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Hybrid structure fitting methods combine data from cryo-electron microscopy
and X-ray crystallography with molecular dynamics simulations for the determi-
nation of all-atom structures of large biomolecular complexes. Evaluating the
quality-of-fit obtained from hybrid fitting is computationally demanding, partic-
ularly in the context of a multiplicity of structural conformations that must be
evaluated. Existing tools for quality-of-fit analysis and visualization have previ-
ously targeted small structures and are too slow to be used interactively for large
biomolecular complexes of particular interest today such as viruses or for long
molecular dynamics trajectories as they arise in protein folding. We present new
data-parallel and GPU-accelerated algorithms for rapid interactive computation
of quality-of-fit metrics linking all-atom structures and molecular dynamics tra-
jectories to experimentally-determined density maps obtained from cryo-electron
microscopy or X-ray crystallography. We evaluate the performance and accuracy
of the new quality-of-fit analysis algorithms vis-a-vis existing tools, examine al-
gorithm performance on GPU-accelerated desktop workstations and supercom-
puters, and describe new visualization techniques for results of hybrid structure
fitting methods.

1 Introduction

Molecular dynamics simulations provide researchers with a “computational mi-
croscope”, a powerful tool that provides dynamic views of cellular processes
with atomic detail and nanosecond temporal resolution that can not be achieved
through experimental methods alone. Petascale supercomputers extend the reach
of the computational microscope to very large biomolecular systems of particular
interest to public health, e.g., in the the case of viruses such as HIV1.

Molecular dynamics simulations depend on the availability of all-atom molec-
ular structures, but it can be extremely difficult to obtain all-atom atomic struc-
tures for large biomolecular complexes through traditional approaches. The most
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widely used method for acquiring structures of biomolecules is X-ray crystallog-
raphy. However, crystallization of large biomolecules and macromolecular com-
plexes can be challenging. Instead, cryo-electron microscopy single-particle re-
construction is becoming a central technique for structure determination of large
biological complexes. Cryo-EM does not require the difficult crystallization step
and allows the structure to be imaged in solution, more closely reproducing phys-
iological conditions. Although cryo-EM yields sub-nanometer resolution data,
sometimes approaching atomic resolution2–9, crystallographic structures are gen-
erally still used for interpreting the cryo-EM data. This approach requires com-
bining data from different imaging modalities using techniques known as hybrid
fitting methods. Many hybrid fitting methods that combine X-ray crystallography
structures and cryo-EM density for structure determination have been developed
in recent years. Some of these methods use rigid-fragment fitting10,11, while oth-
ers such as Rosetta12, DireX13, Gorgon5, and FRODA14 perform flexible fitting
which allows conformational changes to better shape the structure to the density.
Some approaches include the use of low-frequency normal modes15, deformable
elastic networks13, and cross correlation16 or least-squares difference between
experimental and simulated maps17 to drive the structure into the cryo-EM den-
sity. There are also fitting methods that use a Monte Carlo-based approach18,
while others such as our own use molecular dynamics19.

Our method, Molecular Dynamics Flexible Fitting19,20 (MDFF), matches a
crystal structure to a cryo-EM density potential energy function during an MD
simulation. The additive modification of the potential energy function is defined
on a 3-D grid and incorporated into an MD simulation using thegridForces
feature of NAMD21,22. Forces are computed from the added potential and ap-
plied to each atom depending on its position on the grid using an interpolation
scheme. The computed forces push the atoms toward areas of higher density
within the EM map. Restraints imposed during the simulation help preserve the
secondary structure, stereochemical correctness23, and symmetry24 of the pro-
teins. MDFF has proven to be successful, as evidenced by its many applications
solving structural models for the ribosome25–33, photosynthetic proteins34,35, and
the first all-atom structure of the HIV capsid1.

An important step in any hybrid fitting method is the evaluation of the quality-
of-fit of the final structure to the cryo-EM density. One of the most common scor-
ing methods is the cross correlation coefficient between the experimental density
map and a simulated density map. Other scoring functions exist, such as the
Laplacian-filtered cross correlation or an envelope score which determines the
amount of density filled with atoms, and use different approximations resulting
in varying levels of accuracy36. Approximations are useful because they en-
able the fast computation necessary for interactive visualization and analysis of
fittings, particularly for large structures (> 1 million atoms) or long time-scale
(microsecond range) simulations. Some scoring functions, including cross cor-
relation, require the calculation of a simulated synthetic density map from the
atomic structure which can then be compared to the experimental map. The
traditional way of accomplishing this employs techniques created for X-ray crys-
tallography which represent the density contribution of each atom as a spherical
Gaussian function37,38.

Below, we describe new data-parallel CPU and GPU algorithms for the rapid
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computation of simulated density maps, density difference maps, cross correla-
tion, and spatially localized cross correlation maps. The new algorithms serve
both analytical and visualization uses and achieve performance levels that enable
their effective use on large-size biomolecular complexes such as viruses, and for
the detailed analysis of fitting results in the case of long MDFF trajectories. We
illustrate the use of the new analysis features in several visualization scenarios
and in the context of new MDFF quality-of-fit analysis features running on both
desktop workstations and supercomputers.

