This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
The main source of polonium was connected with the activity of power plants and domestic coal typical for the winter season. On average, about 50% of the total activity of 210Po is discharged in the vicinity of the power plant. The deficit of 210Po activity confirms an efficient escape of polonium from dedusting installations. Eleven gigabecquerels of 210Po per year are released into the urban air. However, industrial polonium emission cannot pose a radiological hazard as it is only slightly higher than the natural dose. On the other hand, in some agglomerations like Belchatow city in central Poland or Silesia region, inhabitants are likely to be more vulnerable to elevated 210Po concentrations in the urban air. Therefore the activity concentration of 210Po should be more carefully controlled.
Excess of Polonium-210 activity in the surface urban atmosphere.
Part 1. Fluctuation of the 210 Po excess in the air

Magdalena Długosz-Lisiecka

Introduction:
210 Pb (half-life = 22.3 years), 210 Bi (half-life = 5 days), and 210 Po (half-life = 138 days) isotopes (Equation (1)) and their mutual relations have been widely used as chronometers and markers of a variety of natural processes occurring in the atmosphere, for example, air transport of aerosols or removal of suspended matter (Baskaran and Shaw, 2001).

\[^{210}\text{Pb} \rightarrow ^{210}\text{Bi} \rightarrow ^{210}\text{Po} \rightarrow ^{206}\text{Pb} \] (1)

Most of the above mentioned isotopes are highly particle-reactive and become attached as high mobility clusters to aerosols soon after their formation. This generally takes from 40 s to 3 min. Finally they are scavenged from the atmosphere by precipitation. The removal of radionuclides from the atmosphere occurs by dry or wet deposition with raindrops.

Nucleation of gas molecules produces ultrafine aerosols in the range of 1 to 10 nm. As a result of condensation of gases and further coagulation caused by collisions of the particles, these ultrafine aerosols grow rapidly to a size of 0.01–1 µm, which is classified as fine aerosol. Further growth of particles above 1 µm size is however much slower. Aerosol particles formed by condensation of the gas molecules finally accumulate in the 0.01–1 mm size range, the so-called accumulation mode. These small particles are removed from the atmosphere mainly by scavenging by cloud droplets and subsequent washout.

210 Pb radionuclide is bound mainly to aerosol particles with submicron diameters. The adsorption of the radionuclide 210 Pb on the surface of solid aerosol particles followed by production of its two daughters is the basis for the aerosol residence time estimations. Disequilibrium of the activity of 210 Pb and its daughters 210 Bi and 210 Po in fresh air particles can be used to calculate the aerosol residence time, based on the 210 Bi/210 Pb and 210 Po/210 Pb nuclide activity ratios. Both methods are widely used for such calculations. Unfortunately, the two methods give different values of the residence times for the same investigated sample.

Usually the one-box compartment model has been applied for the description of the activity ratios of 210 Pb/210 Bi and 210 Po/210 Pb in aerosol samples. The measured ratios are then used to estimate the mean residence time of solid particles in the air. Calculation of the residence times for each pair of radioisotopes has often led to inconsistent values. Therefore, Poet suggested that part of the 210 Po activity, ∆A_{po}, in the aerosol samples comes from additional sources such as resuspension of soils or volcanic eruption of 210 Po. This radionuclide is usually in radioactive equilibrium with its parent 210 Pb.

Poet estimated an aerosol residence time ranging from 11 to 77 days. The lowest mean aerosol residence time of 30 days was estimated from 210 Pb/210 Po activity ratio data in Alaska. The same authors pointed out that residence time values, T_{res}, based on the 210 Po/210 Pb activity ratios are longer than those calculated based on the 210 Pb/210 Po activity ratios. They concluded that the observed differences could be a result of the presence in the aerosol mixture of particles other than these three radionuclides remaining in secular radioactive equilibrium. This means that the 222 Rn decay products present in the troposphere might arise from additional sources other than natural emanation of 222 Rn from the surface soil.

The most probable additional sources of 210 Pb suggested in the literature are resuspension of the soil, fly ashes emitted from energetic coal combustion, and biomass combustion. Other likely sources that can be mentioned are stratospheric input of older air masses (stratospheric air intrusion), sea sprays, volcanic and industrial emissions and finally car exhaust fumes. In most of them, 210 Po and 210 Bi are in radioactive equilibrium with their parent 210 Pb.

