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Nonlinear quantum optics

in the (ultra)strong light-matter coupling

Eduardo Sánchez-Burilloa, Juanjo Garcı́a-Ripollb,

Luis Martı́n-Moreno a and David Zuecoa,c

The propagation of N photons in one dimensional waveguides coupled to M

qubits is discussed, both in the strong and ultrastrong qubit-waveguide coupling.

Special emphasis is placed on the characterisation of the nonlinear response and

its linear limit for the scattered photons as a function of N, M, qubit inter distance

and light-matter coupling. The quantum evolution is numerically solved via the

Matrix Product States technique. Both the time evolution for the field and qubits

is computed. The nonlinear character (as a function of N/M) depends on the

computed observable. While perfect reflection is obtained for N/M ∼= 1, photon-

photon correlations are still resolved for ratios N/M = 2/20. Inter-qubit distance

enhances the nonlinear response. Moving to the ultrastrong coupling regime, we

observe that inelastic processes are robust against the number of qubits and that

the qubit-qubit interaction mediated by the photons is qualitatively modified. The

theory developed in this work modelises experiments in circuit QED, photonic

crystals and dielectric waveguides.

1 Introduction

Typically, materials respond linearly to the electromagnetic (EM) field. Intense

fields are usually demanded for accessing the nonlinear response1. Therefore,

a long standing challenge in science and technology is to develop devices con-

taining giant nonlinear properties at small powers. The final goal is to shrink the

required power to the few photon limit2,3. In doing so, the dipoles must interact

more strongly with the driving photons than with the environment, which defines

the strong light-matter coupling regime. Thus, quantum optical systems present-

ing strong light matter interaction are excellent candidates for building nonlinear

optical materials operating at tiny powers.

An ideal platform for having strong light-dipole coupling together with the

possibility of generating and measuring few photon currents is waveguide QED.

There, the paradigmatic dipoles are two level systems (qubits) and the input and

output fields travel through one dimensional waveguides. As there are only two

propagation directions (left and right), interference effects are much larger than

in 3D. Besides, the coupling to the qubits is enhanced by the reduced dimen-

sionality (Purcell effect). Different platforms can serve for the study: circuit-
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QED4–7, quantum dots interacting with photonic crystals8, dielectric waveg-

uides9, molecules interacting with photons10 or plasmonic devices11–15. With

this kind of systems different nonlinear effects may be observed and used, as

photon-photon correlations16–30, non-classical light generation31, lasing32 or ef-

fective interaction between noninteracting dipoles33–37.

Light-matter coupling, even when it is larger than the losses, is typically much

smaller than the characteristic energy scales of qubits (dipoles) and photons. In

this case, up to second order in this coupling, only processes where light and

matter exchange excitations play a role. This is the Rotating Wave Approxima-

tion (RWA)38. Quite recently, experiments have reached couplings large enough

for this approximation to break down39–42. Then, the full dipole interaction must

be taken into account and, in order to understand the experiments, it is indis-

pensable to consider processes involving spontaneous creation and annihilation

of pairs of excitations. This is the ultrastrong coupling regime. Beyond the RWA

picture novel physics has been predicted43–47, also from the scattering point of

view48,49. Clearly, this regime has a great potential for nonlinear applications.

It is desirable to quantify the amount of nonlinearity for a given architec-

ture with a given input driving, like in classical nonlinear optics, where materials

are classified via their linear and nonlinear susceptibilities. Furthermore, some

systems can behave as linear when looking at one quantity and nonlinear when

measuring another. In general, the response is expected to be linear in the low

polarisation limit, N/M≪ 1, with N the number of photons and M the number of

qubits. In this work, we quantify more precisely this linear-nonlinear transition.

In doing so, we must notice that the description of qubits and currents containing

few photons needs a quantum treatment. To compute this fully quantum evolu-

tion, we choose the Matrix Product State (MPS) technique adapted for photonic

situations46,48. Within the MPS, the exact dynamics is computed for multipho-

ton input states passing through several qubits both in the strong and ultrastrong

coupling regimes. We explore the dynamics by changing the ratio N/M and the

light-matter coupling strength. Our aim here is to discuss the tradeoff between

the enhancement of the coupling with the number of qubits (which, accordingly

to the theory of Dicke states50 scales as g
√

M) at the expense of decreasing the

nonlinear response. Besides, we also study the influence of the distance between

the dipoles. Finally, we will explore the changes on this RWA phenomenology

when moving to the ultrastrong coupling regime. As witnesses for the nonlinear-

ities we will compute transmission and reflection probabilities, qubit populations

and photon-photon correlations.

The rest of this Discussions is organised as follows. Section 2 summarises

the theoretical basis needed for understanding the results. Section 3 discusses

the analytic properties for the scattering matrix in linear systems (i.e. when the

scatterers are harmonic resonators), linking the notion of linear quantum system

with linear optical response. The numerical results both in the RWA and beyond

the RWA are presented in Sects. 4 and 5 respectively. Our conclusions and two

technical Appendices close the paper.