2 Related Work

The original sequential CPU implementation of density simulation for MDFF
was based on a method described earlier39, which involves interpolating atomic
weights onto a grid and convolving the grid with a Gaussian filter whose standard
deviation is assumed to be half the target resolution. One problem with this im-
plementation is that the spreading of atoms which occurs when interpolating the
weights onto a grid is not accounted for when applying the Gaussian filter. The
Situs40 programpdb2vol 41 takes a similar approach to creating synthetic den-
sities, but it corrects for the lattice smoothing by subtracting the lattice projection
mean-square deviation from the Gaussian kernel variance. Situs also allows the
user to select kernel types other than Gaussian, such as triangular or hard sphere.
For the Situs-generated density maps created for the comparisons reported in this
paper, a Gaussian kernel with lattice smoothing correction and mass-weighted
atoms was used (Situs version 2.7.1 obtained from http://situs.biomachina.org/).
Chimera42 produces synthetic density maps with themolmapcommand by de-
scribing each atom as a 3-D Gaussian distribution of width proportional to the
map resolution and amplitude proportional to the atomic number; the command
is based on thepdb2mrc program of the EMAN package43. All Chimera calcu-
lations reported in this paper employed themeasure correlationcommand with
default parameters, except for aboveThreshold set to false. The resulting corre-
lation about mean values were used as the point of comparison (Chimera version
1.8.1 obtained from https://www.cgl.ucsf.edu/chimera/).

All of these methods are similar in that they use spherical Gaussian functions
to represent the density contribution of each atom, a technique created for X-
ray crystallography37,38. One shortcoming of this approach is that it does not
incorporate the blurring required to account for the attenuation of high resolution
signal17. Approximations for the effect of truncation were derived for X-ray
crystallography37, but not for EM applications. One method for overcoming this
limitation is to create the map from simulated densities of each atom calculated
by a resolution-limited Fourier transform of the atomic scattering factor44. This
is the approach taken in DireX13 which also uses anad hocblurring method
to account for the instrumental signal attenuation at high resolution. Another
program,RSRef, implements a similar method which does not rely on anyad
hocassumptions17.

We compared densities produced by our new GPU-based algorithms and
by Chimera against those generated from DireX for the ribose binding protein
(1URP). The cross correlations for a 3Å and 8Å map were .938 and .966, respec-
tively, for our method, and .900 and .965 for Chimera. These correlation values
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RHDV 1URP 1URP

Resolution (̊A) 6.5 8 3

VMD-GPU-CUDA cc 0.998 0.999 0.989

VMD-CPU-SSE cc 0.996 0.997 0.991

Chimera cc 0.784 0.989 0.922

VMD-CPU-SEQ cc 0.997 0.999 0.950

Table 1Comparison of cross correlation results for the new GPU and CPU algorithms in
VMD, for Chimera, and for the original sequential VMD algorithm, on densities
simulated using the Situs40 programpdb2vol 41. These tests show the agreement
between the densities generated by each of the algorithms and account for any
discrepancies in the comparison of subsequent cross correlations on experimental data.

are, as expected, lower than correlation values for densities created by Situs (Ta-
ble 1), though the VMD and Chimera values are still within 5% of each other.
These differences may be more important for fitting methods which, similar to
RSRef, directly minimize the least-squares difference between the simulated and
experimental density maps. Conversely, MDFF derives forces from the experi-
mental map alone and, thus, uses the cross-correlation only in subsequent anal-
syis steps. The more accurate density synthesis methods which utilize Fourier
transforms require much more computation than the Gaussian approximations.
Future work could experiment with hybrid approaches that borrow aspects from
both methods to improve accuracy without sacrificing speed of computation. The
goal of the method described here is fast computation suited to visualization and
analysis, a use which is amenable to approximation.

3 Hybrid Fitting Process

In many hybrid methods, the initial structure must first be docked into the EM
density before further fitting can proceed. This process is generally an expe-
dient way of rigidly docking the entire structure, or several independent rigid
pieces, into the density so that they are correctly oriented within the map. To
achieve this with MDFF, rigid-body docking is performed using the Situs40 pro-
gramcolores 45. Once the structure has been docked to the density, it is often
useful at this stage to calculate the quality-of-fit. In particular, independent local
correlations of each domain or secondary structure are useful in order to visual-
ize which areas of the structure are initially poorly fit to the map. This quickly
identifies areas that may be of greatest concern during the subsequent fitting sim-
ulation.