Poet estimated that up to 85% of 210 Po in the air has a terrestrial origin. Lambert linked high concentrations of 210 Po in relation to 210 Pb with erupted volcanic gases, coal burning, and forest fires. Moore indicated that anthropogenic sources of 210 Po from phosphate fertilizer dispersion and fossil fuel burning could constitute up to 7% of the total 210 Po influx to the atmosphere. Carvalho suggested that increased 210 Po/210 Pb ratios in the precipitates in Lisbon (Portugal) were caused by the industrial emission of 210 Po. Wallner measured an unexpectedly high
210Po/210Pb airborne activity ratio equal to 7.5 in the Alps mountain region. The highest 210Po/210Pb activity ratio, which was equal to 3.37, was observed at the site of a Syrian mine17. A similar discrepancy phenomenon (210Po/210Pb higher than 9) in particular matter of marine origin was reported by Radakovitch13. In urban air, 210Po/210Pb does not exceed 0.1, while in fresh aerosols the typical value is only 0.02.

The average annual 210Pb activity concentrations in the urban air in Lodz city are about 0.5 mBq/m³, whereas the corresponding activities of 210Po are ten times lower. Therefore, an additional input of 210Po and 210Pb radionuclides in radioactive secular equilibrium makes an important contribution to the total activity of 210Po only.

Combustion of fossil fuels with a predominant contribution of coal in urban areas of central Poland leads to the dispersion of natural radionuclides into the environment19,20. The mineral components, including radioactive elements, are present in all kinds of crude coals although at low concentration. After combustion, the concentrations of 210Pb, 210Bi, and 210Po radionuclides in fly ash are much higher (up to 30 times) than in crude coals21. The activity concentrations of 210Pb and 210Po radionuclides in freshly formed fly ash particles are strongly dependent on their diameter. For particles with an aerodynamic diameter of less than 1.1 µm, the enrichment factor for these radionuclides may be as high as 26 and 31 for 210Pb and 210Po respectively22. The enrichment factor values for solid particles are lower forignite or domestic coal combustion.

The high enrichment factor of the element Po is a result of its efficient volatility. The volatility of 210Po was recognized previously as a reason for its loss during the sample preparation process prior to its concentration analysis in different types of samples. Measured activity loss begins at temperatures above 100 °C, with 90% loss at 300 °C.

Combustion of fossil fuels at high temperature may also lead to the high activity concentration of polonium emission. In the open air, pure elemental Po sublimes at 700 °C, but usually before reaching this temperature it mainly oxidized to a PoO₂ species. For the coal combustion temperature of ~1200 °C, the corresponding vapour pressures of PoO₂ and elemental Bi and Pb are equal to 4.76, 0.3, and 0.1 mm Hg, respectively24. As temperatures above 1600 °C, complete evaporation of polonium can be expected.

High-temperature processes like coal combustion and other anthropogenic activities of the foundry or phosphate industry can be considered as possible additional sources of the excess of 210Po unsupported by 210Pb in the urban air21,25.

For the reason presented above, in the vicinity of coal combustion facilities (domestic or central heating and also electric power production stations) only the 210Bi/210Pb method should be used for determination of the aerosol residence time.

The main aim of the present work was to verify the relation between seasonal fluctuations of the total 210Po activity, A₀Po, and corresponding values of the excess of this radionuclide concentration, ∆A₀Po. The latter is based on real aerosol residence time determinations in the urban area.

Materials and methods

Sampling and pre-treatment:

Total Suspended Particle (TSP) samples were collected by the ASS-500 station situated in the centre of Lodz city, Poland. This aerosol-collecting unit operates as part of the national air monitoring system. In a typical experiment, approximately 50,000 m³ of air was filtered. During the seven days of collection, 2.5 to 4 g of the dust was collected by a 40 cm × 40 cm square filter. Immediately after the collection of aerosols, the filters were divided into two equal parts.

Radionuclides determinations:

The first piece of filter was used for fast 210Bi determination. 210Bi was washing out from filter by 100 mL of 2 M HCl solution. The resulting filtrate solution has been diluted to 1 M HCl and carried on DOWEX 1x8 resin. For 210Bi elution 100 mL 1.8 M H₂SO₄ was passed through the chromatography column and then was extracted by 5% triethylphosphine oxide (TOPO) in toluene. Radiochemical separation and activity measurement of 210Bi have been described elsewhere26.

From the second part of the filter, a circle 3 cm in diameter was cut out and placed in a beaker filled with 50 mL of 1 M HCl. After 24 hours of leaching, the solution was filtered, and prior to the spectrometry measurement, 210Po present in the solution was separated by spontaneous deposition on silver discs. The activity of 210Po was determined using an alpha spectrometry system. Details of the method used were described by us elsewhere20,27.

