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We present a computer-microscope system for rapid, accurate recognition and classification of microalgae 

using image processing techniques such as segmentation, shape features extraction, pigment signature 

determination and neural network grouping. Microalgae, when growing massively, may produce harmful 

effects on marine or freshwater ecology and fishery resources, hence real-time monitoring of their presence 

is critical and essential for the proper management of any water body. Our system attained 98,6% accuracy 

from a set of 53,869 images of 23 different microalgae representing the major algal phyla and could be 

useful for an appropriate and effective water resource management.  
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Water monitoring: automated and real time identification and 

classification of algae using digital microscopy  

Primo Coltelli,a  Laura Barsanti,b Valtere Evangelista,b  Anna Maria 
Frassanito,b and Paolo Gualtieri,*b 

Microalgae are unicellular photoautotrophs that grow in any habitat from fresh and saline water bodies, 

to hot springs and ice. Microalgae can be used as indicators to monitor water ecosystem conditions. 

These organisms react quickly and predictably to a broad range of environmental stressors, thus 

providing early signals of changing environment. When growing massively, microalgae may produce 

harmful effects on marine or freshwater ecology and fishery resources. Rapid and accurate recognition 

and classification of microalgae is one of the most important issues in water resource management. In 

this paper, a methodology for automatic and real time identification and enumeration of microalgae by 

means of image analysis is presented. The methodology is based on segmentation, shape features 

extraction, pigment signature determination and neural network grouping; it attained 98,6% accuracy 

from a set of 53,869 images of 23 different microalgae representing the major algal phyla. In our opinion 

this methodology partly overcomes the lack of automated identification systems and is on the forefront 

of developing a computer-based image processing technique to automatically detect, recognize, 

identify and enumerate microalgae genera and species from all the divisions. This methodology could 

be useful for an appropriate and effective water resource management. 