2 | 1–22

Page 2 of 22Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 3 of 22 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



dispersion relation ωk = ε−2J cosk, as shown in figure 1 b). Under some circum-

stances and working in the middle of the band k ∼= π/2, the linearised dispersion

ωk = vk with v = 2J is well justified. Such a linearisation is not performed in our

numerical investigations, but it can be important to have it in mind when com-

paring some of our findings with analytical treatments (mostly done with linear

dispersion relations). The dipoles are characterised via the ladder operators c
†
i

(ci). In the numerical work presented in this paper, we will consider qubits,

c
†
i = σ+

i ,with , [σ+
i ,σ

−
j ] = δi j(2σ+

i σ−i −1) (2)

and

hi(ci,c
†
i ) = ∆ic

†
i ci (3)

with ∆i the frequency for each qubit. Other nonlinear dipoles could be investi-

gated without extra difficulty e.g. three level atoms51,52 or Kerr-type punctual

materials30. We can also consider linear dipoles, i.e., harmonic oscillators satis-

fying bosonic commutation relations [ci,c
†
j ] = δi j, as we will do in section 3.4 in

order to explore the linear limit.

The last term in (1) results from the quantisation of the dipole interaction

term (Hint)i ∝ E(xi) ·pi, because E(xi) ∼ axi
+ h.c.53 and pi ∼ c

†
i + h.c.38. The

coupling strength is given by the constants gi, whose actual value will depend on

the concrete physical realisation. If gi≪ ∆i we can approximate the interaction

as,

Hint = g
M

∑
i=1

(ci + c
†
i )(axi

+a†
xi
)≃ g

M

∑
i=1

(c†
i axi

+ cia
†
xi
)≡ HRWA

int . (4)

i.e. we have neglected the counter-rotating terms c
†
i a†

xi
+ h.c.. This is the so-

called Rotating Wave Approximation (RWA), which is valid up to O(g2
i )

38. It is

widely used since gi≪ ∆i typically holds in the experiments. Within the RWA,

the number of excitations is conserved, [H,N ] = 0, being N ≡∑x a†
xax +∑i c

†
i ci

the number operator. This symmetry highly reduces the complexity of solving

the dynamics of (1).

If gi is not a small parameter, the RWA is not justified and the full dipole

interaction [last term in (1)] must be taken into account. The regime where the

RWA is not sufficient for describing the phenomenology is known as the ultra-

strong coupling regime39–42 Here, the number of excitations is not conserved,

making the problem much harder to solve.

A good example to feel the extra complexity, is the computation of the ground

state for (1), which is an essential step in the scattering process. Within the RWA,

the ground state is trivial, |GS〉RWA = |0〉, with ax|0〉 = 0 for all x and c j|0〉 = 0

for all j. Beyond the RWA, in the ultrastrong coupling regime, the |GS〉 is a

correlated state with 〈GS|N |GS〉 6= 0. In figure 1 c) the photon population in

the waveguide per site, 〈nx〉= 〈Ψ|a†
xax|Ψ〉 is plotted, being |Ψ〉 the ground state

with a flying photon (Eq. 5 for N = 1). There, only one qubit is coupled to the

waveguide beyond the RWA (g = 0.7[∆]). Around the qubit (placed at x = 0)

a non trivial structure appears. The peaked wavepacket around x = −90 is the

flying photon.
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2.2 Scattering

We are interested in computing the scattering characteristics for N-photon input

states interacting with M qubits. The input state, our initial condition, is chosen

to be the non-normalised quantum state,

|Ψin〉= (a†
φ)

N |GS〉, a
†
φ = ∑

x

φin
x a†

x , (5)

where |GS〉 is the ground state of the system [See Fig. 1c)] and φin
x is a Gaussian

wavepacket centred in xin with spatial width θ

φin
x = exp

(

− (x− xin)
2

2θ2
+ ikinx

)

. (6)

Typically, we consider xin located on the left hand side of the qubits with the

wavepacket moving to the right toward the scatterers, as sketched in Fig. 1 a and

computed in Fig. 1 c.

In several occasions, it will be convenient to work in momentum space,

a
†
k =

1√
L

∑
x

eikxa†
x . (7)

In momentum space the wavepacket (6) is exponentially localised around kin,

with width ∼ θ−1.

In our numerical simulations we evolve the initial state (5) unitarily,

|Ψ(t)〉=U(t,0)|Ψin〉= e−iHtott |Ψin〉 . (8)

We stop the simulation at a final time tout , which must be sufficiently large for

the photons to be moving freely along the waveguide, after having interacted

with the scatterers. In doing so, our numerics account for stationary amplitudes

encapsulated in the definition of the scattering matrix, S,

|Ψout〉= S|Ψin〉 . (9)

It is customary to specify the scattering matrices through their momentum com-

ponents:

Sp1...pN′ ,k1...kN
= 〈GS|ap1

...apN′ Sa
†
k1
...a†

kN
|GS〉 . (10)

Some comments are pertinent here. The |GS〉 appears in the definition of S. As

discussed before, in the ultrastrong coupling regime the ground state differs from

the vacuum state, and has a non-zero number of excitations, see figure 1 c). In

the ultrastrong regime the number of excitations is not conserved. Therefore,

in the above formula N′ 6= N in general. The components, Sp1...pN′ ,k1...kN
can

be numerically computed as projections of the evolved state as we will explain

below.