The next step in the fitting process is the determination of the finer-grained
movements and any large scale deformations that are required to improve the fit
to the reference map. For MDFF, this is the point where molecular dynamics
simulations are used to flexibly guide the structure into the density. The VMD46

plugin mdff is used to generate a potential energy functionUEM defined on a
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3-D grid derived from the cryo-EM density map

UEM(R) = ∑
j

w jVEM(r j), (1)

where

VEM(r) =

{
ξ

[
1− Φ(r)−Φthr

Φmax−Φthr

]
if Φ(r)≥ Φthr,

ξ if Φ(r) < Φthr.
(2)

HereΦ(r) is the Coulomb potential; it and its maximum valueΦmaxare obtained
from cryo-EM. In Eq. 2 a thresholdΦthr is used to clamp allΦ(r) values which
are lower thanΦthr, effectively removing the solvent contribution from the map
and creating a flat potential for those regions. This thresholdΦthr is chosen to
be at or above the value at which a histogram of the EM density contains a large
peak corresponding to the solvent. The scaling factorξ uniformly adjusts the
strength of the influence of the cryo-EM map on the molecular system. In addi-
tion,VEM(r) has a weightw j for each atomj present at positionr j . Generally,w j

is set to the atomic mass which follows from the roughly linear correspondence
between the mass of atoms and their density in a cryo-EM map.

Forces computed from the potential defined in Eq.1 push the structure into re-
gions of high density. This push is often divided into a multi-stage process where,
in the various stages, parts of the atomic structure can be completely de-coupled
from the potential, or have the magnitude of the force varied by changing the scal-
ing factorξ or weightsw j . In the case of the ribosome25–33, protein and RNA
are often each fit separately while the other is constrained. In such a multi-stage
scheme, it is beneficial to calculate the quality-of-fit at each step seperately for
each component of the molecular complex, enabling the identification of prob-
lematic regions.

For many systems, once the entire structure has been fit, a single correlation
value for the entire protein will be published, giving a coarse overall evaluation
of the model. Because this value may be used for comparison across different
methods or studies, an accurate, reproducible, and comparable quantity must be
used. However, it is often useful to calculate the correlation at a finer decom-
position (Fig.1), for example per-residue. Such an analysis could resolve which
parts of the structure are fitting well and which parts might require additional
fitting or investigation. Additionally, it can be beneficial to determine how local
correlations change, and hopefully improve, over the course of the fitting. A vi-
sualization of a fine-grained quality-of-fit over the entire simulation can provide
the researcher with insight into the progression of the fitting process and the dy-
namics of each part of the structure. Computing the simulated densities for many
different regions and their subsequent correlations for each step of the fitting can
be extremely demanding computationally, especially for large structures or long
fitting simulations. Practical application would require efficient algorithms per-
mitting fast analysis turnaround.

The VMD TIMEL INE trajectory analysis plugin47 makes use of the new data-
parallel CPU and GPU quality-of-fit algorithms to provide an interactive visu-
alization of the entire fitting process. TIMEL INE is designed to help identify
and assess trajectory events by performing analysis calculations for each compo-
nent of a molecular system, and for every frame of a simulation trajectory. The
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Fig. 1 Per-secondary-structure-component local cross correlation of adenylate kinase.
MDFF was run on an initial conformation of adenylate kinase (PDB 1AKE) in order to
fit it to a simulated density at 5̊A resolution from another conformation (PDB 4AKE).
Panels (a) and (b) show a point during the simulation before the structure has been
completely fit, colored by per-secondary-structure-component local cross correlation.
Darker blue indicates the areas of best fit, while red indicates poorly fitting regions. The
target density is drawn as a transparent gray isosurface with a complementary wireframe
representation. Panel (a) shows a helix partly in the density; the helix is colored green to
indicate a mediocre cross correlation indicative of a relatively close, but not perfect, fit to
the density. Panel (b) shows a beta sheet almost completely outside of the reference
density; the beta sheet is colored red to indicate a poor cross correlation. (c) VMD
TIMEL INE analysis of the cross correlation over the entire simulation. Note how regions
of poor fit (red) turn green and blue as the fit improves during the course of the
simulation.

heatmap-style 2-D matrix TIMEL INE plot provides a “whole-trajectory” and a
“whole-structure” view of the calculated property. Figure 1c shows an exam-
ple plot: the time dimension is displayed horizontally, the structure-component
dimension is displayed vertically, and the property of interest – here, density
map cross correlation score – is presented by colored rectangles. The TIME-
L INE plot is connected interactively to the VMD 3-D structure display. When
the user “scrubs” the mouse cursor around features on the plot, TIMEL INE high-
lights the associated 3-D molecular structures and displays their configurations
and motions at the times of the corresponding events. A researcher can iden-
tify structure transitions, trends, and sequences in a trajectory more quickly by
using a single zoomable, interactive 2-D TIMEL INE plot than by examining a
complex 3-D structure over many trajectory frames. When calculating density
map cross correlations, different types of trajectory information can be obtained
by dividing the system into analysis components of different sizes: fine division
among individual residues or contiguous secondary structures (as in Figure 1c)
allows detailed structural assessment, while coarser division to fractions of pro-
tein segments or even entire protein segments provides information about larger
structural elements, particularly for larger systems.
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If quality-of-fit analysis can be performed fast enough for interactive updates
to keep pace with a running simulation, the correlations can be visualized by the
user in real time. Such a real-time analysis can enable the user, along with in-
teractive molecular dynamics (IMD)48, to monitor fitting progress and manually
manipulate parts of the structure. The user could move the structure in an at-
tempt to improve the correlation while being provided immediate feedback about
the resulting effects, with trajectory and local trend context provided by an updat-
ing TIMEL INE view. This technique could make the fitting of difficult structures
a much easier process while providing detailed analysis at every step. Addition-
ally, this method could help fit small regions which normally take a long time to
fit, often well after most of the structure has long since converged. Interactive
MDFF has been performed in the past for studies on the ribosome29, but real-
time quality-of-fit analysis could provide for better fits and easier simulations.