Introduction 

Environmental monitoring can be defined as the systematic 
sampling of air, water, soil, and biota in order to observe and 
study the environment, as well as to derive knowledge from this 
process 1, 2, 3, 4. Monitoring of environmental water quality is 
essential for the proper management of any water body, since a 
safe, clean water supply is critical for many important 
ecosystem services. Irrespective of specific uses, the necessity 
of a sustainable management of inland and coastal water leads 
to the requirement of control systems to detect different 
chemical or biological compounds in situ at very low 
concentrations in order to react quickly for limiting impact on 
natural surface and ground waters5.  
General water quality parameters including pH, salinity, 
temperature, flow and turbidity are commonly monitored using 
on-line instrumentation6. Still, to provide a complete spectrum 
of information for  appropriate   water   management, biological 
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parameters should be assessed, because they reflects the overall 
water quality, integrating the effects of physical and chemical 
changes over time. Responses to changes in water quality occur 
over different time scales for primary producers (i.e. algae and 
phototrophic bacteria) and consumers, as primary producers 
often respond to changes earlier. Since algae are the first 
trophic level, any disturbances could be reported to upper 
levels. Algae are valuable indicators of ecosystem conditions 
because they respond strongly and predictably both in species 
composition and densities to a wide range of water conditions 
due to changes in water chemistry (nutrient enrichment, organic 
contamination, changes in pH or conductivity as well as 
increases in suspended sediments, pesticides and many other 
contaminants). When contamination occurs, algae are among 
the first biological organisms to respond. This is a result of their 
nutrient needs, short lifespan, which averages about 6 to 8 
weeks, and generation times ranging from <1 day to a few days. 
Those species that cannot tolerate the water quality changes 
will be replaced by species better suited to the new water 
quality conditions, resulting in an altered taxonomic 
composition of the algal community7.  
At low numbers, algae cause no problems and are, in fact, a 
natural part of a water body. Occasionally, however, algae can 
grow very fast or ‘bloom’ and accumulate into dense visible 
patches at the surface of the water.  These blooms can become a 
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serious public health and environmental problem in many 
waterways. As algae die and decompose, high levels of organic 
matter deplete the water of available oxygen, causing the death 
of other organisms. Algal blooms can be driven by low water 
flows and high levels of available nutrients, which promote 
their growth. Of primary importance from an ecological and 
public health perspective is the abundance of nutrients 
containing nitrogen (N) and phosphorus (P) that flow into lakes, 
reservoirs, streams and rivers resulting in eutrophic conditions8. 
The N:P ratio often determines which algae genera are 
dominant, present or absent in these nutrient-affected water 
bodies. When N:P ratios are high, chlorophytes, along with 
diatoms, are often the dominant genera. Because of their 
nitrogen-fixing ability, cyanobacteria blooms usually occur 
when the N:P ratio is low, with phosphorus as the limiting 
factor for their growth and reproduction. In high densities, 
cyanobacteria are an undesirable component of freshwater 
ecosystems because they can produce hepatotoxins and 
neurotoxins that are ecological and public health concerns. 
Toxin producing blooms may disrupt lake food webs by killing 
fish, birds and zooplankton. Toxic blooms can also restrict 
recreation like swimming, fishing and pet-related activities 9.  
For monitoring purposes, phytoplankton analysis of water 
samples collected from sea, lakes, streams and other water 
bodies is therefore a valuable assessment tool to determine the 
diversity and density of algal species and provide potentially 
useful early warning signs of deteriorating conditions 10. Algae 
show a wide variety of size, shape, texture and colors and all 
these characteristics are routinely used for taxonomical 
recognition. Conventional identification by means of 
microscopy is time consuming and researchers must have 
abundant taxonomy competence and experience of 
classification to achieve reliable results.  
Several systems have been developed to automate the analysis 
and classification of algae images 11,12,13 and several kinds of 
automatic analysis and algae identification methods have been 
set up. They include for example methods based on algal cell 
morphology identification14, absorption spectroscopy15, 
fluorescence spectroscopy16, 17, 18, high performance liquid 
chromatography 19, flow cytometry 20,21, and molecular biology 
(i.e. gene probe method), 22, 23, 24, 25, 26, 27, 28, 29, 30. Most efforts 
are limited to some specific types of algae only, and therefore 
limited in their applicability. 
As alternative to the previously cited techniques, we present a 
software methodology coupled to a motorized microscope set-
up that offers a reliable, real time acquisition, detection, 
recognition, and enumeration of algal species in multialgal field 
samples. This software methodology aims to improve accuracy 
and reliability of the methodology already described in Coltelli 
et al., (2013) 31, 32.  It combines robust image segmentation, 
shape features extraction, in-focus algae detection and 
recognition. Though at the present stage of development our 
methodology cannot be considered ready for field analysis 
applications, still it is very promising for future automated 
systems for environmental monitoring and protection of public 

water supplies. In the following, the term “algae” will be used 
in place of the term “microalgae”.  

Experimental 
Algae Samples and Cultures 
The system was tested on samples obtained by mixing 
freshwater algae cultivated under controlled conditions in our 
laboratory, (Table 1). Since samples may contain amount of 
large non-algal particles and cell clusters, they are filtered 
through cheesecloth. Cell concentration was assessed by using 
a Thoma counting chamber. The density of the mixed sample 
was chosen so that the algae on the slide do not overlap. No 
fixatives were used. The marine chlorophycean Tetraselmis 
suecica was used to show the in-focus and out-of-focus cells 
selection. 
Table 1  List of algal strains.   
Name   Phylum  SOM group 
Cyanothece sp.  Cyanobacteria  2 
Lyngbya sp.  Cyanobacteria  22 
Nostoc commune  Cyanobacteria  17 
Closterium sp.  Charophyta  5 
Cosmarium laeve  Charophyta  24 
Mesostigma viride  Charophyta  11 
Haematococcus lacustris Chlorophyta  8 
Pediastrum duplex  Chlorophyta  19 
Scenedesmus quadricauda Chlorophyta  13 
Selenastrum gracile  Chlorophyta  3 
Tetraselmis suecica  Chlorophyta  
Cryptomonas ovata  Cryptophyta  23 
Chroomonas sp.  Cryptophyta  10 
Euglena ehrenbergii  Euglenozoa  16 
Euglena acus  Euglenozoa  7 
Euglena gracilis  Euglenozoa  12 
Phacus sp.  Euglenozoa  6 
Trachelomonas sp  Euglenozoa  21 
Cyanophora paradoxa Glaucophyta  9 
Gymnodinium acidotum Myzozoa   18 
Gomphonema parvulum Ochrophyta (girdle view) 14 
Gomphonema parvulum Ochrophyta (valve view) 15 
Synura uvella  Ochrophyta  20 
Ochromonas danica  Ochrophyta  1 
Pennate diatom  Ochrophyta  4 

