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Unimolecular dissociation dynamics of a model three degree of freedom tri-

atomic molecule is studied in order to understand the mechanisms for deviations

from statisticality. Performing a wavelet based time-frequency analysis of the

dynamics allows for the dynamics to be followed on the network of nonlinear

resonances, also called as the Arnold web. The results indicate that the long life-

time trajectories spend a considerable amount of time trapped near junctions in

the web. It is argued that characterizing the dynamics near such junctions might

lead to deeper insights into the origins of nonstatistical dynamics.

1 Introduction

A satisfactory answer to the title question is, perhaps surprisingly, still lacking

despite several experimental and theoretical studies spanning more than half a

century1. The term ‘statistical’ in statistical rate theories refers to a regime where

dynamics can be safely ignored in calculating the rate constants and the cele-

brated Rice-Ramsperger-Kassel-Marcus (RRKM) theory2–4 is a prime example.

At the heart of RRKM theory is the crucial assumption that intramolecular vibra-

tional energy redistribution (IVR) is sufficiently fast as compared to the reaction

timescale. Provided this assumption is true, the microcanonical rate constant for

a rotationless unimolecular reaction is given by

k(E) =
N‡(E)

2πh̄ρ(E)
(1)

where E is the total energy, N‡(E) is the number of states at the transition state

with energy less than or equal to E and ρ(E) is the total density of states. In

addition, both the population of the unimolecular reactant

N(t) = N(0)e−k(E)t (2)

and the so called lifetime distribution5

P(τ)≡− 1

N(0)

dN(τ)

dτ
= k(E)e−k(E)τ (3)
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are expected to decay exponentially. The lifetime distribution above is related to

the gap time distribution and enormous efforts have gone into computing and an-

alyzing such distributions. We refer the reader to the paper6 by Ezra, Waalkens,

and Wiggins for a clear exposition of the theory as well as for a detailed historical

account.

It is important to note that the exponential decay is a necessary but not suf-

ficient condition and one usually associates the notion of ergodicity with the

validity of RRKM. The latter assumption, arising naturally given the classical

dynamical origins of RRKM, is a notoriously difficult one to satisfy for Hamil-

tonians of isolated molecules since they typically exhibit a mixed regular-chaotic

phase space even at energies close to the dissociation threshold. Therefore, it is

hardly surprising that several studies have identified reactions which are intrinsi-

cally non-RRKM in nature7–14. Such studies are leading to much needed insights

into the dynamics, and hence aiding in identifying novel mechanisms and raising

hopes for targeted control of the reaction. Clearly, it is crucial to develop models

for reaction rates that eschew the statistical assumption and provide insights into

the mechanisms for nonstatistical behaviour.

Deviations from RRKM predictions can be analyzed from two perspectives.

The first one15 associates deviations from the exponential lifetime to the phase

space being partitioned into two or more weakly coupled subregions and hence

restricted IVR over the entire phase space. Kinetic modeling of such partitioned

phase spaces is able to account for the nonexponential P(τ) in many cases. Never-

theless, highly correlated intramolecular dynamics can lead to the kinetic models

being of doubtful utility. At the very least one would have to introduce the cor-

relations into the kinetic scheme - a rather nontrivial task. The second perspec-

tive16,17, coming from the quantum state space model for IVR, has the correlated

dynamics already built in and predicts power law scaling18 for microcanonically

averaged quantum survival probabilities. The exponent of the power law deter-

mines whether the system is in a regime of restricted or facile IVR. From the

state space, and the associated19,20 local random matrix theory (LRMT), per-

spective restricted IVR arises due to the state space being partitioned into weakly

coupled subregions. The subregions themselves are a result of the various anhar-

monic resonant couplings leading to a sparse density of locally coupled states.

In other words, restricted IVR is a result of the lack of a “percolating cluster”

in the state space. Interestingly, a firm connection between the two perspectives

is yet to be established. In essence, the issue here is to find the link between

the partitioning of the classical phase space and the partitioning of the quantum

state space. In other words, what is the quantum analog for the kinetic models?

And, at the same time, what is the classical analog for the state space dynam-

ics? Although, answer to the latter question is starting to emerge21,22, answering

the first question and linking the two perspectives together requires a detailed

classical-quantum correspondence approach. Arguably, quantum effects like dy-

namical tunneling23,24 will somewhat blunt the correspondence. Nevertheless,

the failure of the classical-quantum correspondence approach will shed light on

the relevance of quantum effects to the observed deviations from statisticality.

