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Nanoscale Mapping of Carbon Oxidation in 
Pyrogenic Black Carbon from Ancient Amazonian 
Anthrosols 

B.S. Archanjo*a, D.L. Baptistab, L. A. Senaa, L.G. Cançadoac, N.P.S. 
Falcãod,A. Jorioc and C.A. Acheteae 

Understanding soil organic matter is necessary for the development of soil amendments, which 
are important for sustaining agriculture in humid tropical climates. Ancient Amazonian 
anthrosols are uniquely high in black recalcitrant carbon, making them extremely fertile. In 
this study, we use high-resolution electron microscopy and spectroscopy to resolve the 
oxidation process of carbon in the nanoscale crystallites within the black carbon grains of this 
special soil. Most alkali and acid chemical extraction methods are known to cause chemical 
modifications in soil organic matter and to give poor or no information about the real spatial 
structure of soil aggregates. However, here we show that carbon-oxygen functional groups 
such as phenol, carbonyl, and carboxyl dominate over different spatial regions, with areas 
varying from over tens to hundreds of nm2. The chemical maps show that in the nanoscale 
grain, surface has a tendency to be less aromatic than the grain core, where higher oxidative-
degradation levels are indicated by the presence of carbonyl and carboxyl groups. Deep 
understanding of these structures could allow artificial reproduction of these natural events. 
 

 

 

INTRODUCTION 

 Highly fertile anthropogenic Amazonian soils, called Terra 
Preta de Índio (TPI) or Amazonian dark earth, exhibit higher 
concentrations of biomass-derived black carbon (biochar) than 
adjacent soils 1-4. Some research has shown that the high levels 
of black carbon materials in this soil are responsible for its high 
fertility over long-term cultivation 1-6. Because of this, several 
strategies have aimed to develop a charcoal soil amendment 
based on TPI soils 2, 6, 7. Some groups have proposed the 
production of terra preta nova (new Amazonian dark earth or 
synthetic terra preta), with the addition of charcoal and organic 
biowaste as a soil conditioner. These additives could improve 
the cation-exchange capacity, stability, and recalcitrance of the 
soil 5-10. Nevertheless, the complex carbon-grain structure of 
TPI soils and the aging effects on its poly-condensed aromatic 
structure over thousands of years greatly affect the efficacy of 
biochar as a soil amendment. Previous studies have shown that 
aged biochar exhibited changes in surface chemistry and 
adsorption properties 3, 5, 6, 11, which probably led to high cation 
retention, as in the Amazonian dark earths. 
 We have recently used tools for materials science to 
demonstrate that the millenary black carbons in Amazonian 
dark earth (TPI-carbon) exhibit a complex morphology, with 
particles ranging in size from microns to nanometres. 
Nanocrystallite sizes of sp2 ordered carbons have been observed 
in the range of few to tens of nanometres 12, changing from the 

core to the surface of the TPI-carbon grains 13. Also, one can 
find works where nanotechnology tools are used in soil science 
research 14, 15. In the present work, we use state-of-the-art 
nanotechnology tools to gain understanding of the TPI-carbon 
structures. Scanning electron microscopy (SEM) coupled with 
an energy dispersive X-ray (EDX) detector was first used to 
identify and map the chemical elements of the TPI-carbon grain 
at the microscale range. In sequence, thin lamellas were 
prepared using a focused ion beam (FIB) for transmission 
electron microscopy (TEM) analysis. Nanometre-scale 
chemical bonding maps (spatial resolution of 10 nm and energy 
resolution of approximately 0.16 eV) of TPI-carbon grains were 
then obtained through spectral imaging technique in electron 
energy loss spectroscopy (EELS) experiments associated with 
scanning transmission electron microscopy (STEM). Nanoscale 
spatial-resolved maps of carbon electronic transitions were built 
to spatially resolve the chemical structure of organic radicals 
across the TPI-carbon grains (TPI grains rich in carbon). For 
comparison, EELS experiments were performed on different 
charcoal samples produced in the laboratory. 
 