Operating Platform for Digital Microscopy  

The hardware platform used to perform in vivo and real time 
image measurements consists of a Zeiss Axioplan microscope 
(Zeiss, Germany), with a 100 W stabilized tungsten-filament 
lamp, and a 40x (N.A. 0.75) planapochromatic objective. The 
microscope is equipped with a manual and motorized 
mechanical 75x30 mm scanning stage (Märzhäuser, Wetzlar, 
Germany) with a high-resolution stepper motor controller 
(minimum step size 0,05 µm) plugged into the computer bus. A 
digital color CCD camera (Basler scA160028fm/fc, Basler, 
Germany) equipped with a IEEE 1394b interface was mounted 
in the TV microscope path. The resolution of the original image 
is 1628 x 1236 pixels. The personal computer PC is Intel core 
i7-2600 (3,39 GHz), equipped with an 2 TB HD, 16GB RAM, 
and Windows 7 operating system. 
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Image Analysis  

Image processing and pattern recognition were performed using 
MATLAB R2009b software with home-made routines. The 
graphical user-friendly interface of the system allows image 
acquisition, image processing, image segmentation, feature 
extraction and automated algae classification and enumeration. 
These images were stored into a database for taxonomic 
recognition by an expert phycologist.  

Image processing methodology 

Images were processed according to the following flow of 
operations: 
1) Acquisition of microscope fields 
For image acquisition, 10 slides obtained by mixing samples 
from collection algae were processed. Fifteen microliters of 
sample were used for each slide (400 mm2 coverslip surface, ≈ 
30 µm sample height) and 1000 different microscope fields of 
each slide were acquired with adjusted white balance, taking as 
reference an empty portion of the slide. The coordinates of the 
bluish-gray color of this empty portion are stored as 
background color coordinates to be used in characteristic color 
determination, (operation 3). Boustrophedonic path was chosen 
for scanning. 
It is very important to understand the fact that biological images 
are often far more difficult to be processed and recognized than 
daily-life images. Therefore, image acquisition is the most 
important step in image analysis since the goal is to achieve 
well-focused images with the lowest number of difficulties (or 
the highest information content) to tackle with in the successive 
processing. The microscope must be set at the best performance 
of Koehler illumination requirements following the indication 
of Zieler33, the illumination must be even and uniform to avoid 
shadows, the flux emitted from tungsten lamp should be set so 
that the dark noise of the CCD camera has no influence, and the 
lamp color temperature should be set at about 3,000K for the 
best color balance, inserting gray filters in the optical path to 
avoid CCD camera saturation. The common habit to use digital 
operations in order to remove defects due to inaccurate 
acquisition should be avoided since these operations always 
reduce the information content of the image.  
Debris, detritus, particles, bacteria, cell partly overlapping the 
slide border, empty dead cells, overlapping cells belonging to 
different algae, and out-of-focus cells are always present in a 
slide. In order to detect, identify, classify and enumerate algae 
with high taxonomic accuracy those objects must be detected 
and discarded in the successive digital operations.  
2) Detection and recognition of algae and objects other than 
algae 
The first operations acquired images undergo (Figures 1 and 2) 
are objects segmentation and contour detection.  
 

 
Figure 1. Example of a microscope field at 40x. 

 
Figure 2. Example of a microscope field at 40x. 