4 Methods for Evaluating Quality of Fit

In MDFF, the simulated density is compared to the experimental map using Pear-
son’s correlation coefficient, given by

ρSE =
〈(S−〈S〉)(E−〈E〉)〉

σSσE
, (3)

where〈S〉 and〈E〉 are the average voxel values of the simulated and experimental
density maps, respectively, andσS andσE are their standard deviations49. The
result is a normalized (ρSE ∈ [−1,1]) indicator of the quality-of-fit of a given
structure in the experimental density. The cross correlation defined in Eq. 3 is
traditionally used as a global measure that includes all voxels in the density maps,
or as a local correlation11 where only the volume surrounding the molecule is
considered. The global correlation is affected by the size of the volume and
includes contributions not only from the molecule, but also the solvent. Global
correlations can report artificially high correlation values when considering large
volumes that have been arbitrarily padded. Accordingly, local correlations tend to
offer a more useful and unbiased characteristic. In MDFF, local correlations are
calculated by specifying a threshold stated in units of standard deviations from
the mean value of the simulated density. All voxels containing density values
lower than this threshold are excluded from the cross correlation calculation.
With higher density values naturally occurring closer to the structure, the density
being used for the calculation is thus contained within the molecular envelope.

One impediment to the creation of a fast algorithm for computation of the
cross correlation is the need for knowledge of the mean value of each map for
both the covariance and standard deviations. A simple two-pass algorithm would
first iterate through the maps and compute the mean, followed by a second itera-
tion which would compute the covariance and standard deviation. In the interest
of speed and efficiency, a single-pass algorithm is desirable, where only one it-
eration over the densities would be required. For a single-pass version of the
standard deviation calculation, the equation can be rewritten

σ2
S =

1
N

N

∑
i=1

(xi −x)2 =
1
N

N

∑
i=1

(x2
i −2xxi +x2) =

1
N

N

∑
i=1

x2
i −

2x
N

N

∑
i=1

xi +
Nx2

N
(4)
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= (
1
N

N

∑
i=1

x2
i )−2x2 +x2

or

σ2
S = (

1
N

N

∑
i=1

x2
i )−x2. (5)

This expression permits one to compute the sum and the sum of squares of the
voxels in each map in a single pass, with the standard deviation being calculated
afterwards. This technique can be extended similarly to create a single-pass for-
mulation of covariance. Unfortunately, when the single-pass equations are imple-
mented in floating point arithmetic, they are susceptible to floating point trunca-
tion and cancellation error, which can affect the accuracy of the results. Floating
point error can be minimized by shifting the means of the reference and simulated
maps to zero, and by ensuring that the simulated density maps closely approxi-
mate the standard deviation of a reference map, thereby reducing the magnitudes
of accumulated squared quantities. Further improvements to floating point pre-
cision can be achieved by performing summations in a hierarchical fashion, by
using double-precision arithmetic, or through the use of precision enhancement
techniques such as Kahan’s compensated summation, native-pair arithmetic, and
others50–52. In our tests, we have confirmed the presence of floating error, but
even without implementing all of the amelioration techniques described above,
we have concluded that the errors have a negligible effect on the final correlation
results for the test cases we have run to date. We believe this to be the direct re-
sult of a well-conditioned input scenario due to the limited dynamic range of the
density values contained within both experimental and simulated density maps.

5 Data-Parallel Cross-Correlation Algorithms

We have devised high-performance data-parallel algorithms for computing sim-
ulated density maps, and comparing them with reference density maps using
multi-core CPUs with vector instructions and massively parallel GPUs. Each
of the methods we have devised for evaluating the quality-of-fit between an all-
atom structure and a reference experimental density map requires the computa-
tion of a simulated density map from the all-atom structure. Once computed,
the simulated density map is then compared with the experimental reference map
using voxel-by-voxel subtraction, Pearson correlation, sum of absolute differ-
ences, and similar methods. In all of the methods we have evaluated thus far,
the generation of the simulated density map is by far the most computationally
demanding algorithm step. Since the simulated density value at a given point in
space can be computed independently from the values of all other points, the sim-
ulated density map computation is well-suited to data-parallel implementations
using CPU vector instructions such as the Intel x86 SSE and AVX instructions,
or the ARM NEON instructions. Similarly, the computation can take advantage
of GPU-accelerated algorithms that employ tens of thousands of threads running
on thousands of arithmetic units. Once the simulated density map has been com-
puted, it can be compared with the experimental reference map using a variety of
methods.
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NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
U. Illinois at Urbana-Champaign

Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses

Grid of thread blocks

Small 8x8x2 CUDA thread 
blocks afford large 
per-thread register count, 
shared memory

