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There are ongoing discussions about the appropriate level of complexity and sources of uncertainty in rainfall runoff 

models. Simulations for operational hydrology, flood forecasting or nutrient transport all warrant different levels of 

complexity in the modelling approach. More complex model structures are appropriate for simulations of land-cover 

dependent nutrient transport while more parsimonious model structures may be adequate for runoff simulation. The 

appropriate level of complexity is also dependent on data availability. Here, we use PERSiST; a simple, semi-distributed 

dynamic rainfall-runoff modelling toolkit to simulate flows in the Upper Ganges and Bramaputra rivers. We present two 

sets of simulations driven by single time series of daily precipitation and temperature using simple (A) and complex (B) 

model structures based on uniform and hydrochemically relevant land covers respectively. Models were compared based 

on ensembles of Bayesian Information Criterion (BIC) statistics. Equifinality was observed for parameters but not for model 

structures. Model performance was better for the more complex (B) structural representations than for parsimonious 

model structures. The results show that structural uncertainty is more important than parameter uncertainty. The 

ensembles of BIC statistics suggested that neither structural representation was preferable in a statistical sense. 

Simulations presented here confirm that relatively simple models with limited data requirements can be used to credibly 

simulate flows and water balance components needed for nutrient flux modelling in large, data-poor basins. 

Introduction 

There is considerable discussion in the literature about the 

appropriate level of complexity in a rainfall runoff model. 

Jakeman and Hornberger
1
 note that the warranted level of 

complexity is dependent on model purpose, data availability 

and algorithms used. Johnston and Smakhtin
2
 pose the 

question “How much modelling is enough” and note that the 

obvious reply of “enough for what purpose” has no clear 

answer. Models for flood forecasting have different data and 

output requirements than models used for water resources 

assessment or projecting possible effects of climate, land use 

or basin management change on water quality. Tension exists 

between model parsimony and completeness. More 

parsimonious models may have parameters which can be 

uniquely identified
3
 but can fail to represent all relevant 

processes. The competing demands of parsimony and model 

completeness have a long history which can be characterized 

as the tension between Occam’s razor in which “entities must 

not be multiplied unnecessarily” and Kant’s counter principle 

that “the variety of entities should not be rashly diminished”
4
. 

Overuse of Occam’s razor can lead to overly simplistic model 

structures that provide unique solutions but are unable to 

satisfactorily reproduce environmental behaviours. On the 

other hand, more complex, highly parameterized models 

display equifinality, where multiple parameter sets give 

equivalent simulations, leading to unwarranted criticisms that 

they are “mathematical marionettes”
5 

which can be made to 

reproduce any environmental time series. 

 

Hydrological models can be subject to data, structural and 

parameter uncertainty. A lack of sufficient high-quality data to 

constrain model simulations is a common problem in rainfall-

Environmental impact 

Hydrology is a first order control on water quality and credible hydrological simulations are needed to support water quality modelling. The 

appropriate level of complexity in hydrological models is dependent on data availability and model purpose. This paper seeks to evaluate the 

consequences of different levels of model structural complexity on flow predictions in the Upper Ganga and Brahmaputra rivers, to produce model 

outputs suitable for water quality simulations and to evaluate the use of ensembles of Bayesian Information Criterion statistics for assessing the 

appropriate degree of model complexity. Results show that model structural uncertainty is more important than parameter uncertainty for flow 

simulations in these rivers. 
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runoff modelling. To date, most of the work on evaluating 

uncertainty due to different hydrological model structures has 

focused on small research catchments
6,7

. Parameter 

uncertainty is often assessed in operational hydrology
8,9

 but to 

the best of our knowledge, there have been no studies which 

assess the consequences of structural and parameter 

uncertainty when predicting flows in large data-poor 

catchments. 

 

The Ganga Brahmaputra Meghna (GBM) basin is one of the 

most important and populous river systems in the world. 

While the basin is undergoing rapid economic development, it 

is still home to the largest number of the world’s poor in any 

one region. The population continues to increase, and 

population density is already very high in a large part of the 

basin. Credible flow simulations for GBM rivers are essential 

not only to sustainably manage the water resources of the 

basin, but also to develop a better understanding of the 

impact of future changes on water quality, ecosystems and 

human wellbeing. 

 

Flow simulations are needed within the GBM basin for 

operational flood forecasting, drought management and for 

predicting water quality and the consequences of changes in 

land use and basin management including dams. In a review of 

hydrological modelling in large river basins it was noted that 

hydrological model applications to the Ganga basin have been 

hampered by access to flow data for calibration
2
 as well as a 

lack of spatially distributed precipitation measurements
10

.  

 

There have been a number of hydrological models with varying 

degrees of complexity applied to rivers in the GBM basin. The 

WATBAL monthly time step one bucket model has previously 

been applied to both the Ganga and Brahmaputra
11

. Good 

simulations for one year of flows in the Ganga and 

Brahmaputra were obtained using a simple snowmelt model
12

. 

Rees et al.
13

 have applied an empirical recession-curve based 

model to predict flows in the headwaters of the Ganga. The 

SWAT model has been applied twice, once to the whole Ganga 

Basin
14

 and once to the upper reaches of the river
15

. SWAT has 

also been applied to the Brahmaputra
16

. The MIKE-BASIN 

model has been twice
17,18

. Satellite measurements are 

increasingly being used to support modelling for flood 

forecasting
19,20

 and runoff prediction
21,22

. There have also been 

more data-intensive and complex distributed model 

applications to simulate river flows in the GBM basin
23,24,25

. 

 

While most hydrological simulations in the GBM basin have 

been performed for flood prediction or assessing the potential 

impacts of climate change, rainfall-runoff simulations are also 

needed for water quality modelling. Riverine water quality 

simulations require credible estimates of hydrology, including 

soil moisture status, water movement through the soil profile, 

fluxes from land to receiving waters and river flows. 