We define segmentation as the process of partitioning the 
images in a set of regions (i.e. the objects and the background) 
that collectively cover the entire image. We define a contour as 
a closed edge, i.e. the closed curve that delineates intensity 
transitions in the boundary between the object and the 
background. The algorithm calculates the points of the 
contours, the centroid distance spectrum, the dissimilarity 
measurement, and other morphological and densitometric 
features such as center of gravity coordinates, area, Feret 
diameters, extinction, etc. This algorithm used is an improved 
version of that already described in Coltelli et al. 32. To obtain 
invariant features necessary for translation, rotation and scaling, 
the contour, if it exists, is normalized, oriented following the 
maximum Feret diameter, and uniformly resampled with 2n 
points. Ninety four numeric features (morphological, and 
densitometric) were actually calculated. To speed up algae 
grouping operation, only the features listed in Table 2 were 
used. 
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Table 2  List of morphological and densitometric features used in the 
processing 
Feature    Description 
Centroid distance spectrum Distance of contour points from   centroid 
Coordinates of center of gravity The coordinates of  the center of gravity 
Area The number of square pixels inside the 

edge 
Extinction   Integrated optical density 
Dissimilarity measurement Dissimilarity from circular shape 
Size   Number of edges 
Convex perimeter  Perimeter of the edge's convex hull 
Moment Elongation Ratio between the minimum and maximum 

moment of the edge (0÷1) 
Feret maximum diameter Measure of the maximum distance between 

the parallel lines tangent to an object size. 
Feret minimum diameter Measure of the minimum distance between 

the parallel lines tangent to an object size. 
Feret Elongation Ratio between the maximum and minimum 

Feret diameters. 
Tortuosity Ratio between the diagonal length of the 

bounding box and the length of the edges. 
Circle Fit Radius  Radius of the circle that best fits the edge 
Circle Fit Error  Average quadratic error of the fit. 
Ellipse Fit Minor Axis Minor axis of the ellipse that best fits the 

edges. 
Ellipse Fit Major Axis Major axis of the ellipse that best fits the 

edges. 
Ellipse Fit Error  Average quadratic error of the fit. 

 
The objects without a contour or with a contour with 
morphological and densitometric features not consistent with 
algae, such as debris, detritus, bacteria and particles were 
discarded. The objects partly overlapping the border of the 
acquired image were considered without a contour, hence 
discarded. 
Algae connected in chains were identified as single unit when 
the chain possesses a distinguishable contour. Different shapes 
and appearance of the same cell, such as significantly different 
diatom girdle and valve views were identified as different cells. 
All the objects with features consistent with algae underwent 
the determination of characteristic color.  
3) Determination of algae characteristic color and removal of 
overlapping and out-of-focus algae  
After the conversion of the image colors from the RGB color 
space into the L*c*h* color space (Lightness, chroma, and 
hue), we calculated the occurrence of all the different colors of 
the recognized alga, in order to identify the characteristic color. 

