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Abstract 7 

Emergent contamination events have a significant impact on water systems. After 8 

contamination detection, it is important to classify the type of contaminant quickly to 9 

provide support for remediation attempts. Conventional methods generally either rely 10 

on laboratory-based analysis, which requires long analysis time, or on 11 

multivariable-based geometry analysis and sequence analysis, which is prone to being 12 

affected by contaminant concentration. This paper proposes a new contaminant 13 

classification method, which discriminates contaminants in a real time manner 14 

independent of contaminant concentration. The proposed method quantifies the 15 

similarities or dissimilarities between sensors’ responses to different types of 16 

contaminants. The performance of the proposed method was evaluated using data 17 

from contaminant injection experiments in a laboratory and compared with a 18 

Euclidean distance-based method. The robustness of the proposed method was 19 

evaluated using an uncertainty analysis. Results show that the proposed method 20 

performed better in identifying the type of contaminant than the Euclidean distance 21 
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 2

based method and that it could classify the type of contaminant in minutes without 22 

significantly compromising the correct classification rate (CCR).  23 

 24 

Keywords 25 

contaminant classification, conventional sensor, cosine distance, early warning system, 26 

water quality 27 

 28 

Introduction 29 

Water systems are vulnerable to contamination accidents
1-2

. For example, in April 30 

2014, crude oil leaked from a petrochemical pipeline in Lanzhou, China, 31 

contaminating the water source of a local water plant and introducing hazardous 32 

levels of benzene into the city's tap water. Water supply to Lanzhou city was 33 

suspended as a result. An intense effort is currently underway to improve analytical 34 

monitoring and detection of biological, chemical, and radiological contaminants in 35 

water systems. One approach for avoiding or mitigating the impact of contamination 36 

is to establish an Early Warning System (EWS). EWS should provide a fast and 37 

accurate means of distinguishing between normal variations and contamination events, 38 

and should be able to classify the type of contaminant
3
.  39 

 40 

After an EWS detects the presence of contamination, the next important issue is to 41 

classify the type of contaminant. The most commonly used method for contaminant 42 
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 3

classification is laboratory-based analysis, e.g. ICP-MS. The advantage of this type of 43 

analysis is that it can accurately qualify and quantify the contaminant. The 44 

disadvantage is that it is time-consuming. In the event of an emergent contamination 45 

event, the key to all remediation attempts is time. Therefore, methods of fast 46 

classification of contaminants are in great demand. One possible solution is online 47 

compound-specific sensors, which need less time than laboratory-based methods
4-8

. 48 

However, compound specific sensors can normally only identify one type or a small 49 

group of contaminants. In this case, low efficiency or failure in contaminant 50 

classification can be expected.  51 

 52 

To overcome this drawback, several researchers have attempted to develop real-time 53 

contaminant classification methods. Kroll
9 

reported the Hach HST approach using 54 

multiple types of sensors for event detection and contaminant classification. In the 55 

Hach HST approach, signals from 5 separate orthogonal measurements of water 56 

quality (pH, conductivity, turbidity, chlorine residual, TOC) were processed from a 57 

5-paramater measure into a single scalar trigger signal. The deviation signal was 58 

compared to a preset threshold level. If the signal exceeded the threshold, the trigger 59 

was activated
9
. The deviation vector was then used for further classification of the 60 

cause of the contamination. The direction of the deviation vector relates to the agent’s 61 

characteristics. Seeing that this is the case, laboratory agent data can be used to build 62 

a threat agent library of deviation vectors. A deviation vector from the monitor can be 63 
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 4

compared to agent vectors in the threat agent library to see if there is a match within a 64 

given tolerance level. This system can be used to classify what caused the trigger 65 

event. Yang et al.
10 

reported a real-time event adaptive detection, classification and 66 

warning (READiw) method for event detection and contamination classification. In 67 

this method, four discrimination systems were developed to differentiate the 11 tested 68 

contaminants according to the various responses of sensors. The classification process 69 

was more based on geometry analysis. The similarity or dissimilarity between 70 

examples and classes were not quantitatively evaluated. Oliker and Osfield
11 

 71 

developed a contamination event detection method for water distribution systems, 72 

which comprised a weighted support vector machine for the detection of outliers, and 73 

subsequent sequence analysis for the classification of contamination events. It was 74 

noticed that either geometry analysis or sequence analysis was prone to being affected 75 

by the magnitude of sensor responses, which were normally related to contaminant 76 

concentrations. This could then lead to misclassification.  77 

 78 

Although effort has been put into developing methods for contaminant classification 79 

in recent years, more attention is necessary. Therefore, the objectives of this study are 80 

