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X-ray diffraction provides insight into the distribution of electronic charge in
crystals. Equilibrium electron distributions have been determined with high spa-
tial resolution by recording and analysing a large number of diffraction peaks
under stationary conditions. In contrast, transient electron densities during and
after structure-changing processes are mainly unknown. Recently, we have in-
troduced femtosecond x-ray powder diffraction from polycrystalline samples to
determine transient electron density maps with a spatial resolution of 0.03 nm and
a temporal resolution of 100 fs. In a pump-probe approach with a laser-driven
tabletop hard x-ray source, optically induced structure changes are resolved in
time by diffracting the hard x-ray probe pulses at different time delays from the
excited powder sample and recording up to several tens of reflections simultane-
ously. Time-dependent changes of the atomic arrangement in the crystal lattice
as well as modified electron densities are derived from the diffraction data. As a
prototypical field-driven process, we address here quasi-instantaneous changes of
electron density in LiBH4, LiH and NaBH4 in response to a non-resonant strong
optical field. The light-induced charge relocation in LiBH4 and NaBH4 exhibits
an electron transfer from the anion (BH−

4 ) to the Na+ cation. The distorted ge-
ometry of the BH4 tetrahedron in LiBH4 leads to different contributions of the H
atoms to electron transfer. LiH displays a charge transfer from Li to H, i.e., an
increase of the ionicity of LiH in the presence of the strong electric field. This
unexpected behavior originates from strong electron correlations in LiH as is ev-
ident from a comparison with quasi-particle bandstructure calculated within the
Coulomb-hole-plus-screened-exchange (COHSEX) formalism.

1 Introduction

Ultrashort optical pulses allow for applying peak electric fields to a crystal which
are comparable to or even beyond the fields valence electrons experience under
equilibrium conditions. In this regime of light-matter interaction, field-driven
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processes of charge transport and nonlinear optical phenomena under non-perturb-
ative conditions are made accessible to experiments with atto- to femtosecond
time resolution. Field-driven coherent ballistic electron motions1 and electron
emission2, interband tunneling of electrons3, and light-driven charge reloca-
tions4–6 are prototype phenomena. Experiments based on a variety of optical
and electrooptical methods have focused on the ultrafast dynamics of electric po-
larizations and currents while the spatial aspects of the electronic response have
remained mainly unexplored. X-ray methods with a femtosecond time resolu-
tion, in particular x-ray diffraction, provide access to spatial electron distribu-
tions during and after ultrafast processes7–13 and, thus, hold a strong potential
for unraveling field-driven processes in space and time.

A basic field-driven process in the ionic material NaBH4 is illustrated in Fig.
1 where the ionic potentials of Na+ and BH−

4 are shown together with the (cell-
periodic) electron wavefunctions in the highest valence band (vb) and the lowest
conduction band (cb) state. Under equilibrium conditions, the vb wavefunction
|Ψvb⟩ shows a high amplitude on the BH−

4 and a small amplitude on the Na+

ion. A strong external field of an amplitude comparable to the interionic field of
approximately 109 V/m distorts the ionic potentials and leads to the admixture
of other ionic states, in particular conduction band states |Ψcb⟩ with a similar
amplitude on the two sites. The new wavefunction is given by |Ψvirt⟩= α|Ψcb⟩+
β|Ψvb⟩14, describing a state in which. electronic charge is shifted from the BH−

4
to the Na+ ion over the inter-ionic distance of some 300 pm. This mechanism
generates a strong electric polarization of the material existing as long as the
external field is present.

The elementary picture outlined in Fig. 1 neglects modifications of the charge
distribution originating from the inherent long-range electron-electron interac-
tions and their screening in the densely packed crystal lattice. Consequently, it
remains open to what extent the picture of Fig. 1 exists and which modifications
are introduced by the coulomb correlations among electrons. While such issues
have been addressed for model systems in the theoretical literature15–26, exper-
imental insight into field-driven electron relocations is scarce. Ultrafast time-
resolved x-ray diffraction allows for testing the validity of the picture of Fig. 1
and - vice versa - should allow for probing the impact of correlations effects on
transient electron distributions.

In this article, we demonstrate and discuss the potential of femtosecond x-
ray powder diffraction27 to measure transient electron density maps induced by
a strong external optical field under nonresonant conditions. Our work is fo-
cused on the ionic materials LiH and NaBH4, consisting of light elements and,
thus, allowing for a mapping of valence electrons. While NaBH4 displays a be-
havior expected for an ionic crystal, i.e., a shift of electronic charge from the
negative BH−

4 ion to the positive Li+ ion, LiH behaves differently. Here, charge
is shifted from Li to H, enhancing the ionicity of the material. We show that
this unexpected behavior is a direct consequence of electron-electron corelations
reproduced by theoretical bandstructure calculations within the Coulomb-hole-
plus-screened-exchange (COHSEX) formalism.

The article is organized as follows. Section 2 gives a brief summary of the
experimental method and data. The analysis of the diffraction data and extraction
of electron density maps are discussed in detail in section 3, followed by a dis-
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Fig. 1 Schematic illustrating the mechanism of electron transfer from a BH−
4 to a Na+

ion in a NaBH4 crystal. The unperturbed valence and conduction band wavefunctions,
Ψvb and Ψcb (blue and green curves), and the ionic potentials (solid black lines) are
plotted as a function of the inter-ionic distance. In the valence band, electrons are mainly
localized on the BH−

4 ion while the conduction band wavefunction displays similar
amplitudes on the two ions. Upon application of an external electric field with an
amplitude comparable to the inter-ionic fields, the potentials are distorted (dashed black
line) and the corresponding perturbed wavefunction αΨvb +βΨcb (red line) is a mixture
of valence and conduction band states of the unperturbed Hamiltonian. Generation of this
virtual state is connected with a partial electron transfer from the BH−

4 to the Na+ ion
and a strong electric polarization. In time, the electron transfer follows the external
electric field.

cussion of the results for NaBH4 and LiH in section 4. Bandstructure theory and
its application to the electron density maps are presented in section 5, followed
by conclusions in section 6.