The color histogram we obtained was fitted in a mixture of 
multivariate Gaussian distribution, using a maximum likelihood 
estimate of the component parameters. Each algal cell shows 
two regions: the chloroplasts characterized by an even 
distribution of the photosynthetic pigments and the cytoplasm 
which can be considered transparent as the background.  
In the case of in-focus images, the mixture of multivariate 
Gaussian distribution shows two components, one 
corresponding to the color of the chloroplast compartment and 
the other corresponding to the color of the background. To 
assign each component to its own compartment, the coordinates 
of the colors corresponding to the means of the two components 
were compared with the coordinates of the color of the stored 
background (operation 1). The color having greater Euclidean 
distance corresponds to the chloroplast compartment and is 
defined the alga characteristic color, i.e. the color that 
represents the pigment signature of the taxonomic group the 
alga belongs to.  
In case of out-of-focus cells, the mixture of multivariate 
Gaussian distribution shows three components, two 
corresponding to the colors of the chloroplast compartment and 
one corresponding to the color of the background.  
Figure 3 shows the modifications of the mixture of multivariate 
Gaussian distributions induced by defocusing. The alga shown 
is the marine chlorophycean Tetraselmis suecica. Each alga 
image is accompanied by the corresponding bi- and three-
dimensional visualization of the mixture of Gaussian 
distributions. The background color Gaussian component is not 
shown. 
Out-of-focus cells together with objects having a contour but 
with an irregular color Gaussian distribution, such as empty 
cells, overlapping cells belonging to different algae, colored 
particles, etc. were discarded. The objects recognized as algae 
with their characteristic color and their morphological and 
densitometric features were organized in 53,869 vectors.   This 
data set was divided into two subsets: 16,161 vectors (30%) 
were used to train the classification algorithm (training input 
data subset); while the remaining 37,708 vectors (70%) were 
set aside for validation and comparison of relative 
performances of the system in terms of taxonomic resolution. 
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Figure 3 Modifications of the mixture of multivariate Gaussian distributions induced by defocusing. The alga shown is the marine chlorophycean Tetraselmis suecica. 
Figure 3a is the in-focus-image, while figures 3b-3g are the out-of-focus images obtaining moving the slide along the microscope z-plane (from -15 µm to +15 µm). 
Each alga image is accompanied by the corresponding bi- and three-dimensional visualization of the mixture of Gaussian distributions. In bi-dimensional visualization, 
the orange dot represents the coordinates of the stored background color, the magenta and yellow dots represent the mean color coordinates of the color 
components. The splitting of the color component becomes more and more evident increasing defocusing, (figures 3b-3g). 
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4) Grouping and identification of algae  
To recognize algae, feature vectors should be grouped in 
classes. This grouping technique is called clustering. Feature 
vectors are the input data used to group algae by similarity by 
mean of an Unsupervised Neural Network. This network is a 
Self-Organizing Map (SOM) that consists of a two-dimensional 
structure of regularly spaced connected elements called 
neurons. The number of neurons is fixed as a round-off 
estimate of the number of taxonomic groups (genera and/or 
species). Each neuron is characterized by a feature vector of the 
same dimension of the input vector, with feature values 
randomly initialized. Neurons are connected to each other by 
neighborhood relations. The mathematical theory of the SOM is 
very complicated; for a more detailed explanation refer to 
Rissino and Lambert-Torres34, Sap et al. 35, and Silva and 
Marques36.  
SOM algorithm is characterized by two steps: the training step 
that groups the algae according to the feature vectors, and the 
testing  step (validation) that assigns algae images to the 
corresponding taxonomic group (genus and/or species). 
In training, a sample input vector is drawn randomly from the 
training input data subset.  This vector is fed to all the neurons 
in the map and a similarity measure based on Euclidean 
distance is calculated between the sample vector and all the 
neurons. The winning neuron, to which the sample vector is 
assigned, is the neuron with the highest similarity with it (or 
with the minimum Euclidean distance from it). After each 
feeding the vector of the winning neuron is updated to be a little 
closer to the input vector; the distances between the winning 
neuron and its neighbors are also similarly updated: the shorter 
the distance the closer the relation. The training ends when the 
map is no more modified by the sample data. Therefore, the 
SOM training step organizes the 16,161 sample vectors into 
homogeneous groups. Though reliable, these groups have no 
defined boundaries. Therefore, a segmentation procedure is 
necessary. Around each neuron an annulus is built having as 
radii two values of distance; within one map scan, the 
procedure connects the neighbor neurons which share input 
vectors in the overlapping annuli. The result of the 
segmentation procedure is a partitioned map whose regions 
represent the real taxonomic groups of algae (genera and/or 
species). At this step the number of cells belonging to each 
group is known, and therefore it is possible to calculate also the 
concentration of the different algae in the sample. Using the 
same procedure of the training, the validation step assigns each 
of the 37,708 features vectors (second subset) to its taxonomic 
group. 

 

Results  

Figures 1 and 2 show two different microscope fields acquired 
during operation 1. These fields simulate the content of a 
typical environmental sample: debris, detritus, bacteria, 
particles, algal cells partly overlapping the slide border, empty 
dead algae, overlapping cells belonging to different algae, and 
out-of-focus algae.   

 
Figure 4. Output of operations 2, 3, and 4 on the image of figure 1. Objects 
identified as debris, detritus, bacteria and particles are red-framed; objects 
identified as algal cells partly overlapping the slide border are magenta-framed; 
objects identified as empty dead algae, overlapping cells belonging to different 
algae, and out-of-focus cells are orange-framed; objects identified as algae are 
yellow-framed. 