2.3 Matrix Product States for scattering problems

As said, beyond RWA even the ground state is non trivial. The problem becomes

a many-body one and we must consider the full Hilbert space for any computa-

tion. If we truncate the number of particles per site to nmax and our scatterers
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are qubits, the dimension of the Hilbert space is 2M(nmax +1)Ncav , which is expo-

nential with both Ncav and M. Numerical brute force is impossible and analytical

tools are really limited. Even within the RWA, if we work with N photons and M

qubits the Hilbert space dimension, (Ncav+M)N , is also too large for multiphoton

states.

In order to solve the problem, we use one celebrated method to deal with

many-body 1D problems: Matrix Product States (MPS)54–56. Let us summarise

the idea behind this technique. A general state of a many-body system is usually

written as

|Ψ〉= ∑
ii,...,iNcav

ci1,...,iNcav
|i1, . . . , iNcav〉 , (11)

where {|in〉}dn
in=1 is a basis of the local Hilbert space of the n-th body (or site,

in our case), being dn the dimension of this local Hilbert space, |ii, . . . , iNcav〉 =
|i1〉 . . . |iNcav〉, that is, the tensor product basis, and ci1,...,iNcav

∈ C. However, it is

possible to show that an equivalent parametrisation can be written as:

|Ψ〉= ∑
ii,...,iNcav

A
i1
1 . . .A

iNcav
Ncav
|i1, . . . , iNcav〉 , (12)

where Ain
n is a Dn×Dn+1 matrix linked to the n-th site∗. For the sake of simplicity,

let us take dn = d and Dn = D for all n. Then, NcavD2d coefficients are needed to

describe any state. In principle, to represent |Ψ〉 exactly, D must be exponential

in Ncav. However, states in the low energy sector of well-behaved many-body

Hamiltonians can be very accurately described by taking D polynomial in Ncav
57.

Few photon dynamics belongs to this low energy sector and, as we will show, the

number of MPS coefficients required to study scattering scales polynomially with

Ncav. This technique has been recently applied to propagation in bosonic chains

interacting with impurities46,48.

Our simulations are as follows: (i) initialisation of the state as |0〉, (ii) com-

putation of the ground state by means of imaginary time evolution, using the

Suzuki-Trotter decomposition58 adapted to the MPS representation59, (iii) gen-

eration of the input state (Eq. 5), (iv) time evolution of the wave function up to

t = tout (Eq. 9) again by means of Suzuki-Trotter decomposition and (v) compu-

tation of relevant quantities.

2.4 Observables and its computation with MPS

The time dependence of expected values,

〈Ot〉= 〈Ψ(t)|O|Ψ(t)〉 (13)

with O any Hermitian operator acting on waveguide, qubit variables or both, char-

acterises completely the dynamics. Relevant values are the number of photons

(in position and momentum spaces):

〈nt
x〉= 〈Ψ(t)|a†

xax|Ψ(t)〉 ←→ 〈nt
k〉=

1

L
∑
x1x2

eik(x1−x2)〈Ψ(t)|a†
x1

ax2
|Ψ(t)〉, (14)

∗We are taking open boundary conditions, so DNcav+1 = D1 = 1.
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or the qubit populations and correlations:

Pt
i = 〈Ψ(t)|σ+

i σ−i |Ψ(t)〉 , 〈σ+
i σ−j 〉= 〈Ψ(t)|σ+

i σ−j |Ψ(t)〉 . (15)

Thus, for example, transmission and reflection coefficients can be obtained as

Tk = 〈ntout

k 〉/〈n0
k〉 , Rk = 〈ntout

−k 〉/〈n0
k〉 . (16)

The projectors

φt
x1,...,xN

=
1√
N!
〈GS|ax1

. . .axN
|Ψ(t)〉 , (17)

are fundamental, since, setting t = tout they are nothing but the Fourier transform

of the scattering matrix Sp1...pN′ ,k1...kN
, Eq. (10).

Let us start by considering an operator that can be expressed as product of

local operators:

O = o1 o2 . . . oNcav (18)

e.g. O = a†
xi

ax j
or O = σ−j ax j

. For the states |ΨA〉 and |ΨB〉, characterised by

the tensors {Ain
n }Ncav

n=1 and {Bin
n }Ncav

n=1 respectively [Cf. Eq. (12)] the matrix element

〈ΨA|O|ΨB〉 is given by

〈ΨA|O|ΨB〉=
Ncav

∏
n=1

En(An,Bn,on), (19)

with

En(An,Bn,on) = ∑
in, jn

〈in|on| jn〉
(

(Ain
n )
∗⊗Bin

n

)

(20)

Since any operator can always be written as a sum of products of local operators,

we can compute any expected value (13) and projector (17) without the explicit

computation of the ci1,...,iNcav
coefficients in Eq. (11).