Specifically, the INCA of water quality models require inputs of 

hydrologically effective rainfall and soil moisture deficits from 

an external rainfall runoff model. Whitehead et al.
26,27

 and Jin 

et al
28

 inter alia present INCA applications based on PERSiST 

generated hydrology. Different levels of model structural 

complexity may be warranted for models used solely for 

simulating flows or for simulating both flows and water 

quality. Because riverine water quality is strongly influenced by 

land use, a more complex catchment representation 

incorporating different land cover types may be needed for 

water quality simulations while it may be possible to use a 

single land cover type for simulations of flow alone. 

 

Several flexible modelling frameworks including SUPERFLEX
7
, 

DYNAMIT
29

 and PERSiST
30

 have been developed to facilitate 

the use of different model structures to simulate runoff. Unlike 

most rainfall-runoff models which impose a fixed structure, 

these modelling frameworks allow the model user to specify 

and evaluate different potential model structures. The PERSiST 

modelling framework has previously been applied to meso-

scale temperate catchments in the UK
30

 and Norway
31

 as well 

as small boreal headwater forest catchments in Sweden
32

. 

However, the framework has not previously been evaluated in 

large sub-tropical or tropical catchments. Applying the model 

to the Upper Ganga and Brahmaputra will permit an 

evaluation of the scalability of simple bucket-type models to 

large catchments and provide insight into the appropriate level 

of model structural complexity when predicting flows to 

support water quality modelling in large, data-poor 

catchments. 

 

Here, we present results from flow simulations in the Upper 

Ganga and Brahmaputra rivers. We apply two conceptual 

models of streamflow in the basins and evaluate controls on 

model performance and parameter equifinality. We evaluate 

the consequences of different conceptual models of 

catchment structure on model skill in simulating flows and 

identify the parameters with the greatest influence on model 

performance. This study forms part of the larger Ecosystem 

Services and Poverty Alleviation (ESPA) Deltas project ESPA 

Deltas seeks to assess health, livelihoods, ecosystem services 

and poverty alleviation in populous deltas, with the focus on 

the delta systems in Bangladesh
33

 (www.espadeltas.net ). 

Methods 

Model Description 

PERSiST, the Precipitation, Evapotranspiration and Runoff 

Simulator for Solute Transport, is a semi-distributed, 

watershed-scale hydrological modelling toolkit suitable for 

simulating terrestrial runoff and streamflow across a range of 

spatial scales from headwaters to large river basins
30

. Key 

features include (i) a user-specified model structure suitable 

for simulating multiple perceptual models of catchment water 

stores and flow pathways; (ii) semi-distributed flow routing 

incorporating runoff production from multiple hydrologic 

response types; (iii) flow simulations at multiple points in a 

river network; (iv) simple temperature index snowmelt and 

evapotranspiration routines; (v) abstraction for irrigation and 
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discharge from industrial sources and wastewater treatment 

sources; (vi) catchment and land-cover specific precipitation 

and snowmelt dynamics (vii) a full water balance; and (viii) 

generation of input time series files for use with INCA. The 

model has an intuitive graphical user interface. Experience 

with European Masters students shows that it generally takes 

less than half a day’s training to learn PERSiST and start 

producing useful simulations.  

 

At its core, PERSiST is a conceptual, bucket-type model (Figure 

1). A river basin is represented as one or more subcatchments. 

Each subcatchment includes a terrestrial area and a reach. The 

terrestrial area is comprised of one or more landscape (or 

hydrological response) types consisting of one or more inter-

connected buckets which route precipitation from land to the 

reach. Both the number and connections between buckets are 

specified by the user, allowing a wide range of model 

structures to simulate the runoff generation process. The 

reach is conceptualized as a rectangular stream channel.  

 

Some parameters related to precipitation and 

evapotranspiration (ET) in PERSiST are specified for individual 

hydrologic response types and are applicable across all 

subcatchments in a watershed. Parameters include landscape-

scale snow threshold temperature, snowfall and rainfall 

multipliers. When air temperatures are below snow threshold 

temperatures, precipitation is assumed to fall as snow and 

accumulate in the snowpack. The depth of snowfall is 

calculated by multiplying observed precipitation by the 

subcatchment-specific snowfall multiplier. When air 

temperature is above the snow threshold temperature, 

precipitation is assumed to fall as rain. Depth of rainfall is 

estimated by multiplying observed precipitation by the 

subcatchment-specific rainfall multiplier. 

 

Actual ET is simulated using a degree day evapotranspiration 

parameter which defines maximum (i.e. potential) ET when air 

temperatures are above the land cover-specific growing 

degree day threshold. When air temperatures are below the 

growing degree day threshold, no ET is simulated. The land 

cover-specific specific potential evapotranspiration is 

calculated as the difference between observed air 

temperature (T; 
o
C) and the growing degree day threshold 

multiplied by the degree day ET parameter. The actual rate of 

ET can be less than the maximum potential rate when the 

depth of water in the bucket falls below a user-specified 

threshold. PERSiST simulates canopy interception of snow and 

rain depending on whether the air temperature is below or 

above the snow threshold temperature. Interception is 

subtracted from precipitation before it enters the soil or 

snowpack. 

 

Each bucket has the following properties: depth of water in 

the bucket at time t (zt: mm), retained water depth (b1; mm) 

which is the depth below which water no longer freely drains 

and a characteristic time constant (b2; d). When water is below 

the retained water depth, ET can continue. The depth of water 

draining on day t is calculated as follows: 

 

(1) ∆zt = (zt-b1)/b2 

 

Snowfall and rainfall multipliers are used to scale the input 

precipitation time series to better correspond with rain and 

snow falling on each subcatchment. Effective snowfall and 

rainfall multipliers are determined by multiplying the 

landscape-scale and subcatchments-scale parameter values. 