In order to address the issues mentioned above, it is crucial to study an ap-

propriate model system from both the perspectives. Although it is desirable to

study real molecular systems with large number of degrees of freedom (DOF), a
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disadvantage stems from the fact that several different phenomena in such sys-

tems can muddle the classical-quantum interpretations. In addition, quantum

and classical studies for large systems at required levels of detail present daunt-

ing computational challenges. Thus, we choose a minimal model for our study

which is still capable of connecting the two perspectives mentioned above. The

model (described below) comes from the pioneering studies by Bunker5,25 on the

dissociation rates of model triatomic molecules. Based on a tour de force, at that

time, calculation of classical rates and lifetime distribution Bunker provided a list

of models that conform to the RRKM theory. A subsequent important paper26

by Oxtoby and Rice provided insights into the Bunker results using tools, partic-

ularly the concept of nonlinear resonance overlap27, from the field of nonlinear

dynamics. However, the work of Oxtoby and Rice replaces the three DOF (s = 3)

Bunker models with an effective two DOF system. Consequently, as also real-

ized26 by Oxtoby and Rice, their study cannot reveal novel IVR pathways that

are feasible in Bunker’s models since there are significant differences between

classical phase space transport for s ≥ 3 systems as compared to the s = 2 sys-

tems28. In this study we undertake a detailed study of the classical dissociation

dynamics of a s = 3 system, based on one of the Bunker models. We show that

the mechanism of IVR and the subsequent dissociation dynamics can only be

understood in terms of the network of nonlinear resonances, also known as the

Arnold web29.

2 Model Hamiltonian

The s = 3 Hamiltonian of interest is of the form

H(p,q) =
3

∑
k=1

[

1

2
G0

kk p2
k +Vk(qk)

]

+
3

∑
k<l=1

G0
kl pk pl (4)

with k = 1,2 and k = 3 modeling the anharmonic stretching modes and a bending

mode respectively of a nonlinear triatomic molecule. The potential functions

Vk(qk) are chosen to be Morse oscillators for the stretching modes

Vk(qk) = Dk

(

1− e−ak(qk−q0
k
)
)2

, (5)

and as a harmonic oscillator for the bending mode

V3(q3) =
1

2G0
33

ω2
3(q3 −q0

3)
2. (6)

The various Hamiltonian parameters are determined such that D1 = D2 = 24 kcal

mol−1 with the resulting mode harmonic frequencies being ν1 = 1112 cm−1,

ν2 = 1040 cm−1, and ν3 = 632 cm−1, corresponding to Bunker’s model 6 for

ozone5. However, eq. 4 is a simplified version of the one used by Bunker in that

the G-matrix elements have been replaced with their equilibrium values. The

simplified version affords a couple of advantages. First, the action-angle repre-

sentation of eq. 4 is easily obtained and allows one to extract the strengths of the

various anharmonic resonances. Second, gauging the influence of the bending
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mode on the dissociation dynamics is straightforward without losing the essen-

tial three DOF nature of the system. Thus, setting G0
13 = G0

23 = 0 yields a (2+1)
DOF system with the bend mode decoupled from the coupled stretching modes

subsystem. Note that the subsystem itself has been the subject of detailed dy-

namical studies30 starting with the classic work31 of Thiele and Wilson.‡ Hence,

the minimal model of eq. 4 is ideally suited for highlighting the central issues of

interest to the present work.

2.1 Action-angle representation: location and strengths of the resonances

The Hamiltonian in eq. 4 can be conveniently transformed to the action-angle

(JJJ,θθθ) representation since the exact action-angle variables for both the Morse32

and the harmonic oscillators are known. The resulting Hamiltonian H(JJJ,θθθ) ≡
H0(JJJ)+V (JJJ,θθθ) has a integrable zeroth-order part

H0(J) = ω3J3 + ∑
k=1,2

ωk

[

Jk −
ωk

4Dk

J2
k

]

, (7)

and the coupling term which can be explicitly written as a Fourier expansion

V (JJJ,θθθ) =
∞

∑
α,β=1

vαβ(J1,J2) [cos(αθ1 −βθ2)− cos(αθ1 +βθ2)]

+ ∑
k=1,2

∞

∑
α=1

uα(Jk,J3) [sin(αθk −θ3)+ sin(αθk +θ3)] . (8)