2 Femtosecond x-ray diffraction experiment

In a femtosecond pump-probe scheme, the electric field of a nonresonant 800
nm excitation pulse interacts with a powder sample and a synchronized hard x-
ray probe pulse is diffracted from the sample at different fixed time delays. The
angular positions and intensities of several Debye Scherrer rings which are of
elliptic or hyperbolic shape on the two-dimensional x-ray detector, are recorded
simultaneously and represent the primary data from which transient electron den-
sity maps are derived. Pump and probe pulses are derived from an amplified
Ti:sapphire laser system delivering sub-50 fs pulses centered at 800 nm with an
energy per pulse of 5 mJ and a repetition rate of 1 kHz. The excitation pulses
have a peak amplitude of the electric field of approximately 1 GV/m. The main
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Fig. 2 (a) X-ray diffraction pattern of the NaBH4 powder sample as recorded with a
large-area x-ray detector. The inset shows the diffraction pattern of the diamond windows
only. (b) Diffracted x-ray intensity integrated over individual Debye-Scherrer rings from
NaBH4 as a function of the diffraction angle 2θ.

fraction of the laser output drives a plasma source28 providing hard x-ray pulses
of a photon energy of 8.06 keV (Cu Kα) and a duration of approximately 100 fs.
The x-ray diffraction patterns are detected with a large area detector (Pilatus Dec-
tris 1M). Each diffraction ring corresponds to one (or several equivalent) set(s)
of lattice planes hkl [Fig. 2(a)]. The exposure time per time delay step was 140 s
and typically ≈ 2000 time delay steps were collected for several days with a
fresh sample everyday. The all optical autocorrelation was measured repeatedly
to assure a proper stacking of the different data sets.

The NaBH4 and LiH samples consist of a 200 µm thick powder, pressed in-
between and sealed by two 20 µm thick diamond windows. Assuming a spher-
ical shape of ions in the crystal lattice, both NaBH4 and LiH crystallize in a
rock-salt structure (space group Fm3m) with lattice constants of a = 407.52 pm
(LiH)29,30 and a = 615.06 pm (NaBH4)31,32. At T=300 K, LiBH4 crystallizes
in the orthorhombic space group Pnma (No. 62). The unit cell dimensions are
a=0.718 nm, b=0.444 nm, c=0.680 nm33 with four formula units per unit cell.
Because of the high chemical reactivity, great care was taken to avoid air contam-
ination of the sample which was prepared under an Ar atmosphere in a glove-box.
During the measurements, the samples were continuously rotated.

In Fig. 2, we present diffraction patterns of NaBH4 while similar data for LiH
and LiBH4 have been reported in Refs.13 and12, respectively. Fig. 2(a) displays
part of the detected ring pattern whereas Fig. 2(b) shows the intensity integrated
over the stationary diffraction rings of NaBH4 as a function of the diffraction
angle 2θ. Two diamond reflections (blue) originate from the sample windows.
When applying the field of the excitation pulse, we observe changes of diffracted
intensity of the diffraction rings in all three samples with the angular positions
remaining unchanged. In Fig. 3(a) and (b) the change of diffracted intensity
on the (111) rings in NaBH4 and LiH is plotted as a function of pump-probe
delay. In panels (c-f) we show transient intensity changes for 4 selected allowed
reflections of LiBH4 as a function of pump-probe delay (symbols). Depending
on the investigated material and the diffraction ring (hkl), one observes either
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Fig. 3 (a) Relative change of diffracted intensity of NaBH4 by the (111) plane versus the
pump-probe time delay. (b) Relative change of the diffracted intensity of LiH by the
(111) plane versus time delay. (c-f)Transient intensity changes for 4 selected allowed
reflections measured on LiBH4 powder as a function of pump-probe delay (symbols).
The red lines are gaussian fits in panels (a) and (b) and B-splines in (c-f) as guides to the
eye.

an increase [(a) and (f)] or a decrease [panels ((b)-(e)] of diffracted intensity
of a few percent around delay zero when excitation and probe pulses interact
simultaneously with the sample. For NaBH4 and LiH the temporal behavior
follows essentially the cross correlation between excitation and probe pulses. In
LiBH4 we observe some small longer-lived intensity changes. This fact shows
that the induced changes exist mainly with the excitation field present and that
they are fully reversible.

The relative intensity change of the diffraction ring hkl is given by

∆Ihkl(t)
Ihkl

=
|Fhkl(t)|2 −|F0

hkl |2

|F0
hkl |2

, (1)

where Fhkl(t) is the structure factor of the material modified by the external
electric field and F0

hkl the known structure factor of the unexcited crystal. The
structure factors are related to the electronic density ρ(r) by a Fourier transform.
The steady-state electronic density ρ0(r) is given by the Fourier transform of the
structure factors F0

hkl . At room temperature in all three materials NaBH4, LiH,
and LiBH4 the structure factors are real due to the inversion symmetry of the
rock-salt structure (space group Fm3m) or the orthorhombic space group Pnma.
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3 Reconstruction of the transient electron density ρ(r, t)

The equilibrium charge density ρ0(r) can be derived from the known structure
and structure factors of the unexcited crystals29–33. To determine the transient
ρ(r, t) from the measured transient diffraction patterns, the phase factors of the
structure factors Fhkl(t) need to be known. The principal strategy for solving this
problem is discussed next.