3-D density map decomposes 
into 3-D grid of 8x8x8 tiles 

containing CC partial sums and 
local CC values

…0,0 0,1

1,1

… …

…

…

Inactive threads, 
region of 
discarded 
output

Each thread 
computes 4 z-axis 
density map lattice 
points and 
associated CC 
partial sums

Threads 
producing 
results that 
are used1,0

Spatial CC map 
and overall CC 
value computed in 
a single pass

Single-Pass Cross-Correlation Parallel Decomposition

Fig. 2 Parallel decomposition for the single-pass GPU-accelerated cross correlation
algorithm. The simulated density map is decomposed into 8×8×8 tiles which are
processed by individual CUDA thread blocks. Each thread block is 8×8×2 threads in
size. Each thread computes 4 consecutive densities along thez-axis, thereby enabling
reuse of atom data in on-chip registers and increasing arithmetic throughput. Each
CUDA thread block performs thresholding and computes partial sums for the overall
cross correlation, as well as the local cross correlation value for its 8×8×8 tile.

A key difference between different density map comparison techniques lies
in their respective memory capacity requirements and, in the case of GPU im-
plementations, the host-GPU memory transfer characteristics of each algorithm.
It is a straightforward task to implement quality-of-fit algorithms using multi-
pass approaches that compute densities, means, and covariances in distinct steps,
but these approaches lose performance relative to implementations that combine
all steps into a single-pass algorithm. By combining all algorithm steps into a
single-pass approach, intermediate values can be stored in fast on-chip registers,
shared memory, and caches, that are typically two orders of magnitude faster
than accesses to off-chip DRAM. When possible, we employ single-pass cross
correlation algorithms, where the simulated density values are computed only
ephemerally in CPU or GPU on-chip registers without ever storing the computed
density values to off-chip DRAM memory. This approach avoids performance
limitations that arise from the roughly factor of 40 performance gap between
peak GPU arithmetic throughput (e.g., 2-4.5 TFLOPS) and GPU DRAM mem-
ory bandwidth (e.g., 200-300 GB/sec).

We have previously developed fast algorithms for calculating and visualiz-
ing molecular orbitals present in quantum chemistry calculations53, and for dis-
play of molecular surfaces, biomolecular complexes, and cellular structures54–56.
These algorithms each require rapid evaluation of Gaussian radial basis func-
tions, which is also necessary for computation of simulated density maps used in
computing cross correlations. In the present work, the simulated density map is
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computed from a linear combination of Gaussian radial basis functions, with a
per-atom weighting factor based on atomic radii. The simulated density map can
be computed in a single-pass, for single-coefficient atomic weighting factors, or
in multiple passes when creating temporally averaged density maps, and to sup-
port the use of more sophisticated schemes that use radial basis functions with
multiple Gaussian terms or other basis functions. The reference density is tested
for exclusion, and the simulated densities are compared with an optional user-
defined threshold criterium to determine if they should contribute to the cross
correlation. Reference voxels assigned with the IEEE floating point special value
NaN (not-a-number), are excluded from consideration. Similarly, simulated den-
sity values that fall below an optional user-defined density threshold are also
excluded from contributing to the cross correlation. All voxels for which both
the reference and simulated densities pass the exclusion and thresholding tests
contribute then to the partial sums for the overall cross correlation. When all
densities have been processed, a parallel reduction is performed to compute the
final cross correlation from all partial sums that were previously computed.

The new single-pass cross correlation algorithm for GPUs is based on the
NVIDIA CUDA programming toolkit57, and is referred to hereafter as VMD-
GPU-CUDA. The GPU cross correlation algorithm uses a parallel decomposi-
tion outlined in Fig. 2. Density contributions from neighboring atoms within the
cutoff distance are summed into thread-local registers. The cutoff distance is
chosen such that density contributions at or sufficiently near zero are discarded,
thereby ensuring that the algorithm achieves linear time complexity. Each thread
produces four density values by looping over consecutive densities along thez-
axis. Each thread computes its own local contributions to the per-tile cross cor-
relation partial sums, for its four densities according to the voxel exclusion and
thresholding criteria described above. Each CUDA thread block performs a local
intra-block parallel reduction among all threads, summing each of the thread-
local partial sums into a single set of cross-correlation partial sums associated
with that block’s 8×8×8 tile. Once the intra-block parallel reduction is com-
plete, the first thread of the thread block computes a tile-local cross correlation,
and stores both the tile-local cross correlation as well as the per-tile cross corre-
lation partial sums to GPU global memory, in preparation for a final inter-block
global parallel reduction that yields the overall cross correlation result. One im-
portant performance-critical detail about our implementation is that we employ
special counters and atomic memory update instructions to allow a single GPU
kernel invocation to perform the entire cross correlation calculation. Each thread
block increments a global counter using anatomic-addmachine instruction as it
completes its tile-local work. All but the last thread block to complete simply exit
once they have finished their tile-local work. The last thread block to complete
its tile-local work performs the final inter-block parallel reduction of all partial
sums and stores the overall cross correlation result to GPU global memory.