The sub catchment area and the proportional cover of each 

hydrologic response type as well as reach parameters including 

length, width and the parameters necessary to determine flow 

velocity (v) as a function of flow (Q: equation 2) must be 

specified. Rates of water abstraction from and effluent input 

to individual reaches may be specified either as constant 

values or as time series of daily average values. 

 

(2)  v = aQ
b 

 

In all simulations, model goodness of fit was assessed as the 

sum of three performance metrics: the Nash Sutcliffe statistic 

(NS; Nash and Sutcliffe 1970), NS of log-transformed observed 

and modelled flows (logNS) and the absolute deviation (AD). 

The latter was calculated as the absolute value of the sum of 

observed values (∑O) minus the sum of modelled values (∑M) 

all divided by the sum of observed values (equation 3): 

 

(3) AD = abs(∑O-∑M)/∑O 

 

Model performance (P) was assessed as follows: 

 

(4) P = (NS-1) + (logNS-1) + AD 

 

A simple Markov Chain Monte Carlo (MCMC) tool
30

 was used 

to assess parameter sensitivity and generate ensembles of 

Figure 1 PERSiST conceptual structure showing conceptual representation of a 

catchment. At the largest (landscape) level, a catchment is represented as one or more 

subcatchments. Each subcatchment has a reach flowing through it, which is 

representative of the main stem of the river. At the sub/catchment reach level, an 

arbitrary number of land cover types with differing hydrological properties are 

simulated. Each land cover type can be simulated as a hydrologic response unit (level 3) 

which in turn is comprised of one or more buckets (level 4).
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model predictions. Parameter sensitivity was assessed by 

calculating the probability associated with the Kolmogorov-

Smirnov (KS) statistic comparing the cumulative distribution of 

parameters from an ensemble of best-performing parameter 

sets to a rectangular distribution which would be indicative of 

parameter randomness. Probabilities were adjusted to account 

for multiple comparisons by sorting probabilities from lowest 

to highest and then multiplying by the rank order. 

 

Catchment Description 

The GBM is a trans-boundary river basin which is home to at 

least 630 million people
34

. The basin has a total area of just 

over 1.7 million km
2
, distributed between India (64%), China 

(18%), Nepal (9%), Bangladesh (7%) and Bhutan (3%). The 

headwaters of both the Ganga and Brahmaputra rivers 

originate in the Himalayan mountain range in China. The 

Ganga flows southwest into India and then turns southeast, 

being joined by many tributaries. After flowing into 

Bangladesh, the GBM rivers join and flow into the Bay of 

Bengal as the Meghna. The Brahmaputra river flows east 

through southern China, then flows south into eastern India, 

turns southwest, then enters Bangladesh before merging with 

the Ganga and Meghna rivers. 

 

Rivers in the GBM basin have highly diversified climate and 

flow regimes
35

. Both the Ganga and Brahmaputra basins are 

characterized by high variability in precipitation and 

seasonality of runoff
36

. Precipitation in the Ganga river basin 

accompanies the southwest monsoon winds from July to 

October and the tropical cyclones that originate in the Bay of 

Bengal between June and October. Only a small amount of 

rainfall occurs in December and January. In the upper Gangetic 

Plain, annual rainfall averages 760–1 020 mm, in the Middle 

Ganga Plain of Bihar (India) 1 020–1 520 mm, and in the delta 

region 1 520–2 540 mm. Meltwater from the glaciers in the 

Himalayas contribute to 10% of the runoff in the Ganga and 

27% of the runoff in the Brahmaputra
37

. 

 

The main Ganga is the flow combination of two rivers, the 

Alaknanda and the Bhagirathi, which meet at Deva Prayag in 

Uttarakhand State (India) within the mountain range of the 

Himalayas. During its middle course in an easterly direction, a 

number of large and small tributaries join onto the northern 

side (left bank) from the Himalayan sub-basin including the 

Ramganga, Sarda, Gomti, Ghagra, Gandak and Kosi, the last 

five originate within the Nepalese Himalayas. 

 

The Brahmaputra originates in China on the northern slope of 

the Himalayas, from where it flows eastwards for about 1 130 

km, then turns southwards and enters Arunachal Pradesh 

(India) at its northern-most point and flows for about 480 km. 

Then it turns westwards and flows through Arunachal Pradesh, 

Assam and Meghalaya for another 650 km and then enters 

Bangladesh. Then the river curves to the south and continues 

on this course for about 240 km until its confluence with the 

Ganga. The Brahmaputra has a braided channel, while the 

Ganga is a meandering channel. During low flows the river 

becomes a multiple channel stream with sand bars in between 

and the channels shift back and forth between the main 

stream banks, which are 6 to 12 km apart. The total length of 

the river from its source to the sea is about 2840 km. 

 

Daily streamflow data for model calibration were available 

from four sites in the Upper Ganga (Garhmukteshwar, GA03; 

Fategarh,GA04; Ankinghat GA05 and Kanput, GA06; Figure 2) 

and one site in the Brahmaputra basin (Bahadurabad, BP10). 

Data were available from 1979 to 1999 in all cases. Ganga sites 

are further described elsewhere
41

. 

 

Agriculture is the dominant land use in the Upper Ganga 

catchment and most crops are irrigated. Typically, two to three 

crops are harvested every year. Kharif crops are monsoon 

plants cultivated and harvested during the rainy season. Millet 

and rice are the main Kharif crops. Rabi crops are sown after 

the rains have gone, typically in April or May, with the main 

crops being wheat in India followed by barley, mustard, 

sesame and peas. 