When measuring a fully disordered powder sample, the electric field vector
of the excitation pulse E(t) has an individual orientation relative to the crystal
axes in each crystallite. The transient change of the electron density in a par-
ticular crystallite i, ∆ρi(r, t) = ρi(r, t)−ρ0(r) can be decomposed into symme-
try conserving and a non-conserving component ∆ρi(r, t) = ∆ρSym(r, |E(t)|)+
∆ρNoSym

i (r,E(t)). The symmetry conserving part depends only on the amplitude
of the electric field |E(t)| and, thus, is identical in all crystallites. Since the distri-
bution of relative orientations between E(t) and the crystal axes is isotropic in a
powder sample, the symmetry conserving electron density change is just the elec-
tron density change averaged over all crystallites: ∆ρSym(r, t)=N−1 ∑N

i=1 ∆ρi(r, t).
In this averaging procedure, the symmetry non-conserving components cancel
each other since for each crystallite a with ∆ρNoSym

a (r,E(t)) the ensemble con-
tains another crystallite b with ∆ρNoSym

b (r,E(t)) =−∆ρNoSym
a (r,E(t)). As a con-

sequence, ∆ρSym(r, t) exhibits the symmetry properties of the initial structure
ρ0(r). Please note that ∆ρSym(r, t) is exclusively determined by the intensity
changes of the allowed reflections. In the case of LiBH4 we observed also a
small amount of transient intensity on forbidden reflections (see our discussion
of this phenomenon in Ref.12). In the more recent studies on LiH and NaBH4 any
detectable intensity on forbidden reflections was absent and, thus, the symmetry
non-conserving component is negligible compared to ∆ρSym(r, t). The following
discussion focuses exclusively on ∆ρSym(r, t).

3.1 Maximum entropy method (MEM)

The MEM aims at finding the most likely charge-density distribution by maxi-

mizing the quantity S = −
Npix

∑
i=1

ρi log(ρi) (formally similar to the entropy, hence

the name) under the constraints given by the information obtained from the ex-
periment34,35. The quantities ρi are the electron density at a position i in space,
the so-called pixel i. The total number of pixels is Npix. The MEM effectively
exploits all the information from the experiment without creating artifacts in the
charge density distribution. The quantity S cannot be maximized analytically but
is calculated recursively, e.g., by the Sakata-Sato algorithm36 implemented in the
BayMEM program37.

In general, an exact Fourier transform for determining the spatially resolved
electron density requires an infinite number of structure factors Fhkl . In practice,
any diffraction experiment only gives the structure factors for a limited num-
ber of reflections, typically restricted by an upper limit for the diffraction angle
2Θmax. In such an incomplete data set, the scattering vector qmax = sin(Θmax)/λ
determines the spatial resolution at which the electron density map ρ(r, t) can be
reconstructed. For an unbiased analysis of the transient electron density ρ(r, t),
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Fig. 4 (a) Amplitudes of structure factors of LiBH4 as a function of q = sin(Θ)/λ for
different spatial resolutions. qmax = sin(Θmax)/λ indicates the reflections measured in
our femtosecond diffraction experiment. (b) Stationary total electron density distribution
in the plane Y=0.25), convoluted in the reciprocal space with a gaussian [red columns in
panel (a)] to fit our spatial resolution. The yellow line indicates the section along
Fig. 7(a) is plotted.

we prefer to avoid any refinement of the data, e.g., with least-squares methods
starting from a model of the transient structure.

The MEM allows for a reconstruction of ρ(r, t) from the experimentally ob-
served reflections (Fobs

hkl ) with |qhkl |< qmax without involving any model. A brief
introduction to the MEM can be found in chapter 5.3 of Ref.38. There has been
quite some controversy about the application of the MEM, mainly caused by
claims of a spatial ’super-resolution’39 or the ’proof’ of non-nuclear maxima of
ρ(r) in silicon36. In a proper application of the MEM, the amount of added un-
known information, i.e., the structure factors FMEM

hkl with |qhkl |> qmax, has to be
definitely smaller than the experimentally known information Fobs

hkl . In contrast to
least-squares methods the concept of the MEM allows for making the differences
|FMEM

hkl −Fobs
hkl | ≪ |Fobs

hkl | arbitrarily small.
Our previous reconstruction of ρ(r, t) of LiBH4 has been based on a pub-

lished analysis of the equilibrium structure which has been determined with the
least-squares method within the independent atom model33. The amplitude of
the structure factors Fhkl are shown as black bars in Fig. 4. The corresponding
charge density was used as the initial guess, the so-called PRIOR in the MEM37.
Structure factors of overlapping Debye Scherrer rings were treated within the
MEM using the so called ”group amplitudes”40.

Applying the MEM directly to the experimentally observed reflections (Fobs
hkl )

with |qhkl | < qmax leads to unreliable predictions since the amount of forecast
information (i.e. FMEM

hkl with |qhkl | > qmax) is larger than that from the exper-
iment covering the range of |qhkl | < qmax. To circumvent this problem, we
artificially reduced the spatial resolution in deriving both ρ0(r) and ρ(r, t) by
multiplying the corresponding structure factors with a gaussian profile Fhkl ×
exp[− ln(2)(qhkl/qmax)

2]. The resulting structure factors are shown as red bars in
Fig. 4(a).

The corresponding electron stationary electron density ρ0(x,0.25b,z) in the
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Fig. 5 Comparison between (a) the transient electron density map ∆ρSym of LiBH4 at
τ = 0 [Fig. 3(c) of Ref. 12] together with (b) the spatially resolved error of such a map
obtained from the fluctuations of maps measured at negative delay times τ < 0.

plane where the Li-, the B-, and two H-atoms of a LiBH4 molecule reside is
shown in Fig. 4(b). This spatial resolution corresponds to the experimental one
and, thus, the MEM is not enhancing the spatial resolution, but just helps to
avoid artifacts because of the abrupt end of the Fourier series, e.g., the so-called
Gibbs phenomenon (the appearance of ring-like structures around the atoms) in
the charge-density distribution. Due to the low Z of all atoms in LiBH4 one
can clearly see the hydrogen atoms in the vicinity of the boron atom [Fig. 4(b)].
However, reducing the spatial resolution further, Fhkl ×exp[− ln(2)(2qhkl/qmax)

2]
[blue bars in Fig. 4(a)] leads to the situation that the MEM result shows an almost
vanishing difference from the direct Fourier transform in the truncated reciprocal
space, i.e. Fhkl = 0 for |qhkl |> qmax.