Let us specify the concrete MPS formulas for the relevant observables. If

we are interested in the photon number, 〈nt
x〉 (14), we compute (19) with |ΨA〉=

|ΨB〉 = |Ψ(t)〉, ox = a†
xax, and on = In for n 6= xi, with In the identity operator.

In the same way, for Pt
i defined in (15) we must replace oxi

= σ+
i σ−i and on = In

for n 6= xi. The momentum occupation number, 〈nt
k〉 in (14) is computationally

harder. We must compute every two-body operators 〈a†
x1

ax2
〉 by taking ox1

= a†
x1

,

ox2
= ax2

and on = In for n 6= x1,x2, with |ΨA〉 = |ΨB〉 = |Ψ(t)〉 and perform

the sum in (14). We can also obtain two-body qubit correlators, σ+
i σ−j , taking

oxi
= σ+

i , ox j
= σ−j and on = In for n 6= xi,x j. Finally, for the projectors φt

x1,...,xN
,

Eq. (17), one just takes |ΨA〉 = |GS〉, |ΨB〉 = |Ψ(t)〉, oxi
= axi

with i = 1, . . . ,N
and on = In for n 6= x1, . . . ,xN .

3 Linear scattering

The main objective of this work is to realise how nonlinear the scattering of few

photons through few qubits is. To accomplish this task we need first to know what

linear scattering is. In this section we discuss in general what we understand for

linear quantum optics and its realisation in waveguide QED. Finally, we establish

under which conditions a collection of qubits behave as a linear optical medium.
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3.1 Linear systems

In quantum physics, linear systems are those whose Heisenberg equations for the

observables form a linear set. For the case of Hamiltonian (1) this happens when-

ever the scatterers are harmonic resonators (the waveguide itself is linear) both

within RWA and non-RWA coupling regimes. In this case,the c j,c
†
j operators in

(1) are bosonic operators [Cf. Eq. (2)]:

[ci,c
†
j ] = δi j (21)

and [Cf. Eqs. (3)]:

hi(ci,c
†
i ) = ∆ic

†
i ci . (22)

where ∆i are the resonator frequencies.

3.2 Analytical properties for the S-matrix whit harmonic resonators as

scatterers

Once we know what linear scattering means, we present our first result. An

equivalent result was introduced by us in the Supplementary Material of 48. We

re-express it here in a more convenient way.

Theorem1 3.1 If the system is linear (in the sense of Sect. 3.1), the one-photon

scattering matrix is given by:

〈p|S|k〉= tkδp,k + rkδp,−k . (23)

The apparent simplicity of Theorem 3.1 requires some discussion. First, photon

creation is not possible. Second, Eq. (23) fixes the actual form for the output

states,

|Ψout〉= ∑
k>0

(tk φin
k a

†
k + rk φin

k a
†
−k)|GS〉 . (24)

Therefore, the only scattering processes for one incoming photon occurring within

linear models are the reflection and transmission of the photon without changing

its input energy (momentum). Notice that this is a non trivial feature, since the

Hamiltonian (1) is not number conserving: [H,∑x a†
xax +∑ j c

†
jc j] 6= 0 and the

ground state |GS〉 has not got a well defined number of excitations. However, the

single photon scatters by reflecting and transmitting without changing the energy

and without creating additional excitations in the system. This result mathemati-

cally relies on the Bogolioubov transformation and physically on the fact that (1)

is a free model in the quantum field theory language . The proof of this theorem

is sent to Appendix A.

The single photon result, Theorem 3.1 can be generalised to the multiphoton

case:

Theorem1 3.2 If the system is linear the N-photon scattering matrix is given by:

〈p1, p2, ..., pN |S|k1,k2, ...,kN′〉= δNN′ ∑
n1 6=n2 6=... 6=nN

〈p1|S|kn1
〉...〈pN |S|knN

〉 . (25)

The theorem says that, in linear systems the scattering matrix is a product of

single photon scattering matrices. Consequently, no particle creation, Raman

process or photon-photon interaction is possible. The proof, detailed in Appendix

B, is based on the single photon result, Theorem 3.1, together with the Wick

theorem. To better appreciate these two general results, let us apply them.
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3.3 The classical limit: Recovering the standard linear optics concept

Theorems 3.1 and 3.2 dictate the scattering in linear systems (i.e., when the scat-

terers are harmonic resonators). So far, it is not completely clear whether the

definition for linear systems in quantum mechanics given in Sect. 3.1 together

with the results in section 3.2 correspond to what linear optics means: the prop-

erties for the scattered currents are independent of the input intensity. Here we

show that linear systems satisfy this intensity independence. Importantly enough,

we comment on the classical limit for linear systems.