 

Figure 2 Map showing the locations of reaches in the Upper Ganga (GA01-GA07) and 

Brahmaputra (BP01-BP10) basins. The Ganga basin is shown in beige and the Meghna 

in blue. The Upper Ganga simulated here is shown in green.
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Figure 3 Simulated abstractions applied over the course of a year to reaches in the 

Upper Ganga.
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Abstraction for irrigation is an important influence on flows in 

the Upper Ganga (Figure 3). There is an extensive canal system 

and significant abstractions occur GA02, GA03 and GA05. In 

GA02, the barrage at Bhimgoda diverts water into the Upper 

Ganga (UGC) and Eastern Ganga (EGC) canals with authorized 

discharges of 297 m
3
s

-1
 and 137 m

3
s

-1
 respectively. UGC is a 

perennial canal whereas EGC is permitted to run from 11 June 

to 20 Oct. Also influencing flows in GA02, the Madhya Ganga 

Canal (MGC) barrage feeds MGC Stage-1 with authorized 

discharge 234 m
3
s

-1
 during Kharif and MGC- Stage-II with 

authorized discharge 122 m3 s-1 is also proposed from left 

bank of the regulator of this barrage. Flows at GA03 are 

influenced by abstractions from the Narora barrage, the Lower 

Ganga Canal (Ganga-LGC) with authorized discharge 241 m
3
s

-1
 

and the Parallel Lower Ganga Canal (PLGC) with an authorized 

discharge of 119 m
3
s

-1
. The former canal runs both in Kharif 

and Rabi while the later runs only in Kharif. The combined 

discharge capacity of all these six canals is 1151 m
3
s

-1
. The 

Dalmau A/B lift canals influence flows in GA06. Abstraction 

was not simulated in the Brahmaputra basin.  

 

Abstraction data were not available for the Brahmaputra but 

other studies have suggested an overall abstraction demand of 

480 mm yr
-1

 
37

. 

 

Model Setup 

PERSiST is driven using one or more daily meteorological time 

series of precipitation and air temperature. For the 

applications presented here, one meteorological time series 

was used for each river. Time series were obtained from 

Hadley Regional Climate Model (HadRM3) simulations
42

. 

Simulations were performed for the Upper Ganga and 

Brahmaputra basins (Figure 2). The choice of river basins to 

simulate was driven by availability of flow data for model 

calibration. While additional flow data were available from 

Bangladesh, the complexity of the upstream dam system 

rendered credible calibration impractical. 

 

The necessary spatial data to run PERSiST include descriptions 

of all relevant land cover types, subcatchment areas, and the 

proportional coverage of different land cover / hydrologic 

response types within each subcatchment; and reach (river or 

stream) information including length and average width. The 

abstractions described above were used in the Upper Ganga 

flow simulations. 

 

Figure 4: Bucket structures and fluxes for simple (A) structural model including 

two buckets representing fast and slow flows. Fluxes include (a) terrestrial 

precipitation, (b) evapotranspiration, (c) precipitation onto the river surface, 

(d) water flow out of the reach, (e) runoff from the fast flow bucket to the 

reach, (f) percolation from the fast to slow bucket and (g) runoff from the 

slow flow bucket to the reach. 

Figure 5: Bucket structures and fluxes for INCA-compatible (B) structural model 

including four buckets representing quick flow, shallow soilwater, deep soilwater and 

groundwater. Fluxes include (a) terrestrial precipitation, (b) evapotranspiration, (c) 

precipitation onto the river surface, (d) water flow out of the reach. Additional fluxes 

include (h) direct runoff to the reach (i) percolation from direct runoff to upper 

soilwater, (j) saturation excess flow from upper soilwater (k) runoff from upper 

soilwater, (l) percolation from upper to lower soilwater (m) runoff from lower soil, (n) 

percolation to groundwater and (o) runoff from groundwater

 Upper Ganga Brahmaputra 

A B A B 

Reaches 4 7 1 10 

Land Cover Types 1 6 1 6 

Buckets / Land Cover Type 2 4 2 4 

 

Table 1: Summary of structural differences between simple (A) and complex (B) 

catchment representations
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Two sets of simulations were performed based on a minimal 

model structure (A) and a model structure consistent with the 

INCA perceptual model of catchments (B) (Table 1). The 

minimal model structure (A) simulated subcatchments based 

on flow measurement stations. Thus, the Upper Ganga was 

simulated as four subcatchments with downstream boundaries 

defined by GA03, GA04, GA05 and GA06 while the 

Brahmaputra was simulated as a single subcatchment with a 

downstream boundary at BP10. A single hydrologic response / 

land cover type was used for each river. Two buckets 

representing quick and slow flows were simulated (Figure 4). 

The second set of simulations (B) used the same subcatchment 

and land cover percentages as used by Whitehead et al.
26

 for 

simulating nitrogen fluxes. Each land cover type was simulated 

using four buckets representing quick flows, upper and lower 

soilwater and groundwater (Figure 5). In this set of 

simulations, the Upper Ganga was simulated as seven reaches 

(Table 3). Reaches 1, 2, 3, 4, 6 and 7 are on the main stem of 

the Upper Ganga while reach 5 also includes the Ramganga 

River. Land cover data for the Upper Ganga were obtained 

from the Indian National Remote Sensing Centre (NRSC) and 

Food and Agriculture Organization (FAO). Following Whitehead 

et al.
26

, data were aggregated into six land cover classes 

representing Urban, Forest, Grassland, Double / Triple Crops 

(DCrop), Kharif and Rabi Crops. The division was made to 

account for different irrigation strategies in the crop land cover 

types and different hydrologic properties of the other land 

cover types (e.g. less infiltration in the urban land cover type 

and more canopy interception in the forest land cover type). 

