of the equilibrium adsorption constant K,
the change in free energy barrier can equally be written entirely in terms of γ−γ0.
Both forms are potentially useful for screening additives, e.g. by computing
adsorption equilibria K or by measuring changes in contact angles γ − γ0 for
trial additives.

Note that nucleation rates depend on free energy barriers as J = A exp[−β∆F ‡].
Assuming that the prefactor is only weakly dependent on additive concentration,
Equation 8 further suggests that:

ln [J(x)/J0)] ≈ 3F ‡0
aγ0

(K lnK)x (9)

where J(x) and J0 are nucleation rates with and without additives respectively.
Using Equation 2, the quantity 3F ‡0 /aγ0 can be written as φ(2γ0aφ/3∆µ)2.
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Thus, assuming spherical nuclei and given values for ∆µ and K, Equation 9
offers an intriguing new method for extracting the bare interfacial tension (γ0)
from the slope of ln[J/J0] as a function of additive concentration (x). Equation 9
also conveniently separates the effect of non-additive properties (3F ‡0 /aγ0) from
additive-specific properties (K lnK) and suggests that the efficacy of nucleation
promoters can be compared using ratios of K lnK.

3 Simulation methods

3.1 Ternary Potts lattice gas model

Lattice models enable the investigation of metastable solutions independent of
system-specific chemical details.61,62 They are frequently used to test new rare
event algorithms and to provide general insight into nucleation but primarily
on single component systems. A number of studies have combined lattice gas
simulations with theoretical analyses based on CNT.62–65 For example, Pan and
Chandler studied the transition state ensemble of critical nuclei of an lattice gas
model and confirmed that cluster size is a reasonable reaction coordinate for nu-
cleation.49 Sear used lattice gas models to investigate heterogeneous nucleation
in pores of different shapes and sizes.66–68

The Potts model is a generalization of the lattice gas model with each Potts
orientation representing a particular phase or component69,70 and has been used
to study structural transitions in solids.71,72 Peters and coworkers developed a
binary Potts lattice gas (PLG) model with a lattice gas-like degree of freedom
to distinguish between lattice sites occupied by solutes or solvents and a Potts-
like degree of freedom to represent the orientation of molecules or lattice vectors
at each lattice site.56,73 The PLG model is a minimal nearest-neighbor model
for orientation-specific interactions between solute-solute, solute-solvent, and
solvent-solvent pairs. The interaction parameters can be tuned to obtain phase
diagrams that resemble those of real binary mixtures. The PLG and closely re-
lated models have now been used in studies of phase equilibria, self-assembly,
and several nucleation processes.56,73–78

The model in this work starts with the PLG and incorporates additives as a
third component. Each lattice site is therefore occupied by either a solute, sol-
vent, or additive (labeled species k = 1, 2, and 3 respectively) having one of
Q = 24 possible orientations. For a cubic lattice, Q = 24 represents the most
asymmetric case,79 but smaller values of Q can be used to represent more sym-
metric molecules.57,80 The PLG Hamiltonian takes solute-solvent interactions
as the zero of energy and sums over all nearest neighbor solute-solute, solvent-
solvent, and additive-solute interactions. Using the notation 〈i, j〉 to denote near-
est neighbor pairs, the Hamiltonian is:

βH = βH0 + β∆H (10)

where β∆H and βH0 are the additive and additive-free Hamiltonians respec-
tively. The solute-solute and solvent-solvent interactions are those of the standard
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PLG model:

βH0 = −
2∑

k=1

∑
〈i,j〉

δm(i),kδm(j),k

[
βGk + βAkδs(i),s(j)

]
(11)

where m(i) represents the species at lattice site i, s(i) represents the local ori-
entation of the molecule at lattice site i, and βGk and βAk are the species-
specific and orientation-specific interaction respectively. βG1 and βG2 stabi-
lize solute-solute and solvent-solvent pairs respectively and primarily control
the solubility of solute in the solvent-rich phase and solvent in the solute-rich
phase. Like neighbors with matching orientations are further stabilized by βA1

and βA2. For this study, we use the following PLG Hamiltonian parameters:
βG1 = βG2 = βA1 = 1.25 and βA2 = 0. This choice of PLG parameters re-
sults in a weakly soluble solute and a relatively pure solute precipitate identical to
the binary PLG model shown on Figure 1a of Duff and Peters at kBT = 0.8.56,79