1) to develop a classification method which is independent of contaminant 81 

concentration; 2) to compare the performance of the proposed method with a 82 

Euclidean distance-based method.  83 

   84 
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 5

Materials and methods  85 

Data collection 86 

In order to collect contamination data, a pilot-scale contaminant injection experiment 87 

(CIE) platform was developed. A process flow schematic of the CIE platform is 88 

shown in Figure 1. The water tank is approximately 85 cm high with a diameter of 70 89 

cm, and has a total capacity of 300 L. The tank is linked with online water quality 90 

sensors via a peristaltic pump at 0.5 L per minute. Eight types of sensors developed 91 

by Hach Homeland Security Technologies were utilized in this study. They can 92 

measure the following 8 parameters simultaneously and continuously: temperature, 93 

pH, turbidity, conductivity, oxidation reduction potential (ORP), UV-254, 94 

nitrate-nitrogen and phosphate. The CIE platform was operated in recirculation mode 95 

for baseline establishment. Generally, the process of establishing baseline takes 4-6 96 

hours before any contaminant experiments can be carried out. When operating in 97 

single-pass contaminant mode, the contaminant is injected into the pipe connecting 98 

the tank and sensors via another peristaltic pump. It is injected at a rate of 2-20 mL 99 

per minute depending on concentration requirement. For more information about the 100 

CIE platform and the injection experiment, the readers could refer to Liu et al.
12

.  101 

(Figure 1) 102 

Contaminants investigated 103 

Specific quantities of various contaminants were injected into the system simulator. 104 

The contaminants investigated were determined according to statistical reports on 105 
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 6

water pollution incidents in urban water supply systems in China over the past 20 106 

years. Three groups of the most common six pollutants were selected: atrazine, 107 

glyphosate, cadmium nitrate, nickel nitrate, sodium fluoride and sodium nitrate. They 108 

were also selected based on China’s national standards regarding source water quality 109 

GB3838-2002 and drinking water quality GB5749-2006. The concentration ranges of 110 

tested contaminants are provided in the supplementary material (Table T1) and were 111 

decided using the concentration limit given in the above national standards. 112 

 113 

Classification method 114 

Clustering or cluster analysis is the process of grouping a set of objects into classes of 115 

similar objects. Objects in any one cluster share similar features. Although 116 

definitions of similarity vary from one clustering model to another, in most of these 117 

models the concept of similarity is based on distances, e.g., Euclidean distance and 118 

cosine distance
13-15

.  119 

(Figure 2) 120 

In cluster analysis, similar objects are assumed to have close values. If the distance of 121 

an object to a particular class is shorter than the distances to other classes, the object 122 

is deemed as belonging to that class (Figure 2). In this way, cluster analysis can be 123 

used to identify the type of contaminant. An object can be an example or instance of 124 

the class. In this study, the term instance refers to the object in a pre-defined class, 125 

while example refers to the object to be classified. Both instances and examples are 126 
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 7

vectors consisting of features. The features are extracted and derived from the sensor 127 

responses for contaminants. 128 

 129 

Figure 3 shows the responses to cadmium nitrate and atrazine at time t1 and t2 for 8 130 

types of sensors. If the sensor reading is taken as the feature, p
t1

, p
t2

, q
t1

 and q
t2

 are 131 

8-dimensional vectors. As shown in Figure 3, the graphs for p
t1

 and p
t2

 are clearly 132 

similar to each other, while the graph for q
t1

 is closer to the graph for q
t2

. An essential 133 

task of this study is to quantify the similarity or dissimilarity between two vectors, 134 

which is then used for contaminant identification.  135 

(Figure 3) 136 

Similarity measure 137 

There are several methods of measuring the similarity between two objects (i.e. two 138 