Areas of different land cover types in the Brahmaputra basin 

(Table 2) have been derived from 2012 Moderate Resolution 

Imaging Spectroradiometer (MODIS) satellite data from the 

Global Land cover Facility (http://glcf.umd.edu/data/lc). Data 

were retrieved on a 5’ by 5’ grid, which is approximately equal 

to an 8 by 8 km cell size. Catchment boundaries in the 

Brahmaputra were delineated using a 1km grid resolution DTM 

(https://www.ngdc.noaa.gov/mgg/topo/topo.html). While the 

DTM used here has a relatively coarse resolution, it is 

appropriate given the large (1X10
4
 – 7X10

5
 km

2
) size of the 

individual subcatchments. The subcatchments for the study 

were digitized manually using the DTM and a stream network 

which was generated from the DTM using ArcGIS. Manual 

digitizing of the catchment boundaries was performed to 

minimize the occurrence of slivers and other spurious features. 

 

Time series of hydrologically effective rainfall and soil moisture 

deficits generated from the INCA-compatible (B) model 

structure were used as inputs to the GBM nutrient modelling 

presented elsewhere
26,27,28

. 

Monte Carlo analyses were performed to identify sensitive 

parameters and estimate prediction uncertainties. For the 

simple (A) catchment structure, upper and lower time 

constants, precipitation multipliers, initial flow, snowmelt and 

evapotranspiration parameters and flow velocity parameters 

were allowed to vary for a total of 14 parameters to simulate 

flows in one reach in the Brahmaputra and 22 parameters to 

simulate flows in 4 reaches in the Upper Ganga. For the 

complex catchment structure (B), runoff time constants for all 

buckets in the different land cover types, subcatchment and 

land cover specific precipitation snowmelt and 

evapotranspiration parameters as well as reach specific flow-

velocity relationships were all allowed to vary. A total of 100 

parameters were varied in the Upper Ganga simulations to 

simulate flows in 10 reaches assuming six different land cover 

types and 73 in the Brahmaputra application which simulated 

flows in 10 reaches based on five land cover types. Sensitive 

parameters were defined as those with an adjusted 

Kolmogorov-Smirnov (KS) p-value less than or equal to 0.1. The 

dimensionality of the model structures were estimated based 

solely on the number of parameters allowed to vary during 

simulations
45

. 

 

Statistics for model comparison 

Both the Akaike Information Criterion (AIC)
43

 and Bayes 

Information Criterion (BIC)
44

 are routinely used to evaluate 

model performance. The two statistics balance model 

predictive skill estimated as the residual sum of squares (RSS) 

divided by the number of observations (n) and the number of 

parameters in a model (k). When comparing two models, the 

model with the smaller AIC or BIC statistic is preferable. 

 

Reach 

Area 

(km2) 

Reach 

Length 

(km) 

Percent Land Cover 

Snow 

and Ice Forest Grassland Cropland 

Urban 

and Bare 

Soil 

Bp01 22272 250 0.9 3.4 87.6 0 8 

Bp02 31296 335 1.2 6.5 88.3 0 3.9 

Bp03 54912 350 0.7 0.6 98.6 0 0.1 

Bp04 61120 509 4.6 6 89.4 0 0 

Bp05 77120 407 23.8 49.8 23.5 2.8 0.1 

Bp06 60160 224 1.4 59.3 20.1 19.2 0 

Bp07 40768 221 1.6 43.5 21.5 33.2 0.2 

Bp08 59904 183 3.4 43.5 34.5 18.5 0.1 

Bp09 35840 77 2 19.8 27.1 50.4 0.7 

Bp10 9792 144 1.3 0 2.6 96.1 0 

 

Table3: Subcatchment areas, reach length and land cover proportions used for the 

complex (B) Brahmaputra simulations

Reach 

Area 

(km
2
) 

Reach 

Length 

(km) 

Percent Land Cover 

Urban Forest Grassland Dcrops Kharif Rabi 

GA01 19356 185 0.01 42.25 51.25 3.93 2.51 0 

GA02 9583 199 0.81 33.82 15.82 27.76 20.8 0.99 

GA03 15212 206 0.75 1.01 2.68 70.07 15.5 10 

GA04 9767 161 0.36 0.28 8.42 41.14 14.74 35.07 

GA05 33498 109 0.32 19.34 9.02 38.7 17.34 15.25 

GA06 4022 156 3.05 0.3 13.93 9.84 27.06 45.81 

GA07 1444 79 0.09 0.06 9.81 28.86 28.04 33.33 

 

Table 2: Subcatchment areas, reach length and land cover proportions for the Upper 

Ganga complex (B) structure simulations. Reaches GA01 through GA03 were combined 

for the simple (A) simulations while reaches GA01 through GA07 were simulated 

individually for the more complex simulations.
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(5) AIC = 2 + n X ln(2*π) + n X ln(RSS/n) + 2 X (k+1)  

(6) BIC = 2 + n X ln(2*π) + n X ln(RSS/n) + ln(n) X (k+1) 

 

For n>7, BIC will be more conservative than AIC with respect to 

the influence of number of parameters on model adequacy. As 

parameters are added to a model, RSS decreases. The 

maximum number of additional parameters (m) justified by 

the reduction in RSS can be determined as follows based on 

the limiting case where BIC2 = BIC1 

 

(7) BIC1 = 2 + n X ln(2*π) + n X ln(RSS1/n) + ln(n) X (k+1) 

(8) BIC2 = 2 + n X ln(2*π) + n X ln(RSS2/n) + ln(n) X (k+m+1) 

 

Setting (7) equal to (8), rearranging and simplifying, it is 

possible to obtain (9): 

 

(9) n X (ln(RSS2/n) - ln(RSS1/n)) = -ln(n) X m 

 

Which in turn can be further re-arranged and simplified to: 

 

(10) n X ln(RSS1/RSS2) = ln(n) X m 

 

Substituting NS=(1-RSS/(∑(O-Avg(O))
2
) into (10), rearranging 

and simplifying facilitates the estimation of the maximum 

number of additional parameters, m, justified by an 

improvement in model performance (11): 

 

(11) m < (n/ln(n)) X ln((1-NS1)/(1-NS2)) 

 

The NS and logNS from the 100 best performing model runs in 

model setup A and B were used to generate a population of m-

values which were calculated by rank-ordering the NS and log 

NS statistics for each reach and substituting into (11). Thus, 

200 candidate m values were generated for the Brahmaputra 

and 800 for the Upper Ganga. 