We consider a monochromatic coherent state as the N-photon input state,

|Ψin〉= |αk〉= e−|αk|2/2
∞

∑
n=0

αn
k(a

†
k)

n

n!
|GS〉 . (26)

Applying the theorems 3.1 and 3.2 the output state can be written as,

|Ψout〉= e−|αk|2/2
∞

∑
n=0

αn
k(tka

†
k + rka

†
−k)

n

n!
|GS〉= |tkαk〉⊗ |rkα−k〉 . (27)

The second equality follows after some algebra †.

Equation (27) is a satisfactory result. The transmission and reflection coeffi-

cients tk and rk are independent of αk. Recalling that 〈αk|a†
kak|αk〉 = |αk|2, this

means independence from input intensity. We note that linear systems transform

coherent states onto coherent states. Thus harmonic resonators do neither change

the statistics nor generate entanglement between the reflected and transmitted

fields. Coherent states can be considered classical inputs in the limit αk → ∞,

thus linear systems do not generate quantumness. Finally, the last expression for

|Ψout〉 in (27), has the classical interpretation in terms of transmitted |tkαk|2 and

reflected |rkαk|2 currents (|tk|2 + |rk|2 = 1).

3.4 From nonlinear to linear

Consider M qubits placed at the same point of the waveguide, xi = x j for all i, j in

Hamiltonian (1). For simplicity, assume that the couplings gi are also the same.

Introducing the operator,

b≡ 1√
M

M

∑
i=1

σ−i , (28)

the total Hamiltonian, Eq. (1), can be rewritten

Htot = ε∑
x

a†
xax− J ∑

x

(a†
xax+1 +hc)+∆b†b+g

√
M(b† +b)(a†

0 +a0) . (29)

Thus, in terms of the Dicke states generated by (28) the effective coupling is

g
√

M. Besides, it is crucial to observe that60

[b,b†] = 1− 1

M
∑

j

σ+
j σ−j (30)

† Just notice that:

∞

∑
n=0

αn
k(a

†
k(tout))

n

n!
=

∞

∑
n=0

n

∑
m=0

1

m!(n−m)!
(tkαka

†
k)

m(rkαka
†
−k)

n−m =
∞

∑
n=0

(tkαka
†
k)

n

n!

∞

∑
n′=0

(rkαka
†
−k)

n′

n′!
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Therefore, in the limit 〈∑ j σ+
j σ−j 〉/M≪ 1 (weak probe compared to the number

of qubits) the operator b (b†) approximates an annihilation (creation) bosonic

operator. Therefore, a large number of qubits is expected to behave as a harmonic

resonator.

4 Nonlinear scattering: Numerics in the RWA

We are interested in the nonlinear optical properties of a collection of qubits. The

nonlinearities can be manifested in different observables. The theoretical results

in section 3.2 say nothing about the nonlinear regime. In the following, we will

compute some natural quantities as the reflection and transmission probabilities

or photon-photon correlation. We will evaluate how nonlinear the response is as

a function of the number of incoming photons, number of qubits or inter qubit

distance. Throughout this section the RWA is assumed. Physics beyond the RWA

is discussed in the next section.

4.1 N photons vs M qubits: Total reflection spectrum

The combination of energy and number conservation implies that output states

for one photon scattering through qubits in the RWA, are also given by Eq. (24)

(like in linear systems). A well known result in this geometry is that a single

monochromatic photon suffers perfect reflection, |rkin
|2 = 1, when its frequency

ωin = ∆61–63; this effect has several useful applications13,64–67. For linear sys-

tems, following (25), the N-photon S matrix is a product of single photon S ma-

trices. Thus, in linear systems, N-photon input states must also be perfectly re-

flected at resonance. On the other hand, a qubit cannot totally reflect more than

one photon at the same time17. Then, for N-photon (N > 1) input states perfect

reflection is not expected to occur with one qubit. If we want to overpass this sat-

uration effect, we may increase the number of qubits. In the limit N/M≪ 1, with

N photons and M the number of qubits the linear regime should be recovered, i.e.

perfect reflection should happen [See Sect. 3.4].

Equipped with the MPS technique we can study the linear-nonlinear transi-

tion as a function of the ratio N/M. In doing so, we provide meaning to the

inequality N/M≪ 1. In this subsection we consider that the M qubits are placed

at the same point, i.e., their inter distance is zero. We compute Rωin
from N = 1

to N = 5 photons input states given by (5) and (6) centred in the resonant value

kin = π/2 (ωkin
= ∆). The scattering centre is composed by M = 1 to M = 4

qubits. We plot Rωin
[Cf. Eq. (16)] for M = 1 and M = 4 qubits in 2 a) and b)

respectively. The spectral width scales with the one-photon effective coupling

g
√

M (29), which is maintained constant in the calculations. As seen, the maxi-

mum reflection Rmax < 1 as soon as N > 1. The effect is better observed in the

M = 1 qubit case, see Fig. 2 a). As argued before, by increasing the number of

qubits we recover full reflection Rmax
∼= 1. The dependence for Rmax as a function