The new cross-correlation algorithm for multi-core CPUs employs CPU vec-
tor instructions and multithreading. The new CPU algorithm is hereafter referred
to as VMD-CPU-SSE. The CPU algorithm decomposes the density map into pla-
nar slices which are dynamically assigned to a fixed pool of CPU worker threads
by a dynamic load balancer built into VMD47. Each CPU worker thread runs
a loop that accumulates densities from each atom onto the region surrounding
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Fig. 3 All test systems fitted within their experimental density, or in the case of 1URP, a
synthetic one. (a) GroEL PDB 3E76; (b) aquaporin-0 PDB 3M9I; (c) GroEL-GroES
complex in the ATP-bound state (PDB 2C7D); (d) Mm-cpn in the closed state (PDB
3LOS); (e) D-ribose-binding protein PDB 1URP; (f) lidless Mm-cpn in the open state;
PDB 3LOS was used as a template to construct a homology model using Modeler58; (g)
rabbit hemorrhagic disease virus capsid (RHDV) (PDB 3J1P).

the atom up to a defined cutoff limit where the Gaussian is assumed to have
decayed to zero. Mainstream multi-core CPUs lack dedicated machine instruc-
tions for calculation of exponentials; as a result, application software must either
use general purpose math library routines or incorporate custom functions for
this purpose. Since the sign of the exponential function’s input domain is al-
ways negative for the density map synthesis algorithm we have developed, we
use a high-performance Taylor series approximation of the exponential function.
Our specialized negative-domain exponential approximation is hand-written in
assembly language intrinsics for Intel x86 SSE 4-way vector instructions, based
on a similar function we originally developed for molecular orbital display53.
We have improved the performance of the new exponential approximation be-
yond what we had previously achieved by premultiplying input values with con-
stants to convert to base-e, by eliminating conditional tests that check for input
domain cases that cannot occur in our density map algorithm, and by guaran-
teeing multiple-of-four data alignment. The end result of these optimizations is
that the multi-core CPU density map algorithm can be competitive with the per-
formance obtained with GPUs, which have machine instructions for computing
exponentials due to their heavy use in computer graphics lighting algorithms.
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RHDV Mm-cpn

open

GroEL GroEL-

GroES

Mm-cpn

closed

Aquaporin

Resolution (̊A) 6.5 8 4 7.7 4.3 3

# atoms 702K 61K 54K 59K 64K 1.6K

# voxels 111M 14M 8M 7M 7M 2.6M

VMD-GPU-CUDA cc 0.744 0.857 0.769 0.886 0.658 0.754

VMD-CPU-SSE cc 0.736 0.866 0.839 0.892 0.712 0.771

Chimera cc 0.687 0.837 0.727 0.867 0.635 0.739

VMD-CPU-SEQ cc 0.743 0.869 0.846 0.898 0.728 0.653

VMD-GPU-CUDA 0.458 s

34.6×

0.06 s

25.7×

0.034 s

36.8×

0.038 s

35.0×

0.028 s

57.5×

0.007 s

55.7×

VMD-CPU-SSE 0.779 s

20.3×

0.085 s

18.1×

0.159 s

7.9×

0.077 s

17.3×

0.179 s

9.0×

0.033 s

11.8×

Chimera 15.86 s

1.0×

1.54 s

1.0×

1.25 s

1.0×

1.33 s

1.0×

1.61 s

1.0×

0.39 s

1.0×

VMD-CPU-SEQ 62.89 s

0.25×

2.9 s

0.53×

1.57 s

0.79×

2.49 s

0.53×

2.13 s

0.75×

0.04 s

9.7×

Table 2Comparison of cross correlation algorithm results, runtimes, and speedups for
the new GPU and CPU algorithms in VMD, for Chimera, and for the original sequential
VMD algorithm. All speedups are normalized using Chimera runtime as the baseline.

6 Test Cases and Performance Results

In order to test the new data-parallel GPU and CPU cross correlation algorithms,
nine test cases were chosen from structures of varying size with density maps
at resolutions between 3̊A and 8Å (Fig. 3, Table 1, Table 2). Six of the struc-
tures are final results of MDFF simulations with their corresponding experimen-
tal cryo-EM maps, while the remaining three are structures with simulated den-
sity maps using the Situs40 programpdb2vol41. The largest structure is the rabbit
hemorrhagic disease virus (RHDV) capsid solved with a 6.5Å resolution density
map59. Structures of aquaporin, GroEL, GroEL-GroES complex in the ATP-
bound state, Mm-cpn in the closed state, and lidless Mm-cpn in the open state,
were taken from the results of a cryo-EM modeling challenge60. The final struc-
ture, ribose binding protein (PDB: 1URP) was used to simulate density maps at
3Å and 8Å using Situs, as a means of comparing to density maps generated from
another program (Table 1). The size of the virus capsid and the difficult-to-fit na-
ture of the modeling challenge structures both pose problems to researchers using
hybrid fitting methods. Our data-parallel GPU and multi-core CPU cross corre-
lation methods were compared to the previous sequential algorithm in VMD, as
well as to Chimera42, a program widely used by cryo-EM researchers.