l-dimensional vectors). In this study, cosine similarity was adopted. Cosine similarity 139 

is a measure of similarity between two vectors of an inner product space that 140 

measures the cosine of the angle between them
16-17

. The cosine of two vectors can be 141 

derived by using the Euclidean dot product formula. 142 

cosp q p q θ⋅ =                                                     (1)
 143 

Given two vectors of attributes, p and q, the cosine similarity, cos(θ), is represented 144 

using 145 

1

2 2

1 1

( , ) cos( )

n

i i
i

n n

i i
i i

p q
p q

similarity p q
p q

p q

θ =

= =

⋅
= = =

∑

∑ ∑
                           (2) 146 
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 8

in which n is the dimension of vector p and q.  147 

 148 

This function gives a similarity measure in the sense that the cosine value gets larger 149 

as the two vectors become more parallel to each other in the l-dimensional space. Or, 150 

in other words, as the two data segments become more similar, their cosine similarity 151 

approaches 1.0 and their distance approaches 0.0. Therefore, cosine similarity can be 152 

used as a distance metric in the following way: 153 

( , ) 1 ( ,q)D p q similartity p= −                                            (3)
 154 

Since the cosine similarity reflects the magnitude of the angle between two vectors in 155 

the l-dimensional space, it is a many-to-one function. Compared with the other 156 

distance measures, like Euclidean distance, the cosine similarity ignores the 157 

magnitude difference between the two vectors, i.e. 158 

1

2 2

1 1

( , ) ( , )

( )

n

i i
i

n n

i i
i i

Ap q

similarity Ap q similarity p q

Ap q

=

= =

= =
∑

∑ ∑
                      (4)

 159 

Therefore, when the cosine distance is used for contaminant identification, the 160 

variation range of sensor data need not be predetermined.  161 

 162 

Contaminant Classification  163 

The distance from a point p to a class c is given by: 164 

( ,C) 1 ( , )cD p similartity p µ= −                                           (5)
 165 

in which, D(p, C) is the distance from a point to a class and �� is the mean of all 166 
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 9

instances in class C. 167 

  168 

The type of contaminant is identified by comparing the distances from examples to 169 

classes. Assuming there are n types of contaminants, C1, C2,…… Cn, (or n classes), 170 

each class contains many vectors (i.e. instance of class). For any example p to be 171 

identified, if there exists  172 

( ,C ) ( ,C ), 1,2, ,i jD p D p j n i j< = ≠L                                      (6)
 173 

then it is deemed that p ∈ C
.  174 

 175 

Evaluation of classification performance  176 

The performance of the classification method is evaluated using the correct 177 

classification rate (CCR). CCR can be calculated by  178 

��� =
��

�����
× 100%                                              (7) 179 

where CC refers to the correct classification of a contaminant, IC is the incorrect 180 

classification of a contaminant as another type of contaminant. A greater CCR means 181 

the method is more capable of contamination identification. 182 

 183 

Robustness of the proposed method 184 

The proposed method relies on the readings of online water quality sensors. Inevitably, 185 

fluctuations exist in online readings, which might come from equipment noise or 186 

ambient variation. An important issue for a contaminant classification method is how 187 
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 10

robust it is when dealing with fluctuations in readings. To evaluate the robustness of 188 

the proposed method, artificial uncertainties were added to the raw readings. It is 189 

assumed that the uncertainty obeys Gaussian distributions. The uncertainty 190 

quantification is achieved through a sampling-based method, Latin hypercube 191 

sampling (LHS) technique. In LHS
18

, values of stochastic tested vectors are generated 192 

in a random, yet constrained way. First, the values of variables in the original tested 193 

vectors are taken as means (i.e. raw readings of sensors) and the standard deviation is 194 

equal to 1% of the mean value (i.e., coefficient of variation Cv=0.01, for example). 195 