To summarize, the MEM allows for a gradual transition from an exact recon-
struction towards being increasingly speculative when increasing the (gaussian)
spatial resolution from qgauss < qmax to qgauss > qmax. Such an analysis avoids
artefacts and allows for a proper assessment of the MEM results. This method
has been applied for extracting the transient electron density maps of NaBH4,
LiH, and LiBH4 from our femtosecond powder diffraction data.

3.2 Signal-to-noise-ratio of transient electron density maps

The signal-to-noise ratio of a transient electron density map is estimated by the
procedure described in the following. Maps measured at negative delay times
τ < 0 show fluctuations with an amplitude strongly depending on the value of
the electron density at a particular spatial position within the unit cell. The stan-
dard deviation of such fluctuations gives the amplitude of an error bar shown in
Fig. 5(b) which is 3-4 times smaller than the largest transient changes ∆ρ(r, t)
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Fig. 6 (a) Difference electronic density map ∆ρ(r, t = 0) reconstructed by the MEM at
zero delay time of NaBH4. (b) and (c) ∆ρ(r, t = 0) of LiBH4 and LiH, respectively. In
contrast to the boron hydrides (i.e. charge transfer from anion to cation) LiH shows an
increase of its ionicity when exposed to the strong electric field of the pump pulse.
(d-f) Integrated charge changes on the respective cation Na or Li versus the delay time.

shown in Fig. 5(a). Typically, such fluctuations are large at spatial positions of
high electron density, e.g., on the boron atoms in Fig. 5(b). However, the position
of an atom within the unit cell plays also a significant role for the size of the error
bar. In particular, one gets a very high signal-to-noise ratio for ∆ρ(r, t) in situa-
tions if electronic charge transiently appear at spatial positions where initially no
atom was present, e.g. hydrogen atoms in (NH4)2SO4

9.

4 Discussion and analysis of the transient charge density maps

Using the MEM described in the previous section we reconstructed from our fem-
toseond x-ray diffraction data (Fig. 3) the corresponding transient charge density
maps ∆ρ(r, t = 0) which are shown for time delay zero in Fig. 6. In panel (a)
we show the difference electron density map of NaBH4. The difference maps
∆ρ(r, t = 0) of LiBH4 and LiH are presented in panels (b) and (c). Another
sectional view of ∆ρ(r, t = 0) of LiBH4 has already been shown in Fig. 5(a).
We now discuss the exchange of electronic charge between cations and anions,
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as well as details of transient charge changes on the hydrogen atoms which are
clearly detected with our spatial resolution for LiBH4.

4.1 Transient exchange of electronic charge between cations and anions

The initial electron density map ρ0(x,y,0) of LiH with our spatial resolution is
shown in Fig. 2(a) of Ref.13 and exhibits a high electron density on the Li atom
and a small density on the H atom. In Fig. 6(c), the change of electron density
∆ρsym(r, t) is plotted for zero delay time. This map shows a pronounced decrease
of electron density on the Li atom and a corresponding increase on the hydrogen
position, giving direct evidence for a quasi-instantaneous increase of the ionicity
of LiH in the presence of the strong electric field. This surprising behavior is in
strong contrast to ∆ρsym(r, t) of NaBH4 [Fig. 6(a)] and LiBH4 [Fig. 6(b)], where
the light-induced charge relocation exhibits an expected charge transfer from the
anion (BH−

4 ) to the respective cation.
To determine the amount of charge transferred, we divided the unit cell into

sub-volumes, i.e., each spatial position r within the unit cell is uniquely assigned
to the sub-volume of the nearest atom. We then integrated the charge in the
sub-volumes. For LiH this procedure leads to (a/2)3 cubes around Li and H. In
the case of BH−

4 anions, the charge of the whole unit was put together. Time-
dependent charge density changes are displayed in Fig. 6(d) to (f) where we plot-
ted the integrated charge changes on the respective cation, i.e. Na+ or Li+, versus
the delay time.

In LiH, the striking feature is a sharp drop of electronic charge on the Li atom
[Fig. 6(f)] concomitant with the increase of the same amplitude on the hydrogen
position due to charge conservation within each unit cell. The peaks of the tran-
sients in panels (d-f) have a width of ≈ 100 fs (FWHM) which agrees with the
temporal cross-correlation function of the optical excitation and the hard x-ray
probe pulses9,12. In the case of the boron hydrides [Fig. 6(d) and (e)] we see
exactly the opposite behavior, i.e., a light-induced charge transfer from the anion
BH−

4 to the respective cation Na+ or Li+. Outside the temporal overlap of pump
and probe pulses, the changes of electron density are minor. Such facts strongly
support our picture of a field-driven charge transfer which is limited in time to
the presence of the driving field.

In summary, LiH shows an increase of its ionicity when exposed to the strong
electric field of the pump pulse, in contrast to the boron hydrides where the charge
transfer from the anion to the cation reduces the ionicity.

4.2 Asymmetric transient charge changes on the H-atoms within the dis-
torted BH4 tetrahedron of LiBH4

In the case of LiBH4 our spatial resolution allows for analyzing details of tran-
sient charge changes on the hydrogen atoms. In particular we can identify an
asymmetric transient charge change on one of the H-atoms within the distorted
BH4 tetrahedron of LiBH4. To this end we plot in Fig. 7(a) the stationary elec-
tronic density ρ0(rB−H) of LiBH4 (blue curve) along the connecting line rB−H
between the boron atom and one hydrogen atom within the BH−

4 anion. This path
indicated by the yellow line in Fig 4(b) traverses in part the electron cloud of a
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Fig. 7 (a) Stationary electronic density ρ0(rB−H) along the connecting line between the
boron atom and one hydrogen atom [yellow lines in panel (c) and in Fig 4(b)] within the
BH−

4 anion for LiBH4 (blue curve) and NaBH4 (red curve). (b) Respective electron
density change ∆ρ(rB−H, t = 0) along the connecting lines. The error bars are calculated
by means of the method described in section 3.2.