The remaining second part of the filter was pressed into the form of a disc 5.2 cm in diameter and 0.4 cm thick, which represents standard geometry for all instrumental γ-spectrometry determinations23 of 210Pb. The detection limits for these radionuclides calculated according to Currie’s formula28 were 5.2 µBq/m³ for 210Bi, 5 µBq/m³ for 210Pb, and 1.19 µBq/m³ for 210Po.

The quality assurance of the used analytical procedures and instrumental γ-spectrometry measurements was checked using various type standard reference material: IAEA 327 (soil), IAEA 300 (sediment). Good compliance of the determined activity value of 210Po with a certified reference sample was achieved, as previously reported26.

In the additional set of experiments, the fractionated samples of aerosols with diameters in the range from 0.1 to 10 µm were collected by an eight-stage cascade Andersen Impactor. Radiochemical separation and activity measurements of the samples collected were carried out as described previously29.

Both methods based on the 210Bi/210Pb and 210Po/210Pb activity ratios should give the same real aerosol residence time, Tᵦ, calculated from Equation (2). If this assumption is correct, possible influx of the additional ∆A₀Po activity can be estimated using calculated Tᵦ in values in Equation (3)1,2,7,26:

\[
Tᵦ = \frac{(A₀Bi - A₀Po)}{λ₀Bi(A₀Bi - A₀Po) - λ₀Po(A₀Po - A₀Po)} (2)
\]

where:

\[A₀Bi, Po\] — measured activities of 210Po, 210Bi, and 210Bi radionuclides in the surface urban air,

λ₀Bi, Po — the 210Po and 210Bi decay constants, respectively.

\[\Delta A₀Po\] — the excess of the unsupported 210Po activity.

Additional input of unsupported 210Po is considered, the following equations can be written (Equation (4)):

\[
A₀Po = \frac{A₀Bi + \frac{1}{λ₀Bi Tᵦ}}{1 + \frac{1}{λ₀Bi Tᵦ}}
\]
\[A_{Bi} = \left(A_{Po} - \Delta A_{Po} \right) \left(1 + \frac{1}{\lambda_{Bi} T_R} \right) \]
where:
\[\Delta A_{Po} \] is an excess of \(^{210}\text{Po}\) activity that does not originate from \(^{210}\text{Bi}\) radionuclide previously adsorbed on the aerosol particles. A simple transformation of Equation (5) leads to Formula (6):
\[\Delta A_{Po} = \frac{A_{Po} - [A_{Bi} - A_{Po}] T_R \lambda_{Po}}{1 + T_R \lambda_{Po}} \]

After calculating the \(T_R\) values from Equation (2) or (4) and inserting these data in Equation (5), one can simply obtain from Equation (6) the value for \(\Delta A_{Po}\), the unsupported excess activity of \(^{210}\text{Po}\) radionuclide in air particulate matter. On the basis of real residence times, the corresponding theoretical values of \(A_{Po}\) for \(^{210}\text{Po}\) activity resulting from the decay of \(^{210}\text{Pb}\) adsorbed on the aerosol particles at a given concentration \(A_{Po}\) were calculated according to Equation (7):
\[A_{Po} = A_{Po} \left(1 - \exp(-\lambda_{Po} t) \right) + \frac{\lambda_{Po}}{\lambda_{Bi} - \lambda_{Po}} \left[\exp(-\lambda_{Bi} t) - \exp(-\lambda_{Po} t) \right] \]
The effective doses \(D\) related to the excess of \(^{210}\text{Po}\) due to aerosol inhalation for a child up to one year old and for adult inhabitants of Lodz city were estimated on the base of Equation (8):
\[D = DCF * A_{Po} * BR * t \]

where:
- \(DCF\) — dose conversion factor for medium breathing rate \([\text{Sv/Bq}]\)
- \(BR\) — breathing rate assumed as \(1 \text{ m}^3/\text{h}\)
- \(A_{Po}\) — excess of \(^{210}\text{Po}\) in the air \([\mu\text{Bq/m}^3]\)
- \(t\) — time of radiological hazard \([\text{h}]\)

Results:
Determining the excess of \(^{210}\text{Po}\) activity
In this study \(^{210}\text{Pb}, ^{210}\text{Bi}\) and \(^{210}\text{Po}\) activity concentrations in fresh air-filters were analyzed for excess of \(^{210}\text{Po}\) activity estimation. The final yield of bismuth separation by method was calculated from the \(^{210}\text{Bi}\) activity determination in three old air filters with known activities of \(^{210}\text{Pb}\). The results are presented in Table 1. Filters older than two years should have \(^{210}\text{Pb}, ^{210}\text{Bi}\), and \(^{210}\text{Po}\) activity equilibrium.