The range of each vector variable can be calculated using a Gaussian distribution 196 

equation, which is then divided into Ns non-overlapping intervals on the basis of 197 

equal probability. After that, a single random value is selected from each interval. This 198 

process is repeated for all variables in a feature vector. Once that is done, the Ns 199 

values obtained for the first vector variable are paired in a random manner with Ns 200 

values obtained for the second vector variable and so on. Ns feature vectors are 201 

generated from the original feature vector. By repeating the same process, feature 202 

vectors and the associated uncertainty can be obtained for all time steps. The CCRs 203 

for feature vectors with uncertainty can then be obtained. Finally, the robustness is 204 

evaluated using equation 8.  205 

    ��������� =
����� !"#$ �$	�����

����
                                  (8) 206 

in which, ���	�&'()*+'�+	�����  is the 95% confidence limit of the CCRs with 207 

uncertainty and CCRo is the original CCR. For example, if the 95% confidence limit 208 

Page 10 of 33Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 11

of the CCRs with uncertainty is 0.8 and the original CCR is 1, then the robustness 209 

value is 0.8/1=0.8. A higher robustness value means that the method is more robust. 210 

 211 

Experiments and Results 212 

Formation of classes of contaminants 213 

In this study, features were extracted to facilitate the quantitative evaluation of 214 

similarity or dissimilarity between different types of contaminants. For all sensors in 215 

this study, the sensor responses obtained at each time step were adopted to form a 216 

feature vector (8 dimensions). For instance, the vector at the 1
st
 minute for glyphosate 217 

was [1.32 7.06 757.67 10.76 276.96 3.16 9.42 0.08] with the vector sequence being 218 

turbidity, pH, conductivity, temperature, ORP, nitrate, UV and phosphate. Figure 4 219 

shows the corresponding feature vectors at different concentrations. As shown in 220 

Figure 4, the extracted features share some similarity, but dissimilarity also exists. By 221 

extracting such data from all time steps, the class for glyphosate was established. The 222 

same procedure was repeated for the other contaminants examined in this study and a 223 

library containing 6 classes was obtained.  224 

(Figure 4) 225 

Contaminant classification 226 

Glyphosate and cadmium nitrate were chosen to demonstrate the performance of the 227 

contaminant classification method. The concentrations for glyphosate were 1.4mg/l, 228 

2.8mg/l, 7.0mg/l and 14.0mg/l. For cadmium nitrate, the concentrations were 229 
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 12

0.004mg/l, 0.008mg/l, 0.016mg/l and 0.032mg/l. A new group of contaminant 230 

injection experiments were conducted to produce data for contaminant classification. 231 

The raw experimental data contained sensor responses for baseline and presence of 232 

contaminant at 4 concentrations. As reported in Liu et al.
12

, the contamination events 233 

were detected 1 minute after introduction of contaminants. The sensor response data 234 

after detection were separated from the raw data and used in the classification. They 235 

were treated using the procedure above to obtain example feature vectors. In total, 236 

there were 110 glyphosate and 200 cadmium nitrate example data to be tested.  237 

(Figure 5) 238 

For glyphosate, the cosine distances to all classes for each example (or 1 minute time 239 

step) was calculated using equation 4 and are shown in Figure 5. The green dots show 240 

the distance between examples and the glyphosate class. For all time steps (from 1 to 241 

110), it can be noted that, although the concentration varies, the cosine distances from 242 

the examples to glyphosate class are rather stable and small. They are mostly in the 243 

range of [0 0.02]. The distances to the other classes are much greater. For example, 244 

the distance to chromium nitrate is around 0.16 (the blue circles in Figure 5). This is 245 

shown in Table 1, along with mean and standard deviation values of the distances. 246 

The proposed method classified the type of contaminant by comparing the cosine 247 

distance. The one with the closest distance is deemed to be the correct class. Table 1 248 

and Figure 5 reveal that the examples are closer to the glyphosate class. On the basis 249 

of equation 6, the feature vectors of the example are more similar to the ones for 250 
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 13

glyphosate. Therefore, it can be concluded that the contaminant is glyphosate. Using 251 

equation 7, the CCR of the classification was calculated to be 0.918, which suggests 252 

that the tested contaminant is correctly classified in 91.8% of situations in this study.  253 