Li-atom but not those of the other 3 H-atoms. For comparison we plot a simi-
lar curve for NaBH4 (red line). Although our spatial resolution was somewhat
higher in the NaBH4 experiment (i.e. larger qmax) we can clearly distinguish the
hydrogen atoms from their boron atom for the BH−

4 ion in LiBH4. The invisi-
bility of hydrogens in NaBH4 is due to the statistical mixture of hydrogen atoms
belonging with 50% probability to two different tetrahedrons having their corners
on a cube around the boron atom (Wyckoff positions 32 f of space group Fm3m).
In Fig. 7(b) we show the electron density changes ∆ρ(rB−H, t = 0) for the two
materials along the respective connecting lines. In the case of NaBH4 the entire
anion loses its charge without displaying an internal structure of ∆ρ(rB−H, t = 0)
within the BH−

4 ion. In contrast, we observe a pronounced asymmetric transient
charge change within the BH4 tetrahedron of LiBH4 [blue curve in Fig. 7(b) and
difference charge density map in Fig. 5(a)]. Electronic charge is lost on one of
the H-atoms (left minimum) and the antipodal orbital of the B-atom (right min-
imum). In LiBH4 the structure of the tetrahedrons is distorted with different
lengths and angles of the B-H bonds33. Interestingly, the hydrogen H1 with the
shortest bond length [dB−H1 = 104 pm, cf. Table 2 of Ref.33] dominates in the
charge loss of the anion. We consider this distortion the origin of the inequivalent
charge transfer from the different hydrogens.

4.3 Microscopic mechanism of field-induced charge transfer between ions

We now discuss the microscopic physics underlying the material’s polarization
and the field-induced change of electron density ∆ρsym(r, t) in the different ma-
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terials. Without external field, electrons in an insulator populate states up to the
highest valence band. An external field of an amplitude comparable to the inte-
rionic field of the order of 1 GV/m distorts the ionic potentials and leads to the
admixture of other ionic states, in particular conduction band states (cf. Fig. 1).
The wavefunction of the mixed state is given by

|Ψb,k(E)⟩=
1√
N

[
|Ψb,k⟩+E ∑

b′ ̸=b

⟨Ψb′,k|er|Ψb,k⟩
εb,k − εb′,k

|Ψb′,k⟩

]
(2)

at wave vector k in the (occupied) band b with the normalization constant N. The
sum runs over all unoccupied bands b′. The perturbative approach in (2) is valid
as the dipole interaction energy |⟨Ψb′,k|er|Ψb,k⟩| · |E| ≃ 0.2 eV is much smaller
than the smallest bandgap εb,k−εb′,k ≃ 5 eV of the three materials, i.e. LiH at the
X point of the Brillouin zone. In other words, the experiments are in the regime
of a linear response of the material to the external electric field. The symmetry
conserving part of the deformed charge density is obtained by averaging over
all electric field directions (êΩ: unit vector in solid angle direction Ω) and a
summation over all occupied states within the Brillouin zone

ρSym(r, t) =
occupied

∑
b,k

1
4π

∫
dΩ

∣∣Ψb,k(êΩ · |E(t)|,r)
∣∣2 . (3)

The distorted wave function (2) shows that both the eigen-energies εb,k (i.e.,
the band structure) and the eigen-functions Ψb,k(r) (i.e., the Bloch functions) of
the system Hamiltonian determine the exact shape of the electron density (3) in
the strong electric field.

5 Theory

The experimental results were analyzed by the model calculations presented in
this section. We show that a mean-field theory such as the Hartree-Fock ap-
proximation fails to account for the experimentally observed quasi-instantaneous
increase of the ionicity of LiH in the presence of the strong electric field. How-
ever, calculations including Coulomb correlations on the most basic level, i.e.,
quasi-particle bandstructures calculated within the Coulomb-hole-plus-screened-
exchange (COHSEX) formalism20,23, predict the increase of the ionicity of LiH
correctly. In the following, we use the mathematical nomenclature introduced in
Refs.23 and22.

The COHSEX formalism considers the dynamics of the one-particle Green’s
function, expands the self-energy operator in terms of a dynamically screened
interaction (rather than a bare Coulomb interaction), and keeps the first term in
such an expansion. The quasiparticle excitations in a closed shell many-electron
system obey the integro-differential equation

[
p2

2m
+VN(r)+VH(r)

]
ψn,k(r)+

∫
dr′ Σ(r,r′,En,k)ψn,k(r′) = En,kψn,k(r) (4)

where VN(r) is the nuclear Coulomb potential, VH(r) is the average Coulomb
(Hartree) potential due to the electrons, and Σ is the electron self energy operator
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Fig. 8 (a) and (c) Quasi-particle band structures of LiH within the COHSEX
approximation. (b) and (d) Stationary electron densities at the X-point, (e) L-point, and
(f) Γ-point within the Brillouin zone (BZ). Panels (a) and (b) correspond to a calculation
with homogeneous screening similar to that of Ref. 22 leading to a 1S-like orbital on the
H atom throughout the BZ. Panels (c,d,e,f) are calculated with a somewhat stronger
screening on the proton resulting in 2P-like orbitals on both Li and H nuclei at the
X-point (zone boundary).

which includes all the exchange and correlation effects. It is in general a non-
local, energy-dependent, non-Hermitian operator. The procedure for finding the
quasi-particle energies En,k and wave functions ψn,k(r) requires evaluating Σ and
then solving Eq. (4). In the following we use the static COHSEX approximation
(first introduced by Hedin20) which constitutes one of the biggest steps in the
theoretical basis for band structure calculations. In this approximation, the self
energy is purely real (i.e. no finite quasi-particle lifetimes) and does not depend
on the quasi-particle energy itself. As a consequence Eq. (4) mathematically re-
sembles a nonlinear ”Schrödinger equation” with all its advantages for solving
it. For our purpose it is convenient to expand the quasi-particle wave function in
plane waves [Eq. (B2) of Ref.23]