Results 

Overall, model performance was better for the more complex 

(B) model structure than for the minimal (A) structure in both 

rivers (Figures 6,7). NS statistics for the best performing model 

runs ranged between 0.42 and 0.65. Model performance was 

worst in GA03 and best in GA05 (Figure 6). The difference in 

performance based on NS statistics between the simple (A) 

and complex (B) model structures was greatest in reaches 

GA03 and GA04. There was a larger range in log NS statistics in 

the best performing model runs (0.2-0.8, Figure 7), suggesting 

more variation in the model ability to simulate base flow 

conditions. For both A and B, model performance was better in 

the lower reaches of the Ganga (GA05 and GA06) than in the 

upper. The log NS statistics were quite similar for the simple 

(A) and complex (B) catchment structural representation for 

GA03. The biggest difference between A and B catchment 

structural representations occurred for GA04 (Figure 7). 

 

Figure 6: Box and whisker plot showing Nash-Sutcliffe statistics from the best 

performing simple (A; solid grey fill) and complex (B; open fill) flow simulations 

Brahmaputra (BP10) and Upper Ganga (GA03, GA04, GA05, GA06). Upper and lower 

bars of each box represent 75th and 25th percentiles. The upper whisker represents 

the 75th percentile plus 1.5 times the interquartile range while the lower whisker 

represents the 25th percentile minus 1.5 times the interquartile range. Outliers are 

shown as black dots.

Figure 7: Box and whisker plot showing log Nash Sutcliffe statistics from the best 

performing simple (A; solid grey fill) and complex (B; open fill) flow simulations 

Brahmaputra (BP10) and Upper Ganga (GA03, GA04, GA05, GA06). Upper and lower 

bars of each box represent 75th and 25th percentiles. The upper whisker represents 

the 75th percentile plus 1.5 times the interquartile range while the lower whisker 

represents the 25th percentile minus 1.5 times the interquartile range. Outliers are 

shown as black dots.
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Figure 8: Average, maximum and minimum modelled daily flows and observed flows at 

GA06
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Flow simulations based on the complex catchment structures 

(B) showed that the model was able to reproduce both peak 

and low flow conditions in both rivers (Figure 8,9). Similar 

simulations with wider uncertainty bands were obtained from 

the simple catchment structure (A) simulations. The model 

was better able to simulate flows in the lower reaches of the 

Upper Ganga (Figure 8). Similar results were obtained for 

reaches GA05 and GA06 (not shown). While the volumes of 

low flows were simulated well, there were still problems with 

the high flow simulations. While the model was able to 

capture the timing of high flows, it either over- or under-

estimated actual flow amounts. 

 

A similar situation was observed for the Brahmaputra flow 

simulations (Figure 9). The model was able to reproduce the 

timing and amount of low flows but tended to miss the timing 

and amount of peak runoff. In some years, simulated peak 

runoffs were too high while they were too low in others. The 

model was generally able to reproduce the duration of peak 

flows (short or long) but tended to produce peaks either too 

early or too late. 

 

For all flow simulations, there were relatively narrow 

prediction ranges obtained from the Monte Carlo analyses 

(ranging from a high of 16% in GA03 to a low of 11% in BP10). 

However, slightly wider prediction ranges were obtained for 

the Brahmaputra than for the Ganga. Annual average 

coefficients of variation (CV; annual standard deviation / 

annual average) for modelled flows showed a similar pattern 

in both rivers (not shown). Overall, CV were lower in the lower 

reaches where calibration data were available than they were 

in the upper reaches where such data were lacking. While 

there was considerable inter-annual variation in the CV of 

predicted flows, the rank order always remained the same. In 

the upper reaches where data were lacking, predicted values 

were less constrained. 

 

The simple (A) simulations showed a similar number of 

sensitive parameters as the complex (B) simulations (Tables 4-

7). In the simple (A) Upper Ganga simulations (Table 4), model 

performance was sensitive to rainfall multipliers and instream 

flow:velocity parameters in three of four simulated reaches. 

Model performance was sensitive to degree day ET rates in 

one subcatchment and to the fast flow time constant 

(parameter b2 in equation 1). In the simple (A) Brahmaputra 

simulations, model performance was sensitive to the rain 

multiplier, flow:velocity parameters, initial reach flow and the 

fast flow time constant.  

 

Model performance in the complex (B) Upper Ganga 

simulations was sensitive to rainfall multipliers and to time 

constants in the double/triple (DCrops), grassland and forest 

land cover types (Table 6). In the complex (B) Brahmaputra 

simulations, model performance was sensitive to rain 

multipliers, time constants in the forest and grassland land 

cover types and to flow:velocity parameters in the uppermost 

reach.  

 

Parameter Location 

Adjusted 

p 

Rain Multiplier GA03 <0.001 

Time Constant Fast Flow <0.001 

Rain Multiplier GA05 <0.001 

Rain Multiplier GA04 <0.001 

Degree Day ET GA04 <0.001 

Flow ”b” GA03 <0.001 

Flow ”a” GA04 0.03 

Flow ”b” GA05 0.10 

Table 4: Sensitive parameters for reduced complexity (A) flow simulations in the Upper 

Ganga ordered from most to least significant 

A similar suite of sensitive parameters were obtained in the 

Brahmaputra simulations (Tables 5 and 7) where model 

performance was sensitive to rainfall multipliers, flow:velocity 

parameters and bucket time constants. The simple (A) 

Brahmaputra simulations were also sensitive to initial flows. 