(Figure 6) 254 

For cadmium nitrate, Figure 6 shows the cosine distances to different classes, in 255 

which the red dots indicate the distances to the cadmium nitrate class. For all time 256 

steps, the distances to the cadmium nitrate class were in the range of 0.01 to 0.04 with 257 

the mean of 0.0277 (Table 1). It is obvious that the distances to cadmium nitrate are 258 

smaller than the ones to other classes in most cases in this study. The CCR was 259 

calculated to be 0.975.  260 

(Table 1) 261 

In terms of the time needed for classification, once a contamination event is detected 262 

by an EWS, the contaminant classification module will be activated. Theoretically, the 263 

type of contaminant can be classified within 1 minute (i.e. the sensor reporting step). 264 

However, in practice, the time might be a bit longer since the sensor responses to 265 

presence of contaminant might sometimes need to stabilize. As shown in Figure 5, the 266 

contaminant was classified correctly to be glyphosate 1 minute after the 267 

contamination event alarm. This means that the distance to the correct class was the 268 

smallest from the 1
st
 minute onwards. For the case of cadmium nitrate, the proposed 269 

method can classify correctly 6 minutes after activation. In the first 5 minutes, the 270 

tested examples were incorrectly classified. The key strength of the proposed method 271 
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 14

is that it classifies the type of contaminant in a real time manner. Compared to 272 

laboratory-based methods, classification in 6 minutes with no significant compromise 273 

of CCR is an advantage.  274 

   275 

Discussion  276 

Comparison to Euclidean distance based method  277 

In previous studies, Liu et al.
12

 reported that the magnitudes of sensor responses vary 278 

with the concentration of contaminant (or see Figure F1, F2, F3, F4 and F5 in 279 

supplement documents). This is typically obvious for pH, nitrate, phosphate and ORP. 280 

For example, the pH and ORP values for the glyphosate concentration of 1.4, 2.8, 7.0, 281 

14.0mg/l are 6.89, 6.71, 6.41, 6.10 and 277.66, 283.33, 291.67, 299.29 mV 282 

respectively. The aim of this study is to establish a method to classify the type of 283 

contaminant by evaluating the similarity between examples and classes. The 284 

classification method should be independent of or less related to the concentration of 285 

the contaminants since this is not known in advance in a real event. In other words,  286 

the distance evaluation method should not be too dependent of contaminant 287 

concentration. If the distance evaluation is closely related to magnitude of sensor 288 

response, the classification method might fail to differentiate events caused by the 289 

same type of contaminant with different concentrations.  290 

 291 

There are several types of evaluation methods for the distance of vectors. The most 292 
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 15

commonly used one is the Euclidean distance, which is the "ordinary" distance 293 

between two points
19-20

. The Euclidean distance between points p and q is the length 294 

of the line segment connecting them, which can be calculated using  295 

( , ) ( ) ( )E q p q p q p q p= − = − ⋅ −                                       (9) 296 

in which E(q, p) is the Euclidean distance between points p and q.  297 

 298 

Figure 7 schematically shows the Euclidean distances and cosine distance between 299 

points p1, p2, q1 and q2. Points p1 and p2 are the sensor response vectors of 300 

contaminant 1 at concentrations 1 and 2. Points q1 and q2 are the vectors for 301 

contaminant 2 at concentrations 1 and 2. As shown in Figure 7, the Euclidean distance 302 

between p1 and p2 is ||p1 − p2|| and the cosine distance is 0. For p2 and q2, the 303 

Euclidean distance is ||p2 − q2|| and the cosine distance is 1-	cos(θ). Therefore, by 304 

using the cosine distance method, p1 and p2 (also q1 and p2) can be classified to the 305 

correct class. However, if the Euclidean distance were used, it might group p2 and q2 306 

into the same class because ||p2 − q2|| < ||p1 − p2||. To further explain this, the 307 

vectors associated with glyphosate and cadmium nitrate at different concentrations 308 

were taken as examples to calculate the Euclidean and cosine distances.  309 

(Figure 7) 310 

 311 

Table 2 shows the cosine and Euclidean distances between points a, b, c and d, in 312 

which a is the vector of sensor responses to glyphosate at concentration of 1.4mg/l, b 313 
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 16

is the vector for glyphosate at 14.0 mg/l, c is the vector for cadmium nitrate at 314 