ψn,k(r) =
1√
Ω ∑

G
ψn,k(G)ei(k+G)r (5)

where G are the reciprocal lattice vectors of the crystal and Ω = N Ωuc stands for
the crystal volume determining the discretization in k space. Ωuc = a3/4 is the
volume of the primitive unit cell. The quasi-particle equation now has the form

∑
G′

[
H0

G,G′(k)+Ω ΣG,G′(k)
]

ψn,k(G′) = En,kψn,k(G). (6)

Both H0
G,G′(k) and ΣG,G′(k) contain purely local (i.e. k-independent) and
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nonlocal (i.e. k-dependent) contributions:

H0
G,G′(k) =

h̄2|k+G|2

2m
δG,G′ +

4π e2

Ωuc|G−G′|2
[
ρe(G−G′)−ρN(G−G′)

]
(7)

ρe(G) =
2
N

occ

∑
n,k,G′′

ψ∗
n,k(G

′′)ψn,k(G′′+G), (8)

ρN(G) = ZLi ei G RLi +ZH ei G RH , (9)

The Fourier transform of the electron density ρe(G) in Eq. (8) is identical to
the structure factor Fhkl = ρe(Ghkl) determined in an x-ray diffraction experiment.
In the sum over occupied states with band index n and wave vector k (within the
1st BZ), only the states of the same spin as (n,k) contribute and the factor 2
accounts for the spin degeneracy. The self energy ΣG,G′(k) consists of a nonlocal
screened exchange (SEX) and a purely local Coulomb hole (COH) contribution:

ΣSEX
G,G′(k) = − 1

Ω

occ

∑
n,k′

∑
G1,G2

ψn,k′(G−G1)ψ∗
n,k′(G

′−G2)

× ε−1
G1,G2

(|k−k′|,ω = 0)
4π e2

Ω|k−k′+G2|2
, (10)

ΣCOH
G,G′ =

1
Ω ∑

n,q
∑

G1,G2

ψn,k−q(G−G1)ψ∗
n,k−q(G

′−G2)

× 1
2

[
ε−1

G1,G2
(q,ω = 0)−δG1,G2

] 4π e2

Ω|q+G2|2
(11)

=
1

2Ω ∑
q,G3

[
ε−1

G+G3,G′+G3
(q,ω = 0)−δG,G′

] 4π e2

Ω|q+G′+G3|2
.

The last line in Eq. (11) can be derived from the completeness relation of the
Bloch wave functions (5). The approximation of a statically screened Coulomb
interaction (i.e. ω = 0 in Eqs. 10 and 11) makes these self energy contribu-
tions much simpler than their dynamically screened counterparts (B3a) and (B3b)
in Ref.23. More importantly, the self energy is now essentially determined and
controlled by the inverse dielectric matrix ε−1

G,G′(q,ω = 0) which accounts cor-
rectly for inhomogeneous but static screening41,42. The static COHSEX formal-
ism has been further approximated by Baroni et al.22 who studied LiH with the
dielectric function of a homogeneous electron gas, i.e., a diagonal dielectric ma-
trix ε−1

G,G′(q,ω = 0) = ε−1
hom[|q+G|,ω = 0] δG,G′ . With such a dielectric matrix

Eq. (11) reduces to a much simpler integral [Eq. (5) of Ref.22]. The Coulomb
hole around an electron in such a theory is independent of the quasi-particle state
the electron occupies resulting in a constant energy shift of all bands22 and corre-
sponding to ΣCOH

G,G′ = ECH δG,G′ . A Hartree Fock calculation43 goes even further
and corresponds to ε−1

G,G′(q,ω = 0) = δG,G′ . The latter case is a mean field theory
which neglects any spatial correlations in the electronic system. The Coulomb
hole self energy contribution vanishes in the Hartree Fock approximation, i.e.,
ΣCOH

G,G′ = 0. In the following we will see that inhomogeneous screening41,42, i.e.

14 | 1–20

Page 14 of 20Faraday Discussions



off diagonal elements in the dielectric matrix ε−1
G,G′(q,ω = 0), has a crucial in-

fluence on both the stationary ρ0(r) and transient ρ(r, t) electron distributions of
LiH exposed to strong electric fields, a phenomenon which could not be observed
in the theory of Baroni et al.22, since such phenomena are excluded from the very
beginning.

In order to be as close as possible to experimentally measured physical quan-
tities of LiH we did not use ab initio static dielectric matrices [cf. section III.A
of Ref.23] but (similar to section II.C of Ref.22) constructed a model dielectric
matrix ε−1

G,G′(q,ω = 0) which coincides with various measured experimental val-
ues of LiH. The basic idea of our approach is that in the sub-volume around each
type of atom we introduce an individual homogeneous dielectric function of the
Baroni type [Eqs. (8) and (9) of Ref.22]

ε−1
Li (q,ω = 0) =

1
εS

+ c1,Li
q2

q2 + k2
1,Li

+ c2,Li
q2

q2 + k2
2,Li

(12)

ε−1
Li (q → ∞,ω = 0) = 1−

16π ne,Li

aB

1
q4 +O

[
1
q6

]
+ · · · (13)

ε−1
H (q,ω = 0) =

1
εS

+ c1,H
q2

q2 + k2
1,H

+ c2,H
q2

q2 + k2
2,H

(14)

ε−1
H (q → ∞,ω = 0) = 1−

16π ne,H

aB

1
q4 +O

[
1
q6

]
+ · · · (15)