of N/M is better represented in panel 2 c). Rmax decreases much faster with N

for M = 1 than for M > 1. For M = 4, Rmax hardly gets modified by changing

the number of photons in the considered range of N. Following18 and29, there

is total reflection for N = 2 vs M = 2 if the photon energies individually match

with those of the qubits. We see a slight deviation of this result because we are
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in reflection and transmission: |φ tout
x,x |2 = |φ tout

x |4. In the nonlinear case, however,

the reflected field by one qubit is totally antibunched17, |φ tout
x,x |2 = 0. Thus, anti-

bunching can be used as witness for nonlinearities. With these antecedents, we

provide below answers to the following questions. How does this depend on the

number of qubits? Is it possible to interpolate between the highly nonlinear case

of one qubit and the linear case of a harmonic oscillator by adding qubits? If so,

how many qubits are needed for the system to be linear?

In figure 3 d) we plot the reflected |φx1,x2
|2 against x1−x2, fixing (x1 +x2)/2

such that the reflection component is maximum. The one-photon coupling, g
√

M

is kept constant for different M and equals the coupling g for the case of the

harmonic oscillator. We remind that |φx1,x2
|2 is proportional to the probability of

having both photons separated by a distance |x1− x2|. Setting x1 = x2 gives the

probability of seeing both photons at the same point. For M = 1 the numerical

results (Fig. 3 d) show |φxx|2 ≃ 0, recovering the well known photon antibunch-

ing in reflection17,18. Surprisingly, photon antibunching and thus nonlinearity

can still be resolved by increasing M, even for M = 20 ‡. The full contour for

|φx1,x2
|2 is shown in 3 a), b) and c) for one, two qubits and harmonic resonator

respectively. Apart from the antibunched characteristics in the reflected signal,

we can also appreciate that one qubit cannot reflect as much as two qubits, as we

discussed in Sect. 4.1 [Cf. Fig. 2]. The transmitted photons are always bunched.

The components around (x1 + x2)/2 ≃ 0 and |x1− x2| ≃ 200 correspond to one

photon being transmitted and the other reflected.

Once the physics has been discussed, let us finish with a brief note on how

to solve the two photon scattering against M qubits, for any M, placed at the

same point and within the RWA. We start by reminding that the RWA implies the

conservation for the number of excitations, Cf. Sect 2.1.

Therefore, in the two excitation manifold and regarding the qubits, it will suf-

fice to consider the following Dicke states: {|0〉 , |1〉 ≡ b†|0〉 , |2〉 ≡ (b†)2|0〉√
2(1−1/M)

}
[Cf. Eq. (28)]. Thus, if N = 2, the M qubits can be formally replaced by a three

level system with states given as above. As expected [See Sect. 3.4], in the limit

M→ ∞, |2〉= (b†)2|0〉√
2

as in the harmonic oscillator case.

4.3 Three qubits with distance

We incorporate a new ingredient here, the inter-qubit distance. Interactions among

qubits mediated by the EM field decay with the distance in two and three dimen-

sions68. One dimension is special: the field wavefront area does not grow with

distance and, thus, the interaction does not decay but it is periodically modulated

instead. The period depends on the qubits level splitting and the dispersion re-

lation in the waveguide. This peculiarity has been theoretically investigated for

qubits in a multitude of arrangements34–37,69 and experimentally demonstrated

quite recently7. For our purposes it is important to note that these works consid-

ered either classical or single photon input states. Two photon input states were

considered too in26,27.

‡ We note here that for the particular set of values N = 2 and M = 2 that, if ω1 = ∆1 and ω2 = ∆2

photons are bunched 18,29as it would be linear scattering. However, our initial wavepacket is not

monochromatic
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Invoking the Markovian approximation the induced qubit-qubit interaction

is considered instantaneous. This implies that the set of distances, d ≡ xi′ − xi,

related by

d′ = d +
π

kin

q, q ∈ Z (31)

give the same scattering characteristics.

Let us consider N = 2 input photon states and three qubits separated by some

nearest neighbour distance d. With the MPS tool, we solve the problem exactly,

no matter the distance. Thus, we do not make any approximation like the small

distance or Markovian ones. We plot photon-photon correlations |φtout
x1,x2
|2 (17)

and qubit populations δPi ≡ Pi− (Pi)GS (15) for RWA couplings ((Pi)GS = 0) in

figures 4 and 5, panels a), b) and c) in both cases. Regarding the photons, the

characteristics are the same at zero distance and d = 2, which is equivalent to

zero distance, by means of (31) (kin = π/2). On the other hand, the inherent non-

Markovian properties of our exact simulation can be appreciated by comparing 5

a) and c). If d 6= 0, the qubit at the left is excited first, then the central qubit and

finally the one to the right.

The contours for the two-photon wave function |φtout
x1,x2
|2 are for d = 0 and

d = 2 closer to the linear scattering result than those for d = 1 case [Cf. figures 3

c) and 4 a) b) and c)]. This enhancement of nonlinear properties with the distance

can be understood as follows. At distances π
kin

q, [equivalent to zero distance ac-

cording to Eq. (31)], only qubits states generated by the ladder operator b in Eq.