The additives mimic amphiphilic molecules through interactions that favor
adsorption at the solute precipitate-solution interface. Additive-solvent and additive-
additive interactions are equivalent to the zero energy solute-solvent interactions,
making the additives sparingly soluble in solution and preventing them from ag-
gregating. Additives interact with solutes only along the direction of their orien-
tation:

β∆H = −
∑
〈i,j〉

δm(i),3δm(j),1δg(i),n(j,i)βA3 (12)

where n(j, i) is the neighbor index of lattice site j with respect to lattice site
i which varies from 1 to 6 for a cubic lattice and g(i) indexes the neighbor to
which the orientation of the additive at lattice site i points. For a cubic lattice,
g(i) = mod [Q, 6] + 1 (i.e. 1 plus the remainder of Q/6) also varies from 1 to
6. Therefore, only additives whose orientation points toward a solute experiences
a favorable interaction (see Figure 2). This directional additive-solute interaction

Fig. 2 The additive (blue) only interacts with a neighboring solute if its orientation
points toward a solute (red), i.e. g(i) = n(j, i).

mimics the attraction between the head/tail group of surfactants and the interface
and prevents the nucleating phase from having many additive inclusions even
though their interactions are strong. For this study, we used five different values
of βA3 to investigate the effect of additive binding strength: βA3 = 2.5, 2.875,
3.125, 3.375 , and 3.75.

3.2 Simulation details

In a small closed simulation with fixed composition, a solute nucleus depletes
the solute from its surroundings and consumes the driving force for its own
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growth.47,81–84 Because of these finite size effects, solute precipitate nucleation
is best simulated in the grand or semigrand (open) ensembles.47,56,73,85 We use
semigrand canonical Monte Carlo (SGMC) (or NT{µi − µr} ensemble) simu-
lations86 to maintain differences in chemical potentials of each species and that
of the solvent reference species. Our SGMC moves include (1) local and non-
local swaps, (2) orientation flips, and (3) semigrand identity changes. The first
two move types are accepted or rejected using the standard canonical Metropo-
lis criterion. The acceptance probability for identity changes from species i to j
involves an additional fugacity ratio prefactor.86

Free energy landscapes along the nucleus size coordinate n are computed as:

βF (n) = − ln
〈N(n)〉
〈N(1)〉

(13)

where 〈N(n)〉 is the average number of nuclei composed of n solute monomers
in the simulation box.47,51,52 The size n of each nucleus is computed by counting
contiguously neighboring solutes. However, it is computationally impractical to
calculate F (n) using unbiased Boltzman sampling for high barrier processes due
to the exponentially vanishing probability of visiting higher free energy states.
We overcome this issue with umbrella sampling which imposes a set of artificial
biasing potentials to improve sampling of less probable configurations.87–89 We
use windows of width three units along the nucleus size n-coordinate with hard
walls at the window edges. Each umbrella window is sampled for at least 500,000
SGMC sweeps to guarantee sufficient sampling.

3.2.1 Compositions of equal driving force. The nucleation free energy bar-
rier depends on both the driving force (or supersaturation) and interfacial free en-
ergy. To isolate the effects of the additive on the interfacial free energy, we pre-
pared compositions of equal driving force. The driving force is measured by sim-

Fig. 3 The free energy landscape of solute slab growth at different fugacity ratios with
the same driving force for βA3 = 3.75. The driving force ∆µ is estimated by the
common tangent through troughs (dashed line).

ulating slab growth in a long elongated cell (in this case a 10x10x80 lattice) which
maximizes the volume to surface ratio for a two phase system. The change in free
energy for layer-by-layer slab growth is Fslab(n)− Fslab(n0) = −(n− n0)∆µ.
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The driving force is therefore:90

∆µ = −∂Fslab

∂n
(14)

The set of compositions of constant driving force can be calculated by the
following iterative process:

1. Simulate slab growth using SGMC and calculate the dimensionless driving
force with no additive (β∆µ0) using Equation 14.

2. Adjust the additive-solvent (f3/f2) and solute-solvent (f1/f2) fugacity ra-
tio and repeat Step 1 until the driving force is approximately β∆µ0.