In the above, the main terms responsible for IVR and dissociation are the various

resonances§ of the form cos(αθi −βθ j) or sin(αθi −βθ j) with strengths vαβ(J)
or uα(J). A specific resonance occurs when

d

dt
(αθi −βθ j) = αθ̇i −βθ̇ j ≡ αΩi −βΩ j = 0, (9)

with Ωi being the nonlinear frequency associated with the ith mode. The above

resonance condition, satisfied for certain resonant action values Jr, can be com-

pactly written as r ·ΩΩΩr = 0 with r = (α,−β) and ΩΩΩr ≡ ΩΩΩ(JJJr) = (Ωr
i ,Ω

r
j). The

zone of influence of a resonance scales as the square root of the strength of

the resonance which decrease rapidly with the so called order of a resonance

O = |α|+ |β|.
The role of such resonances in the dissociation dynamics comes from the

Chirikov overlap criterion27 whereby overlap of various resonances lead to stochas-

ticity in the phase space and hence, presumably, rapid IVR followed by dissoci-

ation of the critical bond. Oxtoby and Rice hypothesized26 that the validity of

RRKM at a specific energy is linked to the extensive resonance overlap that oc-

curs at that energy. However, as mentioned in the introduction, the hypothesis

has a very strong two DOF flavor to it and the key assumption of the existence of

isolated resonance zones needs to be scrutinized carefully.

‡ It is interesting that the referee to this classic work did point out the “danger of generalizing from

triatomic to complex polyatomic molecules”. The referee’s concerns are true even regarding gener-

alization from a linear triatomic (2 DOF) to a bent triatomic (3 DOF).

§ Quantum analogs of the classical nonlinear resonances are precisely the Fermi resonances.
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an intricate network and are not isolated on the energy surface. In Fig. 1C we

show the Arnold web in the so called frequency ratio space (FRS)33 wherein

eq. 10 can be expressed in terms of ( f1, f2) = (Ω1/Ω3,Ω2/Ω3) as

f2 =−α

β
f1 −

γ

β
(11)

A distinct feature of systems with DOF > 2 is the occurrence of junctions wherein

several independent resonances on the energy surface intersect. For example,

Fig. 1C shows a junction at ( f1, f2) = (1,1) formed by two independent reso-

nances (α,β,γ) = (1,0,−1) and (0,1,−1). The number of independent reso-

nances forming the junction determine the multiplicity of the junction. Thus,

(1,1) in Fig. 1C is a multiplicity two junction. Two important points are worth

noting. First, an infinity of resonances of various orders emanate from a junc-

tion. Second, large scale transport can occur on the Arnold web with the junc-

tions playing a central role in the dynamics. Thus, although a trajectory can be

indefinitely trapped in the 1 : 1 zone in Figs. 1A and B, coupling in the bending

mode can detrap the trajectory. Consequently, arguments based on the Chirikov

overlap criterion alone are not sufficient to predict the statisticality of the bond

breaking process. Understanding the dynamics from the Arnold web perspec-

tive is necessary. Is it possible, however, to quantify the extent of non-RRKM

behaviour from such a perspective? What role do the junctions in Fig. 1C play

in the dissociation dynamics of our model Hamiltonian? Is there a connection,

both qualitative and quantitative, between the lifetime distribution of eq. 3 and

the dynamics on the FRS? In the next few sections we attempt to answer these

questions.

3 Dissociation dynamics: role of the resonance junctions

We start this section by noting that the initial conditions shown in Fig. 1B, corre-

sponding to a total energy of 25 kcal mol−1 with 15 kcal mol−1 in the subsystem,

do not dissociate. However, upon coupling the bend mode all four initial con-

ditions do lead to dissociation. Interestingly, trajectories 1 and 3, starting from

a regular region of the subsystem phase space, have lifetimes of about 1.4 ps

and 8.6 ps respectively. On the other hand, trajectories 2 and 4 start from the

chaotic region of the phase space and have lifetimes of about 2.8 ps and 18.8 ps

respectively. Clearly, trajectories 3 and 4 belong to the non-RRKM class. This

observation immediately shows that any attempt to a priori associate trajecto-

ries originating from chaotic regions in the subsystem phase space with RRKM

behaviour is incorrect. Nevertheless, it is crucial to understand the mechanism

which leads to such long lifetime trajectories. As argued in the previous section,

detailed insights in this regard are expected33 to come from the dynamics in the

FRS. However, this requires extracting the mode frequencies as a function of time

and several studies have shown21,22,34–39 that a wavelet based time-frequency

analysis34,35 is ideally suited for this purpose. In particular, for irregular trajecto-

ries, the variations of the nonlinear frequencies with time is capable of providing

deep insights into the transport occurring in the multidimensional phase space.

Note that the static Arnold web in Fig. 1C only indicates the possible resonances

that can play a role and it is absolutely important to extract the time dependent
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frequencies in order to identify the key resonances and the dynamically relevant

regions of the web. In this sense, Fig. 1C can be thought of as a template to

understand the dynamics in the FRS.