 
Figure 5. Output of operations 2, 3, and 4 on the image of figure 2. Refer to the 
legend of figure 4 for details. 
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Figures 4 and 5 show the output of operations 2, 3 and 4 on the 
images of figures 1 and 2. All the identified objects have been 
framed. Different frame colors correspond to different 
identification. 
Figures 6 and 7 show some of the features extracted from the 
objects identified as algae in figures 4 and 5, such as invariant 
contour, centroid distance spectrum and dissimilarity measure, 
hue of the characteristic color, SOM group and taxonomic 
assignment validated by an expert phycology. 
In these samples the dissimilarity measure, shown on the top 
right corner of the centroid distance spectrum, ranges from 1 (a 

perfectly round alga, such as Cyanothece sp. in figure 6a) to 
about 1020 (a long and very narrow alga, such as Lyngbya sp. in 
figure 6b). The color hue measure, shown on the top right 
corner of the color histogram, ranges from 11° (pinkish-red, 
such as Haematococcus lacustris) to 155° (blue-green, such as 
Cyanophora paradoxa); in samples shown in figures 1 and 2 it 
ranges from 87,3° (brownish green, such as the pennate diatom 
in figure 7f) to 145° (blue-green, such as Cyanothece sp. in 
figure 6a). 
 

 
Figure 6. Features extracted from the objects identified as algae in figure 4. From left to right each row shows the segmented alga with its yellow contour and the 
maximum Feret diameter, (operation 2); the normalized and invariant contour, (operation 2); the centroid distance spectrum, with the dissimilarity measure 
(operation 2); the three-dimensional histogram showing only the chloroplast color component, with the color hue measure (operation 3); the alga SOM group 
(operation 4) and its taxonomic assignment (genus and/or species) after the expert validation. 

Though the algae strains used in our test are 23 (Table 1), 
operation 4 resulted in 24 distinct groups because the centric 
diatom Gomphonema parvulum possesses significantly 
different valve (round) and girdle view (squared), which justify 
their identification as different cells. In the case of the pennate 
diatom only girdle views were identified. 

Two different combinations of features were used to group the 
algae, (operation 4): 
combination a) all the features of Table 2 (morphological and 
densitometric features) and the characteristic color (in L*c*h* 
coordinates), 
combination b) only dissimilarity measure and the 
characteristic color, (in L*c*h* coordinates).. 
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Figure 7. Features extracted from the objects identified as algae in figure 5; in case of multiple occurrences of the same alga only one representative is shown. Refer 
to the legend of figure 6 for details. 

Figure 8a shows the result of operation 4 on the input data set 
using feature combination b: the 53,869 vectors were clustered 
and segmented into 24 homogeneous groups of algae with the 

highest taxonomic resolution (genus and/or species). Pink dots 
represent the algae used for training and validation; each of 
them corresponds to 20 feature vectors. Blue dots represent the 
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neurons, and the lines connecting them represent the feature 
distance between the groups. For sake of clarity, only two of 
the four dimensions (dissimilarity and hue), resulting from 
combination b, have been used for the representation. 
Notwithstanding, the 24 algal groups are clearly defined as 
shown in figure 8b. The numbers correspond to the SOM 
groups listed in Table 1. 
The cell concentration calculated on the basis of the number of 
algae assigned to each group corresponded to the concentration 
of the algae present in the initial sample, (data not shown).  
The result of operation 4 was verified by a phycology expert. 
The two combinations obtained taxonomic accuracy with no 

significant differences. The best accuracy, 98,6%, was reached 
by combination a, while combination b obtained 98,1% 
accuracy. 
The time necessary for scanning a slide (1000 microscope 
fields) and building the input data set (operations 1, 2, and 3) is 
about 4.5 minute.  Most of this time is spent in removing the 
out-of-focus-cells.  The SOM training process takes about 3.5 
minutes for an input data set of 1,000 feature vectors 
(combination b). Algal grouping by means of combination a 
takes about 5 minutes. 

 
Figure 8.  a: the result of operation 4 on the input data set; b: the 24 algal groups are clearly defined. The numbers correspond to the SOM groups listed in Table 1. 
Refer to text for details. 