concentration of 0.008 mg/l and d is the vector for cadmium nitrate at concentration 315 

of 0.032 mg/l. In Table 2, the numbers above the diagonal are cosine distances and the 316 

ones below are Euclidean distances. As shown in Table 2, the cosine distances for 317 

points from the same class are smaller than those for points from different classes. For 318 

example, D(a,b)=0.0027, while D(a,c)=0.1091. This explains the correctness of the 319 

assumption in Figure 2, i.e. similar objects have shorter distance.  320 

 321 

It is also observed that the cosine distance is not ‘sensitive’ to the magnitude the 322 

vector (in other words, the concentration of the contaminants). As shown in Figure 4, 323 

the magnitude of sensor response vectors at 1.4 mg/l and 14mg/l is obviously 324 

different. However, their cosine distances to other points are close. For example, 325 

D(a,c)=0.1091, D(b,c)=0.1081. Euclidean distance, on the other hand, is related to the 326 

magnitude of the vector. For example, E(a,c)=92.3888, while E(b,c)= 158.4424. 327 

Furthermore, the case may arise where the Euclidean distance between points from 328 

the same class might be greater than that between points from two different classes. 329 

This is shown in Table 2. For example, E(a,b) = 95.5981 and E(a,c) = 92.3888. In this 330 

case, incorrect classification would occur if Euclidean distance were used for 331 

contaminant classification. Point c would be wrongly classified as being in the same 332 

class as point a if Euclidean distance was adopted. Therefore, it was concluded that 333 

cosine distance is more suitable than Euclidean distance for classifying the type of 334 
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 17

contaminant since the evaluation for similarity is more related to the contaminant’s 335 

characteristics rather the magnitude of sensor responses.  336 

(Table 2) 337 

Robustness 338 

The level of uncertainty is given by the value of Cv. In this study, four values of Cv 339 

(0.005, 0.01, 0.02 and 0.03) were used. The value of Ns is determined according to 340 

the literature. For a given Cv, by setting Ns=2000, 220000 feature vectors with 341 

uncertainty were finally generated for glyphosate. These feature vectors were divided 342 

into 2000 groups. Each contains 110 feature vectors. By feeding the 2000 groups of 343 

feature vectors into the proposed contaminant classification method, the CCRs for 344 

every group were obtained. The histograms of these CCRs are displayed in Figure 8, 345 

which shows that the proposed method has robustness of over 0.82 for uncertainty 346 

Cv=0.005, Cv=0.01 and Cv=0.02. This suggests that the performance of the proposed 347 

contaminant classification method is steady and reliable and can cope well with the 348 

uncertainty from the online sensors. For the case of Cv=0.03, the performance of the 349 

method is less satisfactory. The CCR for this case is 0.75, which is much lower than 350 

the original CCR (0.92). It should be noted that the uncertainty examined in this study 351 

is assumed to be from equipment noise or ambient variation. A change of sensor 352 

reading due to sudden sensor failure or presence of contaminant is not treated as noise, 353 

but instead as an event, which normally means a 1-20% change of sensor reading. 354 

Therefore, it is deemed that the uncertainty levels adopted in this study are significant 355 
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enough.  356 

 357 

It is worth noting that previous studies about online sensors in water supply systems 358 

generally assumed perfect sensors, which means that sensors worked in good 359 

condition
21-23

. Although this assumption has allowed researchers to make significant 360 

progress in early warning system design, sensor failures can significantly impact the 361 

reliability of an early warning system design. It is commonly known that sensor 362 

readings do contain uncertainties as they are easily affected by ambient variation and 363 

equipment condition. From an implementation perspective, it is essential that an early 364 

warning system using online sensor data is robust enough and can cope with 365 

uncertainty from sensors. The analysis here shows that the proposed method has good 366 

capacity of tolerate uncertainty in sensor readings.  367 

(Figure 8) 368 

(Table 3) 369 

Future studies 370 

This study proposed a concentration-independent contaminant classification method 371 

based on conventional water quality sensors. The basis of this method is that points in 372 

one class stay close and are separate from other classes. In spite of great improvement 373 

in recent years, readings from online sensors are still affected by noise and ambient 374 