(28) are visited during the dynamics. For two photon input states, the nonlinear-

ities die out as 1/M [Cf. Sect. 4.2]. On the other hand, for other distances not

fulfilling this condition of equivalence, more qubit states (satisfying the number

conservation imposed by the RWA) can play a role. The fact that more qubit

modes participate in the dynamics for d = 1 is apparent from figure 5 b). Clearly,

more frequencies are involved in the evolution of P. Importantly enough, d = 1

corresponds to a distance where the coherent interaction between the qubits are

maximised, while the correlations in the qubit decays are minimised. This is

named as subradiant case. As we can observe the qubit decay (after excitation)

is slower in this case.

5 Nonlinear scattering in the ultrastrong

We close this Discussions by investigating stronger qubit-photon couplings, strong

enough to break down the RWA approximation, Eq. (4). The full dipole inter-

action must be considered. When moving to the ultrastrong regime, the problem

becomes rather involved. The ground state, |GS〉, for (1) is not trivial anymore

but strongly correlated and the number of excitations is not conserved [Recall

Sect. 2.1]. This increase in the complexity brings a lot of new phenomena. We

fix our attention in two characteristics. First, we discuss the appearance of in-

elastic scattering at high couplings48,70–72. Second, we revisit the qubit-qubit

interactions mediated by the guide in the ultrastrong coupling regime.
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5.1 Inelastic scattering with M qubits

So far, we have discussed elastic scattering. In linear systems, this is the only

possible process. When the scatterers are qubits, however, inelastic processes

may happen48,70–72. In an inelastic process, the photons can excite localised

light-matter states. Those localised states, eigenstates for the total Hamiltonian,

remain excited after the photons pass through. By energy conservation it is clear

that the outgoing photons must have less energy. Within the RWA approxima-

tion70–72, at least two photons are needed for having inelastic processes. When

the actual full dipole interaction is considered (1), non stimulated Raman scatter-

ing process occurs48. Indeed, it is quite remarkable that 100% efficiency can be

achieved48.

We study the inelastic channel for one photon input states when interacts with

M qubits placed at the same point. In figure 6 we plot the transmitted current in

the inelastic channel,

T2,k =
1

2
(1−|tk|2−|rk|2) (32)

In the figure we consider the qubits placed in the same point. This figure shows

that inelastic scattering is another nonlinear characteristic which persists even for

N≪M (recall that T2 for a linear system is always zero, Cf. Sect. 3.1).

5.2 Mixing distance and ultrastrong

Interesting physics occurs with spatially separated qubits, when their interactions

are mediated through the photons. At the same time the photons interact among

themselves when they pass through those qubits. In the weak coupling regime,

the output field is periodic in the qubit-qubit distance when taking Markovian ap-

proximation (31) [See section 4.3]. Below, we discuss how this scenario changes

in the ultrastrong coupling regime.

In figure 4 the loss of this effective periodicity in the qubit distance is clearly

shown by plotting |φtout
x1,x2
|2. At weak coupling (first row, already discussed in

Sect 4.3) the distances d = 0 and d = 2 satisfying (31) present identical output

fields. The two lower rows show results at larger couplings. The condition (31)

does not hold anymore, and the dipole-dipole periodic structure paradigm for one

dimensional systems7,34–36,69 is not longer true. Further confirmation is obtained

when looking to the qubit dynamics. In the final column, we realise that, in the

ultrastrong regime, signatures of subradiant dynamics are still perceived. The

loss of periodicity is also appreciated here. If we fix our attention to the d = 0

case all qubits behave in the same manner, as they must, and they remain in an

excited state, which is a signature of inelastic scattering. For the case d = 2,

which in weak coupling is equivalent to d = 0 [Cf. Eq. (31)], the dynamics is

completely different. At this set of parameters the qubits seem to evolve back to

the ground state. Therefore no inelastic scattering occurs in this case.

6 Conclusions

The advent of artificial devices (optical cavities, superconducting circuits, dielec-

tric and plasmonic guides, photonic crystals) opens the avenue for stronger and
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stronger light-matter coupling (at the single photon level). Recent impressive ex-

perimental advances are changing the paradigm and typical nonlinear effects can

be observed at the few photon level. From the theoretical point of view, both light

and matter must be described quantum mechanically. Going beyond one or two

photons and one qubit is an analytic titanic task. Therefore, numerical tools are

demanded to satisfy current experimental efforts in constructing devices respond-

ing nonlinearly at minimum powers. In this Discussions we have shown that the

MPS technique developed for one dimensional systems is a powerful tool in few

photon nonlinear optics.

On the physical side, our task was to study the nonlinear response by increas-

ing the number of qubits. It has a practical motif. The effective coupling scales

with g
√

M (M the number of qubits). Adding scatterers is a way to enhance the

coupling but, at the same time, their nonlinear response is reduced. Some quan-

tities, as the transmitted and reflected currents, already gave a linear behaviour

for ratios N/M ∼= 1. However, we have found that for N = 2 input states, M = 20

qubits still generate photon-photon interactions.