 

The ensembles of BIC statistics obtained from model 

structures A and B showed that a greater number of additional 

parameters could be justified for the Brahmaputra simulations 

than for the Upper Ganga (Table 8). The actual number of 

additional parameters used in model structure B as compared 

to model structure A (59 for the Brahmaputra and 78 for the 

Upper Ganga) were found at the 20
th

 and 39
th

 percentiles of 

their respective distributions. Had the actual number of 

additional parameters fallen below the 5
th 

percentile of 

distributions of the number of additional parameters 

potentially justified by the increase in model performance, it 

would have been possible to reject the hypothesis that model 

structure A was preferable to B. On the other hand, if the 

actual number of additional parameters fell above the 95
th

 

percentile of the distribution, it would be possible to reject the 
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Figure 9: Average, maximum and minimum modelled daily flows and observed flows at 

BP10
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hypothesis that model structure B is preferable to A. (equation 

11). Thus, while there was some evidence that the more 

complex structure B was justified, this was not conclusive 

based on the differences in distributions of BIC statistics. 

However, the distribution of additional parameters justified by 

the ensemble of BIC values also failed to support a preference 

for the simpler model structure. 

 

Parameter Adjusted p 

Flow ”a” <0.001 

Flow ”b” <0.001 

Rain Multiplier <0.001 

Fast Flow Time Constant 0.005 

Initial Flow 0.007 

Table 5: Sensitive parameters for reduced complexity (A) flow simulations in the 

Brahmaputra ordered from most to least significant 

Discussion 

It is noteworthy that a simple model application using lumped 

estimates of land cover properties, an extremely simple 

representation of catchment structure and single time series 

of daily temperature and precipitation was able to credibly 

simulate seasonal and inter-annual patterns of river flow in 

two large, complex river basins. While the results presented 

here would not be appropriate for flood flow forecasting, they 

do show that simple models and simple model applications can 

reproduce the timing and amount of flows in large, poorly 

gauged river basins and thus are suitable both for water 

quality simulations and drought analysis. The results here are 

intermediate in complexity, being more complex than a very 

simple WATBAL application
11

 and less data-intensive than fully 

distributed model applications
18,23,24

.  

 

Parameter Location Adjusted p 

Rain Multiplier GA05 <0.001 

Rain Multiplier GA04 <0.001 

Lower Soilwater Time Constant Dcrops <0.001 

Upper Soilwater Time Constant Dcrops 0.003 

Rain Multiplier GA03 0.011 

Lower Soilwater Time Constant Grassland 0.015 

Direct Runoff Time Constant Dcrops 0.074 

Groundwater Time Constant Forest 0.096 

Table 6 Sensitive parameters for complex (B) flow simulations in the Upper Ganga 

ordered from most to least significant 

The results here show the relative importance of structural 

versus parameter uncertainty. The simple (A) model structure 

based on two buckets, a single land cover type and a simplified 

reach structure was unable to obtain the same goodness of fit 

as could be achieved with a more complex model structure (B). 

This highlights the importance of an adequate conceptual 

representation of the runoff generation process
6
. A model 

structure based on four buckets (B) was able to better 

reproduce the observed streamflow than a structure based on 

only two buckets (A). 

 

Parameter Location Adjusted p 

Lower Time Constant Grassland <0.001 

Lower Time Constant Forest <0.001 

Upper Time Constant Grassland <0.001 

Rain Multiplier BP02 0.001 

Rain Multiplier BP03 0.008 

Upper Time Constant Forest 0.012 

Groundwater Time Constant Forest 0.022 

Flow ”a” BP01 0.100 

Table 7: Sensitive parameters for complex (B) flow simulations in the Brahmaputra 

ordered from most to least significant 

There are a number of possible ways in which model 

performance could have been improved. Flow simulations 

would probably have been better in both catchments had 

spatially distributed precipitation and temperature time series 

been available for flow prediction. The paucity of precipitation 

and snowmelt data, especially in high altitude catchments 

contributes to the uncertainty surrounding runoff prediction in 

the Ganga and Brahmaputra
10

.Furthermore, improvements in 

model performance could have been obtained if runoff from 

glacial melt was explicitly simulated
47

.  

 

Percentile Brahmaputra Ganga 

5 46 12 

20 59 

39 

 

78 

50 99 101 

95 189 245 

Table 8: Number of additional candidate parameters justified by decrease in BIC 

statistic for 5%, 50% and 95% of distributions based on comparison of model structures 

A and B. The 59 additional parameters in model B for the Brahmaputra occurred at the 

20
th

 percentile while the 78 additional parameters for the Upper Ganga occurred at the 

39
th

 percentile. 

It is somewhat surprising that flow simulations in the 

Brahmaputra were not sensitive to any snowmelt related 

parameters in either the simple (A) or complex (B) simulations, 

especially as other studies have noted the large contribution of 

meltwater to river flows
37

. Snowmelt is more important in the 

upper and high elevation middle reaches of the Brahmaputra 

while flow is only available from a lower elevation site. 

Detailed information on abstraction rates and locations might 

also have improved the Brahmaputra simulations. 

 

Model goodness of fit is influenced by the number of 

observations used for calibration. Longer periods of 

observation, which can cover a broader range of conditions, 

are generally harder to simulate. Several published model 

applications to rivers in the GBM basin have been based on 
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only a single year of flow measurements
18,23

. It should be 

noted that shorter periods of simulation typically produce 

better fits between modelled and observed data as the model 

does not have to fit as wide a range of conditions. Pervez and 

Henebry
16

 obtained markedly better NS statistics with a 10-

year application of the SWAT model to the Brahmaputra Basin. 

However, their calibration maximized the NS statistic, unlike 

the results presented here which maximized NS, logNS and 

absolute differences (equation 4) over a 17 year period. Similar 

NS efficiencies with 11 year calibrations to those presented 

here were also obtained
24

.  