0 1 2

f
1

0

1

2

f
2

0 1 2

f
1

0

1

2

f
2

t (ps)

!, cm-1

1

2

3

Fig. 2 The top left and right panels show the evolution of the dynamics on the frequency

ratio space for initial conditions 1 and 3 shown in Fig. 1B. Circled regions highlight the

resonance junctions near which significant activity is observed. The corresponding full

scalograms (modes indicated) for initial condition 1 and 3 are shown in the bottom left

and right multipanels respectively. Scalograms for each case have the same axis range as

shown for mode 3. In the top tight FRS, the blue arrow indicates high density possibly

near junctions of much higher order than shown in the plot. Total energy at 25 kcal

mol−1 for both trajectories.

We give here a brief description of the time-frequency analysis since details

can be found in previous works22,34,35. The time series zk(t) = qk(t)+ ipk(t),
obtained from the dynamics, for the three modes (k = 1,2,3) are subjected to a

continuous wavelet transform34

Lψzk(a,b) = a−1/2
∫ ∞

−∞
zk(t)ψ

∗
(

t −b

a

)

dt, (12)

for a > 0 and b real and

ψ(t) =
1

σ
√

2π
e2πiλte−t2/2σ2

, (13)

with λ = 1 and σ = 2 is the Morlet-Grossman wavelet. Equation 12 gives the

local frequency of zk(t) over a small interval of time around t = b and inverse

of the scale factor a is proportional to the frequency. There are two ways of

analyzing the transform. First is to extract the dominant frequency at a given
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time by computing the maximum of the modulus of the wavelet transform of

zzz(t) i.e., maxa|Lψzzz(a,b)|. The ratios of the dominant frequencies can then be

used to analyze the dynamics in the FRS. A second more comprehensive way35

is to compute the full scalogram |Lψzk(a,b)|2 to look at the ridge maxima and

dominant frequency variations over time.

The results of our computation are summarized in Fig. 2 for two of the initial

conditions labeled 1 and 3 in the susbsytem phase space shown in Fig. 1B. The

total energy is fixed at 25 kcal mol−1, just above the dissociation energy of the

Morse oscillators. Breaking of either mode 1 or mode 2 was identified as disso-

ciation in accordance with the criteria used by Bunker. Clearly, Fig. 2 shows a

distinct difference between the FRS dynamics of the two trajectories. The short

lifetime trajectory visits very few of the numerous resonance junctions whereas

trajectory 3 with τ ≈ 8.6 ps spends an appreciable amount of time near (2,1),
(2,2), and (1,2) junctions. Moreover, as shown by a blue arrow in Fig. 2 (upper

right panel), there are indications that the dynamics is influenced by resonance

junctions formed by resonances of orders higher then five. Note that the FRS

range shown in Fig. 2 is energetically accessible and hence lack of density in

certain regions suggest the existence of dynamical barriers.

0 1 2

f
1

0

1

2

f
2

0 1 2

f
1

0

1
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f
2

t (ps)

!, cm-1

1

2

3

Fig. 3 Same as in Fig. 2 for initial conditions 2 and 4 respectively. Total energy at 25

kcal mol−1 for both trajectories.

In Fig. 3 we summarize the FRS dynamics for the initial conditions 2 and 4

as shown in Fig. 1C along with the scalograms. Note that both trajectories start

in the chaotic part of the subsystem phase space and yet their lifetimes differ

by nearly a factor of six. The reasons for this difference becomes clear from

the FRS shown in Fig. 3 wherein the long lifetime trajectory is seen accessing

several resonance junctions. Apart from the main (1,1) junction, seen in the pre-
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vious cases as well, the trajectory is clearly spending sufficient amount of time

near the (3/2,1), (4/3,2/3), and the (1/2,1/2) junctions. The main point here is

that the FRS shows significant anisotropy despite the considerable delocalization

with the anisotropy originating from the trajectory “sticking” around the various

junctions. In contrast, the shorter lifetime trajectory is accessing far fewer junc-

tions with almost no density near junctions formed by high order resonances such

as the (4/3,2/3) junction.

0 1 2

f
1

0

1

2

f
2

Fig. 4 FRS dynamics for two specific trajectories. The first one (orange) corresponds to

trajectory 3 in Fig. 1C with the bend mode decoupled and total energy of 25 kcal mol−1.

The dynamics is clearly localized (arrow) around the 1 : 1 resonance. The second

trajectory (cyan) is at a total energy of 40 kcal mol−1 and has a lifetime of ∼ 1.2 ps.

Trapping near resonance junctions are highlighted with circles.