<table>
<thead>
<tr>
<th>Code of the filters</th>
<th>(^{210}\text{Pb}) activity, (A_{Po}) ([\mu\text{Bq/m}^3])</th>
<th>(^{210}\text{Bi}) activity, (A_{Bi}) ([\mu\text{Bq/m}^3])</th>
<th>Chemical yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>851</td>
<td>479.3</td>
<td>471.4</td>
<td>98.3</td>
</tr>
<tr>
<td>838</td>
<td>367.4</td>
<td>306.5</td>
<td>83.4</td>
</tr>
<tr>
<td>920</td>
<td>187.7</td>
<td>138.1</td>
<td>73.6</td>
</tr>
</tbody>
</table>

The average total detection and \(^{210}\text{Bi}\) separation efficiency value of 85% has been taken for \(^{210}\text{Bi}\) concentration calculation by this method. For all collected aerosol samples, the real residence times were calculated according to Equation (2). The excess of \(^{210}\text{Po}\) activity has been calculated on the base of Equation 3.
Environmental Science: Processes & Impacts

The average values of 210Po excess in air show a clear seasonal trend but low correlation with 210Pb activity levels. The estimated seasonal change in ΔA_{Pb} is statistically significant. This may suggest that the observed excess of 210Po in the winter period is coming from a source characteristic for this season.

The activity concentration of 210Po in becquerels per gram of the total suspended matter varies from 0.608 Bq/g in the winter to a value of 0.257 Bq/g in the summer. These values considerably exceed the measured activity concentration of this radionuclide in the resuspended soil particulates or in the captured fly ashes (0.03 and 0.026 Bq/g, respectively). The dependence of the activity concentrations of 210Po and 210Pb in the urban dust and 210Po in the fly ashes on the particulate aerodynamic diameters is presented in Table 4.

![Fig. 3. 210Po activity concentration [Bq/g] in fractionated urban aerosols and fractionated fly ash cached in electrostatic precipitation system in coal power plant.](image)

The fraction of 210Po with the highest activity is adsorbed on aerosol particles below 1 µm in size. The fate of the airborne radionuclides is determined by the behaviour of the aerosol particles in the atmosphere. The very low activities of the fly ashes indicate that even escaping fly ashes with diameters below 0.1 µm did not have sufficiently high activities < 1 Bq/g to be considered as a polonium source. This means that the high activity concentration of 210Po, reaching average values of up to 4.71 Bq/g for aerosols in the size range of 0.1–0.3 µm, are the result of high particle-reactivity.

Identification of source Po-210 excess

In order to clarify the nature of the additional activity of 210Po, its concentration in dust samples of various origin has been analysed.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>210Po [Bq/g]</th>
<th>210Pb [Bq/g]</th>
<th>210Po/210Pb activity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrofilter sample 1 – Lodz</td>
<td>0.106</td>
<td>0.239</td>
<td>0.44</td>
</tr>
<tr>
<td>Electrofilter sample 2 – Lodz</td>
<td>0.090</td>
<td>0.209</td>
<td>0.43</td>
</tr>
<tr>
<td>Electrofilter sample 3 – Lodz</td>
<td>0.059</td>
<td>0.137</td>
<td>0.44</td>
</tr>
<tr>
<td>Electrofilter sample 1 – Chorzów</td>
<td>0.086</td>
<td>0.159</td>
<td>0.54</td>
</tr>
<tr>
<td>Electrofilter sample 2 – Chorzów</td>
<td>0.117</td>
<td>0.211</td>
<td>0.55</td>
</tr>
</tbody>
</table>

The average 210Po activities in the captured fresh fly ashes are about half of the activity concentrations measured for the parent radionuclide 210Pb. 210PoO$_2$ molecules which are released during combustion are then gradually adsorbed on the solid aerosol particles.

Activity concentration is strongly dependent on the aerodynamic diameter of the solid particles of aerosol. Generally, fine particulate matter carries more 210Po than the coarser fractions. The activity concentration increases with the decrease of aerosol diameter, causing an increased specific surface area of the particles. Similar behavior of lead and polonium on the surface of fine aerosols was presented in other works. The activity concentration of 210Po in particles collected on the filters with aerodynamic diameter in the range of 0.1–10 µm (attached fraction) and the activity concentration of fly ash collected in the electrostatic area is presented in Fig. 3.