From the experiment we take the static dielectric constant εS = 3.61 of LiH
and the average electron densities around the Li-atom ne,Li and the H-atom ne,H.
As discussed in Ref.22, the term of type q−2 must be rigorously lacking in the
aymptotic behavior q → ∞. Its presence would give rise to unphysical diver-
gences in the response to a point-charge perturbation44. The constraints deter-
mined by the asymptotic behaviors (13) and (15) leave the screening vector k1,Li
(Eq. (12)) and the screening vector k1,H (Eq. (14)) as free (fitting) parameters in
our calculation. The construction of the model dielectric matrix is now straight-
forward. We assume that the screening of the Coulomb potential between two
point charges at positions r and are r′ within the LiH crystal is determined by
the sub-volume of the unit cell in which the center of gravity R = (r+ r′)/2
falls. Putting the Li nucleus into the origin of the unit cell leads to the following
dielectric matrix for LiH

ε−1
G,G′(q,ω = 0) =

ΩLi

Ωuc
exp

(
−β2|G−G′|2

)
ε−1

Li

(∣∣∣∣q+
G+G′

2

∣∣∣∣ ,ω = 0
)

+

[
δG,G′ − ΩLi

Ωuc
exp

(
−β2|G−G′|2

)]
× ε−1

H

(∣∣∣∣q+
G+G′

2

∣∣∣∣ ,ω = 0
)
. (16)

The length β in (16) determines the size of the bell-shaped screening vol-
ume ΩLi around the Li-atom and in turn the partitioning of the average electron
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Fig. 9 (a) and (c) Deformed electron densities at the X point, (e) L-point, and (f) Γ-point
within the BZ for an external field amplitude of |E|= 109 V/m. (b) and (d) Summation
over the Brillouin zone gives the total density change ∆ρSym(x,y,0, t = 0) calculated with
Eq. (3). The respective charge integrations over (a/2)3-boxes yield (b) ∆qH =−0.1 e−

and (d) ∆qH =+0.01 e−. Panels (a) and (b) correspond to calculation with homogeneous
screening similar to that of Ref. 22. Panels (c,d,e,f) are calculated with a somewhat
stronger screening on the proton resulting in 2P-like orbitals on both Li and H nuclei at
the X-point (zone boundary).

densities ne,Li ΩLi + ne,H [Ωuc −ΩLi] = 4 in Eqs. (13) and (15). For different
ε−1

Li (q,ω = 0) ̸= ε−1
H (q,ω = 0) the dielectric matrix (16) gets off-diagonal ele-

ments which account for the inhomogeneous screening in LiH. Choosing a com-
mon dielectric function ε−1

Li (q,ω = 0) = ε−1
H (q,ω = 0) = ε−1

hom(q,ω = 0) we can
recover the homogeneous screening result of Baroni et al.22.

In solving Eq. (6), we expanded the quasi-particle band structure in plane
waves using 339 reciprocal lattice vectors in a sphere around the Γ-point with
radius Ghkl < 7× 2π/a. For the k summations in Eqs. (8), (10), and (11) we
used the 10 special points (and their symmetry equivalents) in the Brillouin zone
of Ref.45. In order to delete the singularity of the Coulomb potential in Eqs. (10)
and (11) we used the method described with Eq. (3.13) by Ohkoshi43.

As a start we repeated both the Hartree Fock (Fig. 1 of Ref.22) and the COH-
SEX calculation with homogeneous screening (Fig. 5 of Ref.22) of Baroni et
al. and found a very good agreement of the band structures with our calcula-
tions [cf. Fig. 8(a)]. A significant discrepancy between experiment and theory
is observed, however, when looking at the electron density map ρ0(r). In both
the Hartree Fock and the COHSEX calculation with homogeneous screening,
the valence band is dominated by 1S-like orbitals on the H atom throughout the
Brilluoin zone26. As a consequence, the calculated stationary electron density
correspond to the fully ionized Li+ H− situation. This is in strong contrast to the
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stationary x-ray diffraction experiments29,30. Counting the charges in LiH gives
Li0.5+H0.5−, striking a happy medium between the ionic case Li+H− and the
so-called covalent case Li0+H0− in which electrons are shared between lithium
and hydrogen. Obviously, a quasi-particle theory with homogeneous screening22

misses key features of the electron correlations in LiH.
The COHSEX model discussed above allows for studying the influence of in-

homogeneous screening on the electron correlations in LiH. To this end, we var-
ied the screening vectors k1,Li and k1,H and the length β characterizing the size of
the screening volume around Li in order to simultaneously fit the quasi-particle
band structure [experimental values from Table V in Ref.22] and the stationary
electron density [x-ray diffraction experiment from Ref.30]. The length β was
chosen that the gaussian-shaped screening volume around the Li nucleus has the
same width as the electron density on the Li-atom. It turned out that small vari-
ations of β around this starting value do not have a strong influence on both the
band structure and the electron density ρ0(r).

Our calculations show that modifying the screening vectors k1,Li and k1,H in
the COHSEX calculation of LiH allows for a gradual transition from 3e− on
Li3+ (metal-like wave functions) to 2e− on Li3+ (insulator-like wave functions).
Thus, the experimental value of 2.5e− on Li3+ shows that LiH is at the very
limit of an metal-insulator transition24,25. We found a good agreement with the
quasi-particle band structure [experimental values from table V. in Ref.22] and
the stationary electron density [x-ray diffraction experiment from Ref.30] when
choosing k1,H/k1,Li = 2 and k1,H × k1,Li = k2

1,hom with k1,hom being the Thomas
Fermi screening vector of the homogeneous electron gas as used in Ref.22. In
simple words, a stronger screening in the volume around the H-atom tries to
repel the second electron from being attached to the H-atom. The corresponding
band structure with inhomogeneous screening is shown in Fig. 8(c).