The new VMD cross correlation algorithms provide a significant speedup
over both the old sequential CPU code in VMD as well as Chimera. The al-
gorithms provide correlation results that agree with Chimera to within 5% for
most cases. In the case where the two have the greatest divergence (7.92% dif-
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ference), the virus capsid, our method results in a .998 cross correlation with a
simulated map produced by Situs, while Chimera reports a correlation of .7842
(Table 1). Because of this discrepancy on the simulated data, we believe that the
correlation result for the large capsid reported by Chimera might be flawed, or
that it is otherwise not necessarily directly comparable in that specific case. One
point of possible error is the difference between VMD and Chimera in handling
PDB files with over 99,999 atoms. The original PDB specification allows for
the use of only 5 columns for the atom index, restricting the maximum officially
supported number of atoms to 99,999. To overcome this limitation, VMD uses
alpha-numeric atom indices beyond 99,999 when writing out a PDB file, while
Chimera uses additional columns. Because VMD can read these large structure
PDB files written in Chimera format but not vice versa, a Chimera format PDB
was used in all cases (including RHDV) where it was required, for both the VMD
and Chimera calculations. Chimera format PDB files were created by first writ-
ing the structure coordinates into multiple PDB files of 99,999 atoms or less. The
PDB files were then read into Chimera, followed by using the ”copy/combine”
feature to combine every PDB into a single structure which could be saved to a
single PDB file. An additional overlooked complication regarding the difference
in PDB file formats could be the cause of the discrepency in correlation values
obtained for RHDV.

The new feature for calculating spatial cross correlation maps provides a
rapid means of visualizing 3-D correlations and resolving areas of poor fit, as
seen in Fig. 4. These spatial correlation maps are especially useful for large com-
plexes, for example virus capsids, because only a single density calculation is
required to obtain localized information. By using the VolumeSlice representa-
tion in VMD to view 3-D textured slice planes of the correlation map in thex−,
y−, or z− axis, the map can be quickly scanned for regions of low correlation.
Structure components located in regions of poor correlation can be identified by
selecting them or coloring them based on local cross correlation values (Fig. 5).

All single-node workstation class tests were run on a workstation contain-
ing two Intel Xeon E5-2687W processors each consisting of 8 physical proces-
sor cores and 16 hardware threads, for a total of up to 32 threads of execution
in hardware. The workstation was configured with 256 GB of memory, and an
NVIDIA Quadro K6000 GPU with 12 GB of on-board memory. All software was
run on CentOS Linux version 5.9, and NVIDIA driver version 331.22. VMD was
compiled using Intel C/C++ version 12.0.2, and CUDA toolkit version 4.0. Tests
involving Situs used Situs version 2.7.1, as obtained from the Situs web site.
Chimera tests used version 1.8.1 as obtained from the Chimera web site.

The accelerated cross correlation method makes feasible both detailed and
global trajectory assessments of large molecular systems. Figure 6 shows an ex-
ample of the diagnostic insight provided by a TIMEL INE view of the initial part of
an MDFF simulation of RHDV capsid: 100 frames sampled from a initial 10,000-
step energy minimization with MDFF forces active, followed by 400 frames sam-
pled from the initial 40 ps of the MDFF dynamics trajectory. The structure is
divided into 180 components: the 180 protein segments, each with an identical
residue sequence, that make up the symmetrical virus capsid. In Figure 6a, the
pronounced pattern of horizontal stripes indicates a periodic segment-to-segment
variation of cross correlation values, following differences in the capsid’s sym-
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Fig. 4 Planar VolumeSlice representation of spatial cross correlation maps for the (a)
first and (b) last frames of an MDFF simulation of the rabbit hemorrhhagic disease virus
capsid. These maps visualize local cross correlation of 8×8×8 voxel regions, with red
indicating poorest correlation and dark blue indicating best correlation. Regions of
poorest correlation lie on the exterior and interior faces of the capsid, as would be
expected. Poor-fitting regions within the subunits of the structure are seen as red spots
and are marked with arrows. Panels (c) and (d) show closer views of one of these
poor-fitting regions, before and after fitting, respectively. The structure is shown inside
the experimental density map and is colored according to the corresponding spatial cross
correlation volume around that region, to further visualize which parts of the structure
have a poor fit. Panel (c) clearly shows a poorly fit region, with parts of the structure
entirely outside of the density; the poor fit has been fixed by MDFF as is evident in (d).
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Fig. 5 One subunit of the rabbit hemorrhhagic disease virus capsid before (a) and after
(b) MDFF. The structure is colored according to the spatial cross correlation volume
around that region. A VDW representation shows part of the structure selected as those
atoms which lie inside voxels of the spatial cross correlation volume with values< 0.1.

metrical segment arrangement, as seen in Figure 6b. Figure 6c shows relative
changes observed for the individual capsid segments during the trajectory: the
trajectory values are normalized by subtracting the initial cross correlation value
for each segment. About half of the cross-correlation change seen in Figure 6c
occurs during the initial minimization to frame 100, with much of the remaining
improvement occuring quickly during the first picoseconds of the MDFF simu-
lation, from frames 100 to 125, and minor fluctuations ceasing for the majority
of segments by frame 350. Several segments can be seen to have relatively sta-
ble correlation values during both MDFF minimization and MDFF dynamics; a
researcher studying the system might investigate these segments further.