Discussion  

The system we present is a valid tool to screen, identify and 
enumerate algal species with the finest taxonomic resolution; it 
obtains accuracy value higher than the values obtained by 
previously identification and classification methods, and almost 
equal to those obtained by a phycology expert, (about 99%).  
This system marks a great step forward respect to the first basic 
and assisted version 32 of the methodology, approaching the 
final goal of our work, i.e. the field application for 
environmental monitoring.  
It is based on training and validation databases containing a 
highly significant number of algal images (53,869). These 
images are acquired from slides that simulate real 
environmental samples in algae variety and concentration, 
selecting in-focus objects and discarding all the other possible 
causes of errors. 
The higher accuracy value obtained is mainly due to the 
selection of the features necessary for the grouping operation, 

and to the implementation of a new, complex classification 
algorithm.  
Different feature combinations were tested. The accuracies 
obtained using the features combination a and features 
combination b were the highest. They were not significantly 
different and very close to that of a phycology expert (about 
99%), with only a slight difference in the processing time 
(combination a slower than combination b). Though other 
combinations with higher number of features (up to 94) were 
tested, the results were useless since they did not increase the 
accuracy and were too time consuming (data not shown). Our 
results demonstrate that the “characteristic color”, i.e. the 
pigment signature of each alga, is a feature necessary for algal 
identification. It is perfectly suited to gather color information 
from algal samples and contains visual information equivalent 
to those that can be obtained by absorption 
microspectroscopy 37, with the advantage of an enormous 
simplification of the instrumental set-up.  It should be stressed 
that the “characteristic color” is used exclusively by our system 
and not by the methods cited in the Introduction. 
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The new classification algorithm we implemented uses a 
complex unsupervised neural network, i.e a Self-Organizing 
Map, whose performance is enhanced by a joined segmentation 
procedure that refines the partitioned map and represents the 
regions of the real taxonomic groups of algae (genera and/or 
species) with the highest accuracy (Figure 8). 
The only errors in the procedure are due to the misclassification 
of the girdle or valve view of the diatom Gomphonema 
parvulum, (Figure 7). While for the phycology expert both 
representations are easily recognized as belonging to the same 
alga, the automatic procedure mixed them up. However, these 
errors are formal since they do not have any practical 
consequences in the calculation of water quality assessment 
indices 38, 39.  
The system will be completed by a piezoelectric controlled, 
continuous flow chamber, in order to allow in-continuous 
automatic analysis of environmental samples. 

Conclusion 

Algae assemblages have the potential to offer multifaceted 
characterization of water body conditions, and the stressor that 
may be affecting those conditions. It follows the importance of 
rapid and reliable bio-assessment based on qualitative and 
quantitative evaluation of algae assemblages. Bio-assessment 
allows the determination of baseline ecological conditions 
and/or the analysis of early warning signs of deteriorating 
conditions that can imply human health risks. Since the 
structure of the algae community differs from season to season, 
changes must be correlated to the seasonal baseline. Continuous 
systematic samplings of water bodies over an extended period 
of time are therefore necessary, which require the analysis of a 
huge amount of similar phytoplankton samples. Humans cannot 
deal with the volume of identification required when processing 
field samples from large scale surveys. Moreover, human 
analysis requires plenty of time, and fatigue and boredom 
produce severe loss of categorization performance in manual 
identification (> 50% error!). Therefore, the only feasible 
solution for water resources management is the use of 
automatic systems.  
Our results show that water quality assessment in terms of both 
diversity and density of algal species can be performed by 
automatic methods. Notwithstanding, automatic methods still 
suffer from several defects, which should be eliminated before 
their commercialization. In our system at least 80 images of 
each group are required to train the SOM algorithm for a 
satisfactory performance; therefore, rare species can cause 
problems in grouping.   Computation time depends first on the 
number of groups, secondly on the number of representative for 
each group, and thirdly on the number of features.  For this 
reason it would be better to create different databases for each 
geographical location or ecological situation with precise 
temporal limits, in order to allow in situ monitoring. 
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