As a contrast to the cases discussed above, Fig. 4 shows the FRS dynamics

for two trajectories. The first one is the trajectory 3 as before except that the

coupling of the bend mode to the stretches has been turned off. As expected

from the surface of section shown in Fig. 1B, and in strong contrast to Fig. 2 (top

right panel), the trajectory is localized in the 1 : 1 stretch-stretch resonance for

all time. The second case pertains to a trajectory with a total energy of 40 kcal
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mol−1 which is far above the dissociation energy. The lifetime of this particular

trajectory is about 1.2 ps and is relatively large compared to the typical lifetimes

for most dissociating trajectories at this energy. The reason for this becomes clear

from Fig. 4 wherein trapping near (1/2,3/2), (1/2,1), and (1,1/2) junctions can

be seen.

The results shown in this section clearly indicate a strong correlation between

long lifetime trajectories and enhanced density around various multiplicity two

resonance junctions. Such junctions invariably involve the bending mode and the

scalograms show that the bending modes actively participate in the IVR even at

early times. We stress that the examples shown are representative and several

other trajectories exhibit very similar characteristics in the FRS. It is also worth

pointing out that significant differences can be seen between Fig. 2 and Fig. 3

corresponding to the dynamics of the two long lifetime trajectories. Note that

existence of such junctions and their influence on the dissociation dynamics is a

genuine three DOF feature and cannot be uncovered by effective models which

have lesser than three DOF.

4 Discussion and open problems

The results shown in this work provide an important clue to the title question.

Dissociating trajectories which have very small sojourn times near the resonance

junctions are expected to behave statistically. This observation is reminiscent of

an earlier work40 by Hamilton and Brumer in that trapping near junctions lead

to long time dynamical correlations and hence would violate the so called zero

relevance condition. The emphasis of this work on junctions is also in line with

the early observations41 of Engel and Levine who argued that large scale IVR

requires the participation of at least three modes. Interestingly, our results indi-

cate that the junctions might slow down IVR just enough to violate statisticality.

Studies by Bach, Hostettler and Chen on the unimolecular dissociation of ethyl

radical, using the approach of time-frequency analysis, hint towards episodes of

regularity in the dynamics even at energies far above the dissociation threshold36.

It is not known whether there is any role of junctions in their studies.

This work is inspired by the seminal work of Martens, Davis, and Ezra33

where the first attempts to use the FRS to understand the IVR dynamics of pla-

nar OCS were undertaken. More recently, Paskauskas, Chandre, and Uzer pro-

vided42 a detailed study of the phase space of planar OCS and identified one

possible mechanism of trapping and escape involving a class of two-dimensional

invariant tori. The results presented in this work point towards a connection be-

tween these studies which, however, is not yet established. Of course, the clue

regarding links between non-RRKM and trapping near junctions raises several

questions and we list a few of them below for further work and discussions.

1. Which features of the junction determine the extent of trapping of a tra-

jectory? This requires detailed studies comparing, for instance, the nature

of the dynamics near a junction involving a strong low order resonance

and a weak high order resonance with dynamics near a junction formed by

two high order resonances. Although methods do exist43–46 to study such

problems, it remains to be seen if quantitative measures for deviations from
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RRKM can be obtained using such approaches.

2. In this study of a three DOF system, one can only have junctions with

multiplicity two. In higher DOF systems one can have junctions of differ-

ent multiplicities and such a scenario would be generic to many realistic

molecular systems. However, not much is known about the dynamics near

junctions with less then maximal multiplicity in such cases. A puzzling

observation here is worth mentioning. For systems with very large num-

ber of DOF it appears that the Arnold web will be densely populated with

resonance junctions. In turn, given that trajectories can get trapped near

junctions, this implies that nonstatisticality may be the rule rather than ex-

ception.

3. Recent work47 suggests that local dynamical traps near junctions can slow

down the quantum IVR dynamics. However, the issue of whether quantum

dynamical tunneling? can also help in escaping from the trap is largely

unexplored. If dynamical tunneling dominates, as is expected48 for poly-

atomic systems with a large density of states, then that might resolve the

puzzle mentioned above.

4. Finally, is it possible to relate the number of dominant junctions with the

number of partitions in the kinetic schemes mentioned earlier? Clearly, in

order to establish such a connection one would have to relate the trapping

or residence times46 near the junctions with the weighting factors λi in the

multi exponential fit15 P(τ) = ∑i λi exp(−kiτ) to the lifetime distribution.

Since several studies have already established the close correspondence

between the FRS and the quantum state space models of IVR, progress

in this regard will help in relating the two perspectives mentioned in the

introduction.
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