variation. For a method based on online sensor readings, it is important to understand 375 

the impact of uncertainty from sensor readings on the model output. Although this 376 
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study demonstrated the robustness of the proposed method in the event of sensor 377 

uncertainty or ambient variation through an initial uncertainty analysis, a global 378 

sensitivity analysis would be more helpful to understand the extent of uncertainty 379 

from each sensor. This should be conducted in future study.  380 

 381 

Meanwhile, since the proposed method classifies by comparing the distances to 382 

predefined classes, incorrect classification error would occur if two (or more) classes 383 

overlap each other. This study involved a limited number of contaminants and no 384 

overlaps were noticed, but the possibility does exist. In a future study, this has to be 385 

addressed. A possible solution to this is that the classification decision could be made 386 

based on distances from more than one type of features. For example, if the features 387 

using original sensor responses from two types of contaminants overlap, another type 388 

of feature (e.g. the deviation between real readings and baseline) can be employed to 389 

differentiate these two classes. 390 

 391 

Conclusion  392 

By using data from online water quality sensors, this study proposed a real time and 393 

concentration-independent contaminant classification method. From the analysis, the 394 

following conclusions were drawn.   395 

1) The proposed method classifies the type of the contaminant by comparing their 396 

cosine distances to predefined classes. Results from the analysis show that the 397 
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proposed method can identify glyphosate and cadmium nitrate 1 and 6 minutes 398 

after detection with the CCR of 91.8% and 97.5%. Compared to laboratory-based 399 

methods, classification in minutes without significant compromising the CCR is 400 

an advantage. 401 

2) Results show that the performance of the proposed method was not related to the 402 

contaminant concentration. This implies that the proposed method is more 403 

suitable than the Euclidean distance method for contaminant classification since 404 

the concentration of contaminant is not known a priori.  405 

 406 
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Figure 1 A process flow schematic of the pilot-scale system 
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Figure 2 Schematic graphs of class and instance 
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Figure 3 Four instances of features of cadmium nitrate and atrazine 
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Figure 4 The demonstration of feature vectors at glyphosate 1.4, 2.8, 7, 14mg/l 

 

Page 26 of 33Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



 

Figure 5 The cosine distance of glyphosate to 6 classes 
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Figure 6 The cosine distance of cadmium nitrate to 6 classes 
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Figure 7 Schematic drawing of cosine and Euclidean distances 
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Figure 8 The histogram of CCRs with uncertainty and robustness 
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Table 1 Averaged cosine distances from examples to classes 

Tested 

example 
 

Cosine distances from examples to classes 

Atrazine Glyphosate 
Cadmium 

nitrate 

Nickel 

nitrate 

Sodium 

fluoride 

Sodium 

nitrate 

Glyphosate 

mean 0.0190 0.0105 0.1240 0.1555 0.0148 0.0470 

Standard 

deviation 
0.0063 0.0048 0.0065 0.0065 0.0063 0.0065 

Cadmium 

nitrate 

mean 0.0781 0.0880 0.0277 0.0593 0.0819 0.0494 

Standard 

deviation 
0.0065 0.0066 0.0065 0.0065 0.0065 0.0066 
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Table 2 The cosine and Euclidean distances 

Cosine 

Euclidean 

Glyphosate Cadmium nitrate 

a - 1.4mg/l b - 14mg/l c - 0.008mg/l d - 0.032mg/l 

Glyphosate 
a - 1.4mg/l 0 0.0027 0.1091 0.1391 

b - 14mg/l 95.5981 0 0.1081 0.1381 

Cadmium 

nitrate 

c - 0.008mg/l 92.3888 158.4424 0 0.0302 

d - 0.032mg/l 113.1857 166.8406 25.9895 0 

Note: The numbers above the diagonal are cosine distances, while the ones below are 

Euclidean distances. 
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Table 3 Statistics of CCR under uncertainty (original CCR: 0.92) 

CCR Cv =0.005 Cv = 0.01 Cv = 0.02 Cv = 0.03 

Mean 0.92 0.90 0.82 0.75 

Standard deviation 0.01 0.02 0.03 0.04 

Robustness 0.97 0.93 0.82 0.73 
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