Detailed analysis of very large systems with long trajectories can require a
large number of individual calculations, and impose a heavy I/O burden on a
computer system. We implemented a parallel TIMEL INE cross correlation anal-
ysis using the new GPU cross correlation algorithm, for use on clusters or su-
percomputers. The new TIMEL INE analysis calls VMD parallel scripting prim-
itives47 to perform the needed calculation, synchronization, and data reduction
operations. A 10,000 frame trajectory of the 1.38 million atom RHDV capsid
structure was examined. For cross correlation analysis, the capsid was divided
into 720 structural components; each of the capsid’s 180 525-residue segments
were divided into four nearly-equal contiguous segments. The calculation was
run on the NSF Blue Waters petascale supercomputer, using the XK7 hybdrid
GPU-accelerated compute nodes. Each XK7 node contains an AMD Opteron
6276 CPU with 32 GB of RAM and an NVIDIA Tesla K20X GPU accelerator
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(a) (b)

0.237 0.3644

(c)

-0.0032 0.02

Fig. 6 Cross correlation coefficients in an rabbit hemmorrhagic disease virus (RHDV)
MDFF trajectory. Panel (a) contains a TIMEL INE plot of the 500-frame RHDV trajectory
discussed in the text, displaying the per-segment cross correlation coefficients. Panel (b)
shows the RHDV structure colored by the values in the first frame (left-most column) of
panel (a). Panel (c) contains a TIMEL INE plot of the same trajectory as in panel (a),
displaying the change from initial value of per-segment cross correlation, namely, the
per-segment values in panel (a) after subtracting the value for each segment in the first
frame. The bar graph at the bottom of the plot shows (in black and coral bar height) the
proportion of segments at each timestep with a change in cross correlation greater than
+0.01.
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with 6 GB of RAM. Structure and trajectory files were striped over 160 Lustre
file system object storage targets to ensure best I/O performance47. The analy-
sis completed in an average 19.5 minutes using 2,048 nodes, showing a 1,035×
speedup over a projected 336 hour (14.0 day) runtime using a single node. Us-
ing the Table 2 performance results, this would roughly correspond to a 35,800×
speedup over an estimated 485 day (1.3 year) runtime for Chimera running on a
single node and a 142,100× speedup over an estimated 1,924 day (5.3 year) run-
time for the original sequential VMD CPU algorithm running on a single node.

7 Conclusions

We have presented data-parallel cross correlation algorithms that combine den-
sity map synthesis, computation of spatial cross correlation maps, and overall
cross correlation between the synthetic and reference density maps, using a high
performance single-pass approach on multi-core CPUs using SSE vector instruc-
tions, and on massively parallel GPUs using CUDA. The new algorithms achieve
significant speedups compared to existing methods and they maintain adequate
numerical precision. The single-pass algorithms achieve high performance by
fusing independent algorithm steps into a single computational kernel, thereby
maximizing the ratio of arithmetic operations vs. memory references, which is
of greatest overall benefit to massively parallel GPU hardware. We have demon-
strated the use of the new algorithms in several visualization and analysis contexts
over a range of problem sizes, and we have incorporated the high performance
cross correlation method into a TIMEL INE multi-node parallel analysis script en-
abling large systems and long trajectories to be analyzed rapidly on clusters or
supercomputers.

We expect that with further algorithm development, the performance of the
new cross correlation algorithm can still be improved further. The simulated
density map algorithm presently operates on a uniform grid that encompasses the
bounding volume of an atom selection. The use of the uniform grid decomposi-
tion for the density map calculation can result in some unnecessary computation
for “empty” regions of the volume that are not associated with selected atoms,
since they must still participate in parallel reduction operations that yield the final
correlation results. The use of the uniform grid approach provides high perfor-
mance in many common cases, but it is clear that as cryo-EM imaging techniques
improve and both the resolution and size of resolved biomolecular complexes in-
crease, there will be a need for a density map algorithm that performs well for
atom selections that yield sparse regions of computation. There are also sev-
eral opportunities for further performance improvements in the case of trajectory
analyses, such as those performed with TIMEL INE, by eliminating host-GPU
memory copies associated with the reference map for all but the first timestep,
and by eliminating computations that are common to multiple atom selections in
analyses that compute cross correlations for a large number of atom selections
for each trajectory frame47.

New data-parallelshuffleinstructions available on recent NVIDIA GPUs could
be used to accelerate the intra-block and inter-block parallel reductions that take
place within the GPU algorithm. The most recent Intel and AMD processors have
added new 8-element AVX and AVX2 vector instructions, offering up to a 2×
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performance gain over SSE instructions. The greatly increased performance lev-
els achieved by the new algorithms create many new opportunities for interactive
analyses and visualizations and for interactive molecular dynamics simulations48

using the MDFF method.
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