 

Poor low flow simulations obtained from both the simple (A) 

and complex (B) model structures for the upper reaches of the 

Ganga. This may reflect discrepancies between reported and 

actual irrigation rates. It is possible that there other water 

extractions than those accounted for with the dam diversion 

related abstractions simulated which are equivalent to 283 

mm yr
-1

 over the Upper Ganga catchment while the reported 

abstraction rate for the whole Ganga basin is 716 mm yr
-1

 
37

. 

 

Like many other models (e.g. HYPE
25

), the PERSiST model is 

able to make flow predictions at arbitrary locations in a river 

network. As such, PERSiST and similar tools can contribute to 

the research programme of Prediction in Ungauged Basins 

(PUB
38

). While the range of PERSiST-generated prediction 

intervals for flows is wider for ungauged than gauged basins, 

the model predictions still contain information value. The INCA 

series of models is routinely used to make water quality 

predictions at ungauged locations
26,27,28

. An ability to make 

plausible predictions at unmonitored locations is not a 

substitute for measurements but can facilitate the 

management of water quality and quantity in data poor areas 

such as the GBM basin. 

 

Simple models developed using the PERSiST framework have 

several advantages. They are easy to set up, have limited data 

requirements and are quick to run. The ease of set up means 

that they can be relatively inexpensive to apply, which stands 

in contrast to the millions of dollars spent on hydrological 

modelling in the GBM and other large basins
2
. As they are 

quick to run, simple models can be readily used for Monte 

Carlo or scenario analysis. Furthermore, simple models such as 

PERSiST or HBV-Light
39

 are of high pedagogic value as they are 

easy to use and give immediate feedback to promote 

hydrologic understanding. Recent work shows there is 

considerable potential for generating daily runoff data from 

satellite precipitation measurements
22

. Spatially distributed 

precipitation time series can be used as inputs to PERSiST, and 

would facilitate model setups with a finer spatial resolution. 

Unfortunately, flow data are lacking for model calibration. 

 

Like many models, PERSiST is over-determined. There is more 

than one combination of parameter values able to produce 

any output time series. It has long been recognized that 

rainfall runoff time series typically contain enough information 

to uniquely identify only four to six parameters
3
. This lack of 

information has been used to argue against the application of 

over-determined models for predicting runoff from rainfall 

time series. While PERSiST is over-determined it should be 

noted that model predictions are only sensitive to a small 

number of parameters (Tables 4-7) regardless of whether a 

simple (A) or complex (B) model structure was used. There are 

two schools of thought surrounding model building in 

hydrological sciences. One approach is to produce empirical 

models with as few parameters as possible so as to facilitate 

unique identification of parameter values
3
. The other 

approach, espoused here, is to attempt to produce a model in 

which all potentially relevant processes can be simulated. 

These two approaches illustrate the tension between Occam’s 

razor in which “entities must not be multiplied unnecessarily” 

and Kant’s counter principle that “the variety of entities should 

not be rashly diminished”
4
. Simple empirical models are often 

able to do a better job of curve fitting than more complex 

process-based models but are unduly limited in their ability to 

describe future conditions
40

. Because they include more 

relevant processes, over-determined models provide a more 

realistic simulation of the environment, but at the expense of 

parameter equifinality. Furthermore, given the current state of 

hydrological understanding and data availability, it is 

debatable whether it is possible to include all potentially 

important processes in a model. 

 

The results of the BIC analysis to determine the number of 

additional parameters which could be justified based on 

improvements in model performance lead to a similar 

conclusion. Using the approach we present, it was not possible 

to reject either the hypothesis that the simple model structure 

(A) was preferable to the complex structure (B) or that the 

complex structure was preferable to the simple. Had the less 

conservative AIC been used (equation 5), then the results 

would have suggested a clear preference for the more 

complex model structures. 

 

The two conceptual models presented here can be thought of 

as competing hypotheses about the controls on runoff in the 

Upper Ganga and Brahmaputra. While neither conceptual 

model could be falsified (i.e., they both explained some of the 

temporal dynamics in streamflow), the more complex model 

structure (B) is better able to simulate observed streamflow.  

 

The results presented here show that the conceptual 

representation of runoff generation incorporated into the 

model structure is a more important control on flow 

simulation than parameter values. Parameter equifinality 

existed in both the simple (A) and complex (B) model 

structures but the complex model structure (B) consistently 

outperformed the simple structure (A). Partitioning 

uncertainty into structural, parameter and data sources can 

lead to improved system understanding
48

 and help identify 

models with the most appropriate level of complexity. 

 

When posing the question “How much modelling is enough”, it 

should be apparent that the obvious reply of “enough for what 
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purpose” has no clear answer
2
. The relatively simple 

simulations presented here were performed to evaluate the 

usefulness of a simple, semi-distributed rainfall runoff model 

for flow, soil moisture deficit and hydrologically effective 

rainfall prediction in large poorly gauged basins and to explore 

the consequences of different model structures on flow 

prediction. Using limited input data and a simple, semi-

distributed model setup, it was possible to produce 

hydrological predictions suitable for water quality modelling. 

Conclusions 

Here, we present applications of the PERSiST rainfall runoff to 

simulate flows in the Upper Ganga and Brahmaputra basins. 

Using single time series of precipitation and temperature for 

each catchment, the model was able to satisfactorily simulate 

both seasonal and inter-annual patterns of flow. Model 

structural sensitivity was more important than parameter 

sensitivity for flow predictions. Consistently better model 

performance was obtained with a catchment based on land 

cover than a simplified model structure. In both catchments, 

flow predictions were sensitive to precipitation multipliers and 

to runoff time constants for the dominant land cover types. 

The range of predicted flows was wider in the uppermost 

reaches of the two rivers. The results presented here suggest 

that relatively simple models with limited data requirements 

can be used simulate flows from large, poorly gauged basins. 

This finding has important implications for global-scale 

simulations of water and pollutant fluxes from land to sea. 
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