The particles with diameters lower than 0.1 µm suspended in the atmosphere are not retained in conventional filters. Urban air can play the role of a reservoir for 210Po in unattached form, which can move freely with air masses during the whole year and with the highest activity concentration in cold seasons. Fine particles not captured in the electric field, and thus freely leaving the chimneys of power plants, can be one of the main sources of increased activity of air and soil in the region of the emission source.

Different fate of 210Po from its parents 210Pb and 210Bi in the fresh country air is evident. Because of the higher volatility of 210Po, the distribution coefficient between air and aerosols is higher than for 210Pb and 210Bi radionuclides. The behavior of 210Po radionuclide is similar to the behavior of artificial 131I isotope. Masson confirmed that even 90% of 131I occurs in particulate matter in the air. 210Po and 131I isotopes show similar natures in air and can stay in gaseous form longer than in particle form.

Table 3. 210Po activity concentrations in the environmental samples.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>210Po Activity concentration [Bq/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrofilter sample 1 – Lodz</td>
<td>0.106</td>
</tr>
<tr>
<td>Electrofilter sample 2 – Lodz</td>
<td>0.090</td>
</tr>
<tr>
<td>Electrofilter sample 3 – Lodz</td>
<td>0.059</td>
</tr>
<tr>
<td>Electrofilter sample 1 – Chorzów</td>
<td>0.086</td>
</tr>
<tr>
<td>Electrofilter sample 2 – Chorzów</td>
<td>0.117</td>
</tr>
</tbody>
</table>

Table 4. Activity concentration of 210Po and 210Pb [Bq/g] and their activity ratio in fly ash samples.
Part of the polonium emitted into the atmosphere can be deposited on the surface of particles, thus increasing its activity concentration. For the 0.1–0.18 μm fraction, the measured activity concentration was equal to 5 Bq/g. The escaping unsupported polonium fraction and its coagulation and condensation are the most significant phenomena responsible for the rise of the 210Po concentration in the urban air.

Polonium in the gaseous form that escapes from domestic central heating systems cannot pose a hazard for residents or power plant workers. Health risks posed by 210Po from coal combustion can however be a serious problem, especially in the vicinity of major point sources of dust emission located in Lodz city centre.

Inhaled urban dust particles containing these isotopes released from coal burning may contribute to enhanced inhalation doses in the human lung. Therefore, the exact determination of the 210Po released unsupported by 210Pb and its compounds are significant for correct dose rate assessment (Equation (8)).

The effective doses D related to the excess of 210Po due to aerosol inhalation for a child up to one year old (dose conversion factor: 15 μSv/Bq) and for adult inhabitants of Lodz city (3.3 μSv/Bq) were estimated to be 5.2 and 1.1 μSv/year, respectively. When estimating total radiological exposure, the gaseous form of 210Po should also be taken into account. Emitted unsupported 210Po in the volatile form can play an important role for the inhabitants of the central part of Lodz. The total radiological exposure of children and adults may be about 20 and 4 μSv/year, respectively. An increase in radiological hazard around local power plants has been confirmed previously in surface soil up to 30 cm depth.

Conclusions
The excess of 210Po activity concentration in the air was studied. The main source of polonium was connected with the activity of power plants and domestic coal typical for the winter season. On average, about 50% of the total activity of 210Po is discharged in the vicinity of the power plant.

The deficit of 210Po activity confirms an efficient escape of polonium from dedusting installations. Eleven gigabequerels of 210Po per year are released into the urban air. However, industrial polonium emission cannot pose a radiological hazard as it is only slightly higher than the natural dose. On the other hand, in some agglomerations like Belchatow city in central Poland or Silesia Region, inhabitants are likely to be more vulnerable to elevated 210Po concentrations in the urban air. Therefore the activity concentration of 210Po should be more carefully controlled. In such a region, the aerosol residence time method based on the 210Po/210Pb activity ratio is useless and should be replaced by a more appropriate 210Bi/210Pb method.

Acknowledgements
This research work is supported by the National Science Centre under SONATA grant no. UMO-2012/07/D/ST10/02874.

The author is deeply grateful to the representatives of the coal power plants at Skawina, Belchatow and Dalkia in Lodz for providing samples and valuable information.

The author give thanks for Prof. H. Bem and dr S. Karolczak for their keen interest and consultancy in this work.

Notes and references
1. C. Papastefanou, 2006. Applied Radiation and Isotopes 64, 93–100