3. Repeat Step 2 for each solute-solvent-additive composition.

Increasing f1/f2 will increase the solute concentration and therefore driving
force. Increasing f3/f2 will increase the additive concentration and therefore in-
crease coverage, lower interfacial tension, and lower barrier height. The four sets
of fugacity ratios we use that have the same driving force are: f1/f2 = 2.25 and
f3/f2 = 0, f1/f2 = 2.25 and f3/f2 = 0.01, f1/f2 = 2.258 and f3/f2 = 0.03,
and f1/f2 = 2.26 and f3/f2 = 0.05. These fugacity ratios are used for each
metastable state in all other simulations. The composition of each metastable
state is determined using unbiased 500,000 sweep-long SGMC simulations on a
64x64x64 periodic lattice.

3.2.2 Free energy barriers and interfacial tension. We use umbrella sam-
pling to compute the work required to grow a nucleus from size 1 to n on a
32x32x32 periodic lattice.87–89,91 Since the probability of observing more than
one cluster of size n > 4 in our simulation box is negligible, N(n) for values of
n > 4 is approximated by the probability that the largest cluster in the system is
of size n.51,52 CNT fits of the free energy landscape with Equation 1 are used to
estimate nucleation barriers and interfacial tension.

3.2.3 Additive adsorption. SGMC simulations are used to estimate the ad-
sorption constant. Simulations are done on a 64x64x64 lattice with a 64x64 so-
lute sheet. The sheet is not allowed to grow, dissolve, or change any of its Potts
degrees of freedom. Coverage is estimated by averaging the fraction of lattice
sites neighboring the solute sheet that is occupied by an additive92 from at least
500,000 SGMC sweeps.

4 Results and discussion

Figure 4a shows that the average additive coverage θ for a range of average ad-
ditive mole fraction x agrees with the predicted Henry’s law behavior at low
concentrations. We obtain the adsorption constant K by fitting additive coverage
θ to Equation 5. Figure 5 shows the free energy F (n) for the four compositions
of equal driving force for βA3 = 3.75 , which is qualitatively similar for other
values of βA3. Interfacial tension βaγφ is obtained by fitting F (n) to Equation
1 for each additive concentration with the constraint that the driving force at each
additive concentration is the same. The proportional relationships in Figures 4a
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(a) (b)

Fig. 4 Proportional relationships between (a) additive coverage θ and additive
concentration x and (b) change in interfacial free energy (γ − γ0) /γ0 and θ. Lines are
linear fits constrained to pass through the origin for additive-solute interactions
βA3 = 2.5 (blue), 2.875 (purple), 3.125 (green), 3.375 (orange), and 3.75 (red).

Fig. 5 The reversible work βF (n) to create a nucleus of size n at different additive
concentrations for βA3 = 3.75. The dotted lines are CNT fits with the constraint that the
driving force at each additive concentration is the same.

and 4b are consistent with our theoretical prediction that increased adsorption
will lower interfacial tension.

For the most weakly binding additives, Figure 6b validates the approximately
proportional relationship in Equation 8 between the free energy barrier and (K lnK)x.
The discrepancy for additives with large values of K may be due to a breakdown
in the infinitely dilute additive assumption due to increased interaction with so-
lute in solution. Even at large values of K, Figure 6b suggests ratios of K lnK
can still be used to predict nucleant efficacy, albeit qualitatively.

5 Concluding remarks

We developed an equation starting from classical nucleation theory to predict the
effects of additive binding strength and additive concentration on nucleation bar-
riers. The rate is modulated by a product of the interfacial free energy reduction
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(a) (b)

Fig. 6 While (a) changes in free energy barriers are approximately proportional to
additive concentration, (b) only additives with small values of βA3 are consistent with
Equation 8. The lines are linear fits that pass through the origin for additive-solute
interactions βA3 = 2.5 (blue), 2.875 (purple), 3.125 (green), 3.375 (orange), and 3.75
(red). The dashed line is for the combined βA13 = 2.5, 2.875, and 3.125 data.

per unit coverage and the equilibrium constant for additive binding (K). These
two quantities are closely related to each other, so it may be possible to screen
for potent additives by comparing ratios of K lnK for trial additives. Promis-
ing nucleants can also be screened using contact angle measurements with and
without trial additives. Trace additives with higher values of K lnK are more
effective at reducing surface tension, lowering the free energy barrier, and ac-
celerating nucleation. Simulations on a ternary Potts lattice gas model confirm
that the potency of a trace additive for barrier reduction increases with K lnK.
Further investigations are needed to test the validity of these results for molecular
additives, solutes, and solvents.
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