We have also investigated the regime where light and matter are coupled ultra-

strongly. New phenomena appears, as Raman scattering or the breakdown of the

periodicity in the qubit-qubit interaction, which should be obesrvable by current

technology, since some experimental setups already operate in the ultrastrong

coupling regime. All together, serves as a motivation for developing theories

for its understanding and hopefully, will trigger further experimental studies for

verifying the plethora of new phenomenology.
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A Proof of theorem 3.1

If the scatterers are harmonic resonators the Hamiltonian (1) is linear [Cf. Sect.

3.1] and it can be diagonalised with a Bogolioubov-Valatin (BV) transformation,

H = ∑Λlα
†
l αl , (33)

with [αl ,α
†
m] = δlm and Λl > 0 ∀ l. The ground state is αl |GS〉 = 0 ∀ l. The BV

transformation

αl =
L

∑
i=−L

(χa
liai +ηa

lia
†
i )+

M

∑
i=1

(χc
lici +ηc

lic
†
i ). (34)

is invertible.

Hamiltonian (33) commutes with Nα = ∑α†
l αl :

[H,Nα] = 0 . (35)
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The number of α-excitations, Nα, is a good quantum number. It also conserves

parity, P = eiπ∑α†
l
αl :

[H,P] = 0 . (36)

Single photon input states, N = 1 in (5), are written in momentum space

|Ψin〉= ∑
k>0

φ̃in
k a

†
k |GS〉, (37)

with φ̃in
k the Fourier transform of φin

x . Using the transformation (34) and that

αl |GS〉= 0, we can rewrite the state (37) in the α-representation

|Ψin〉= ∑
l

φ̄in
l α†

l |GS〉. (38)

Given the input state (38): Nα|Ψin〉= |Ψin〉. Since Nα is a conserved quantity

[Cf. Eq. (35)] the time evolution is restricted to the one α-excitation level (35).

The output state is then

|Ψout〉= ∑
l

φ̄out
l α†

l |GS〉, (39)

with φ̄out
l ≡ e−iΛl tout φ̄in

l . Using the transformation (34), the output state is rewrit-

ten

|Ψout〉= ∑
l

φ̄out
l

(

∑
k

((χ̃a
lk)
∗a†

k +(η̃a
lk)
∗ak)+∑

i

((χc
li)
∗c†

i +(ηc
li)
∗ci)

)

|GS〉,

(40)

with χ̃a
lk and η̃a

lk the discrete Fourier transforms of χa
li and ηa

li in the second index.

The output state (40) removes the possibility of having multiphoton scattering

states. Therefore, the scattering events can be elastic, with transmission and re-

flection amplitudes tk and rk and inelastic, with the scatterer relaxing to an excited

state |EXC〉. In the latter, the photon emerges with a new momentum knew, ful-

filling energy conservation

ωkin
+EGS = ωknew

+EEXC (41)

Therefore, the output state can be rewritten

|Ψout〉= ∑
k>0

φ̃in
k (tka

†
k + rka

†
−k)|GS〉+∑

k

φ̃new
k a

†
k |EXC〉, (42)

with φ̃new
k a wavepacket centred around knew.

Let us fix our attention to the second term in the r.h.s of (42), which is rewrit-

ten in terms of the α-operators with the help of the BV transformation (34):

∑
k

φ̃new
k a

†
k |EXC〉= ∑

l

(φ̄
new,p
l α†

l + φ̄
new,m
l αl)|EXC〉 (43)

Using Nα and P conservation, Eqs. (35) and (36), Nα|EXC〉 = 2n|EXC〉 with

n≥ 1. The first term in the r.h.s. of (43) has 2n+1≥ 3 particles. Thus, φ̄
new,p
l = 0.

Finally αl |EXC〉 is an eigenstate of (33) with eigen-energy EEXC−Λl (Λl > 0).

The latter must equal to ωknew
+EEXC which is impossible. Therefore φ̄

new,m
l = 0.

Putting all together, the output state contains only the elastic channel,

|Ψout〉= ∑
k>0

φ̃in
k (tka

†
k + rka

†
−k)|GS〉. (44)

This ends the proof.
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B Proof or theorem 3.2

The components for the scattering matrix (10) can be rewritten,

Sp1...pN′ ,k1...kN
= 〈GS|ap1

...apN′ a
†
k1
(tout)...a

†
kN
(tout)|GS〉 (45)

with,

a
†
k(tout) = S†a

†
kS = (tka

†
k + rka

†
−k) . (46)

In the last equality we have used i) linearity: the Heisenberg evolution for the op-

erators akn
(t) is independent of the input states and ii) the theorem 3.2. Equation

(46), together with the Wick theorem:

〈GS|ap1
...apN′ a

†
k1
...a†

kN
|GS〉= δNN′ ∑

m1 6=m2 6=... 6=mN

δp1 km1
...δpN kmN

(47)

completes the proof.
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