Next, we introduce light-matter interaction into our COHSEX model by mak-
ing the so called minimal substitution in the kinetic energy term of the hamilto-
nian Eq. (7):

h̄2|k+G|2

2m
δG,G′ =⇒ h̄2|k+G− eA(t)|2

2m
δG,G′ . (17)

Eq. 17 is valid for a spatially homogeneous but time-dependent electric field
E(t) with the usual relation to the vector potential A(t) =

∫ t
−∞ dt ′ E(t ′). Since in

the COHSEX approach applied here the self energy operator in (6) does not de-
pend on the quasi-particle energy itself we can also substitute on the r.h.s. of (6)
the eigenvalue En,kψn,k(G) =⇒ ih̄∂ψn,k(G)/∂t to gain a nonlinear ”Schrödinger
equation” for the quasi-particles. In such a time-dependent COHSEX calculation
all quantities including the self-energy became also time-dependent and had to
be updated for each individual time step on the order of a few attoseconds. An
advantage of time-dependent COHSEX is that it can also be used in the regime of
non-perturbative light-matter interaction to investigate nonlinear electron corre-
lations. On the other hand, such a theory is almost numerically intractable. Here,
we study our system in linear response to an external electric field E(t) oscillat-
ing at a frequency much lower than the lowest interband transition frequency. As
a result, exclusively bound electrons interact with the external field. Such con-
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ditions are well matched with Eq. 1.10 of Ref.16 from which we learn that the
time-independent ground state electron correlations (i.e. the time-independent
ground state self energy) determine the linear response to E(t). As a conse-
quence we can use time-independent perturbation theory as done with Eq. (2)
discussed above. Within our COHSEX formalism the optical interband dipole
moments are calculated with help of14

⟨Ψb′,k|er|Ψb,k⟩=
i e h̄2

m ∑
G

ψ∗
b′,k(G) [k+G]ψb,k(G)

Eb,k −Eb′,k
. (18)

With this theoretical framework, we now investigate the deformation of the
electron density in LiH in a strong electric field for two dielectric matrices: (i) us-
ing homogeneous screening with parameters of Baroni et al.22 and (ii) using in-
homogeneous screening with the parameters of our best fit for band structure
[experimental values from table V. in Ref.22] and stationary electron density [x-
ray diffraction experiment from Ref.30]. The calculations using eqs. (2) and (3)
are summarized in Figs. 8 and 9. In the left panels of the two figures, we show
8(a) the bandstructure, 8(b) the valence band electron density ρX at the X point
where the smallest bandgap occurs, 9(a) the field-induced change of electron den-
sity at the X point, and 9(b) the total change of electron density calculated with
Eq. (3). This calculation assumes a homogeneous screening with the parameters
of Ref.22. As in mean field calculations, i.e., Hartree Fock, the valence band is
dominated by 1S-like orbitals on the H atom throughout the Brilluoin zone26. As
a consequence, the stationary electron density correspond to the fully ionized Li+

H− situation. Applying an electric field would reduce the charge on the H− anion
by ∆qH =−0.1 e− [Fig. 9(b)], a behavior in striking contrast to our experimental
results for LiH [Fig. 6(c,f)] but close to the behavior of NaBH4 [Fig. 6(a,d)]. In
contrast, panels (c-f) of Figs. 8 and 9 are calculated using the COHSEX model
with inhomogeneous screening and parameters of our best fit for the stationary
electron density. In contrast to the homogeneous screening case the valence band
Bloch functions depend now sensitively on their wave vector within the Brillouin
zone (BZ). At the Γ-point [Fig. 9(f)] the valence band Bloch function has a strong
contribution of 2S-like orbitals on the Li-atoms, whereas at the L-point (e) com-
plex hybrid-orbitals on both the H- and Li-atom are formed. Most importantly,
the Bloch functions develop into 2P-like orbitals on both Li and H nuclei when
approaching the valence band at the X-point [Fig. 8(d)]. Under the external elec-
tric field, we observe a general trend of the deformed electron density at any point
(wave vector) within the BZ. The electric field distributes the electronic charge
more uniformly within the unit cell, causing in turn a reduction of amplitude of
the highest peaks as observed for ∆ρX (x,y,0), ∆ρL(x,y,0), and ∆ρΓ(x,y,0) in
panels (c,e,f) of Fig. 9. As a consequence, we have simultaneously both a trans-
fer of electronic charge from H to Li and from Li to H, sensitively depending of
the wave vector of the Bloch function. The electronic correlations in LiH deter-
mine which direction of electron transfer will dominate in the summation over the
entire BZ. The COHSEX calculation with inhomogeneous screening shows that
the electron density of H+ increases at the X point and its vicinity which domi-
nates the total charge increase on the H-atom by ∆qH =+0.01 e− [Figs. 9(c) and
(d)]. This behavior is in quantitative agreement with the femtosecond diffraction
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experiment on LiH and reveals the strong impact of an inhomogeneous enhance-
ment of screening at the H+ site on the wave functions at the X point.

To summarize, our theoretical study of the impact of inhomogeneous screen-
ing on the quasi-particle properties in LiH shows that both the Hartree Fock cal-
culation and the COHSEX approximation with homogeneous screening22 wrongly
predict a decrease of ionicity of LiH in a strong electric field. Thus, Coulomb cor-
relations among the electrons in the inhomogeneous electron gas of a LiH crystal
are essential for a field-driven increase of ionicity of LiH as observed in the fem-
tosecond diffraction experiments.

6 Conclusion

In conclusion, we studied in crystalline NaBH4, LiBH4, and LiH spatially re-
solved electron density maps determined by femtosecond x-ray powder diffrac-
tion in the response to a non-resonant strong electric field. Our experiments
reveal the prominent role of electron correlations for the field-induced deforma-
tion of the electron density maps. In LiH, field-induced correlations between
states in the valence and different conduction bands result in an enhancement of
ionicity which is manifested in an electron transfer from Li to H and in agree-
ment with quasi-particle calculations within the COHSEX formalism. In con-
trast, both NaBH4 and LiBH4 display an electron transfer from BH−

4 to the re-
spective cation, as expected for an admixture of states in the lowest conduction
band. Furthermore, the distorted geometry of the BH4 tetrahedron in LiBH4
leads to different contributions of the H atoms to electron transfer. Our results
demonstrate the strong potential of femtosecond diffraction methods to uncover
microscopic charge dynamics and determine electron transport mechanisms in
crystalline matter.
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