Experimental 

 The TPI samples were collected near Manaus, Amazonas 
State, Brazil, from three sites: Serra Baixa – TPISB – (Costa do 
Açutuba), Iranduba (Lat. 3º 30’ S, Long. 60º 20’ W), Balbina – 
TPIBB – Presidente Figueiredo (Lat. 1º 54’ S, Long. 59º 28’ W) 
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 Besides the carbon 1sσ* broadband above 290 eV, four 
well-defined peaks are evident in the range of the electronic 
transition 1sπ* 24. Observing the EELS spectra shown in 
Figure 4a, we assigned them to the aromatic carbon (C sp2) 
peak around 285, the phenol (C-OH) at 286.7, the carbonyl (C 
= O) at 287 eV, and the carboxyl group (HO = C-O) at 288.6 
eV 11, 12, 19, 22, 25. Spatially resolved mapping of each functional 
group is presented in Figures 4c–f. The spatially resolved 
measurement grid is shown in Figure 4b, where the 
experimental points are spaced 15 nm apart. The chemical maps 
show that the grain core has a tendency to be more aromatic 
(graphitic) than the grain surface. In addition, the results clearly 
show that the aging-induced oxidation is not homogeneous in 
the sample within the spatial resolution of 15 nm, revealing 
chemical domains ranging from tens to hundreds of nm2. 
Higher oxidative-degradation levels indicated by the presence 
of carbonyl and carboxyl groups were more pronounced on the 
grain surface. These results are consistent with the work 
reported by Liang et al. 11. However, our analysis goes further, 
showing local variations (in the range of few nanometres) on 
the main organic radicals, consistent with previous observations 
of nanocrystallites composed by sp2 carbon 12, 13. 
 Carboxylic groups at the surface of the grain increase the 
cation exchange capacity in the soil, retaining nutrients and 
driving the fertility level of the soil 3, 6. Hence, the inner 
aromatic regions act as a source of carbon to keep the 
oxidization process of the grains over the years. The core of the 
microscale grain shown in Figure 2 remains more aromatic than 
the nucleus of the smaller particle show in Figure 4, even after 
thousands of years. It is worth noticing that the spectral 
characteristics of the core of the TPI-carbon micrograins are 
similar to those of fresh charcoal, presenting low levels of 
oxidation and low amounts of carbonyl and carboxyl groups 
 Although the results presented here about the nano-structure 
of the carbon present in the TPI can be useful to predict change 
trajectories in "modern" charcoal when added to the soil, a 
considerable effort still has to be made before we have a recipe 
to reproduce these structures in laboratory. For example, there 
are many questions related to the availability of the anions and 
cations found on the shell of the nanoscale TPI-carbon grain. In 
previous works 12, 13, 17 we have shown that the stability of 
calcium attached to a nanoscale oxidized carbon grain strongly 
depends on the size and functional organic groups of the latter. 
Although calcium has been chosen as a prototype for these 
studies, additional work is being made for understand the 
relationship between the size of the nanoscale carbon structures 
found in the TPIs, and the stability of the ions hosted by them. 
In a next stage, questions related to the organic groups and 
chemical elements at the nanoscale must be answered, therefore 
allowing us to reproduce TPI properties in feasible scale, time 
and cost for technological application. 
 
Conclusions 

 We presented a spatially resolved chemical nanoscale 
analysis of the black carbon found in Amazonian dark earth. It 
is possible that the carbon phase in TPI begins as a charcoal-
like carbon structure of mostly poly-condensed aromatic 
groups. This structure provides a prolonged biological and 
chemical stability. However, slow partial oxidation and/or 
aggregation of organic molecules present in soil organic matter 
over thousands of years produce oxidized carbon at the surface. 
This surface carbon is not fully homogeneous at the nanoscale, 

where different oxidized carbon functional groups, such as 
phenol, carbonyl, and carboxyl, dominate the spectra in the 
range of tens of nanometres in different areas.  
 To date, scientists have been unable to fully reproduce the 
beneficial growth properties of TPI. It is hypothesized that, to 
achieve these benefits, the black carbon or biochar must be 
aged to promote oxidization, thus increasing the cation-
exchange capacity of the soil. Therefore, fresh charcoal must be 
altered before it can function as a biotope. The inhomogeneous 
distribution of the different functional groups at the tens-of-
nanometre scale indicates that it may be feasible to establish a 
non-simultaneous oxidation process that favours different 
oxidized carbon functional groups at the same time. 
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ENVIRONMENTAL IMPACT STATEMENT 

In this work we studied carbon nanoparticles found in ancient anthropogenic sites in South 

America, named Amazonian Dark Earths. These sites are covered by soils that have held the 

secret for a sustainable land-use system in the humid tropics, with the generation of a carbon-

negative industry. It is known that the key aspect behind the high productivity and 

recalcitrance of these soils is the presence of millenary stable carbon structures. There are 

efforts to reproduce these highly fertile soils by adding charcoal as a soil conditioner. The 

structural aspects revealed here may be the key for an important improvement in world 

agriculture and ecosystem sustainability. 
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