

Real time monitoring of gases emitted from soils using the Multi-turn Time-of-Flight Mass Spectrometer "MULTUM-S II"

Manuscript ID: EM-ART-06-2014-000339.R1 Article Type: Paper Date Submitted by the Author: 31-Aug-2014 Complete List of Authors: Anan. Takabiro: Osaka University. Department of Physics. Graduate Sch	Journal:	Environmental Science: Processes & Impacts
Article Type: Paper Date Submitted by the Author: 31-Aug-2014 Complete List of Authors: Anan. Takabiro: Osaka University. Department of Physics. Graduate Sch	Manuscript ID:	EM-ART-06-2014-000339.R1
Date Submitted by the Author: 31-Aug-2014	Article Type:	Paper
Complete List of Authors: Anan, Takahiro: Osaka University, Department of Physics, Graduate Sch	Date Submitted by the Author:	31-Aug-2014
of Science Shimma, Shuichi; National Cancer Center Research Institute, Departme of Clinical Pharmacology, Group for Translational Research Support Core Toma, Yo; Ehime University, Faculty of Agriculture Hashidoko, Yasuyuki; Hokkaido University, Division of Applied Bioscienc Research Faculty of Agriculture Hatano, Ryusuke; Hokkaido University, Division of Environmental Resources, Research Faculty of Agriculture Toyoda, Michisato; Osaka University, Project Research Center for Fundamental Sciences, Graduate School of Science	Complete List of Authors:	Anan, Takahiro; Osaka University, Department of Physics, Graduate School of Science Shimma, Shuichi; National Cancer Center Research Institute, Department of Clinical Pharmacology, Group for Translational Research Support Core Toma, Yo; Ehime University, Faculty of Agriculture Hashidoko, Yasuyuki; Hokkaido University, Division of Applied Bioscience, Research Faculty of Agriculture Hatano, Ryusuke; Hokkaido University, Division of Environmental Resources, Research Faculty of Agriculture Toyoda, Michisato; Osaka University, Project Research Center for Fundamental Sciences, Graduate School of Science

SCHOLARONE[™] Manuscripts **Environmental Science: Processes & Impacts**

Miniaturized high-resolution TOF mass spectrometer "MULTUM-S II"

Graphical Abstract Anan et al.

Real time monitoring of gases emitted from soils using the Multi-turn Time-of-Flight Mass Spectrometer "MULTUM-S II"

Takahiro Anan¹, Shuichi Shimma², Yo Toma³, Yasuyuki Hashidoko⁴, Ryusuke Hatano⁵, Michisato Toyoda^{1,6 *}

¹ Department of Physics, Graduate School of Science, Osaka University, Japan

² Department of Clinical Pharmacology, Group for Translational Research Support

Core, National Cancer Center Research Institute, Japan

³ Faculty of Agriculture, Ehime University, Japan

⁴ Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University,

Japan

⁵ Division of Environmental Resources, Research Faculty of Agriculture, Hokkaido University, Japan

⁶ Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan *Correspondence Author:

Michisato Toyoda

Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka

University

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

E-mail: toyodam@phys.sci.osaka-u.ac.jp

1 Abstract

2	Many miniaturized mass spectrometers used for on-site analysis have been
3	designed and developed recently utilizing a broad range of analyzer platforms. These
4	instruments are expected to have widespread applications covering many fields of
5	interest. In our laboratory, a miniaturized multi-turn time-of-flight (TOF) mass
6	spectrometer "MULTUM-S II" was designed and constructed. The size and weight of
7	the developed "MULTUM-S II" is 45 cm \times 23 cm \times 64 cm and 36 kg. Irrespective of
8	this small platform, it still boasts a high mass resolution capability of more than 30000.
9	In this study, we attempted to carry out real-time monitoring of gaseous compounds
10	such as N ₂ , O ₂ , CO ₂ , N ₂ O and CH ₄ . Using conventional miniaturized mass
11	spectrometers, CO_2 and N_2O cannot be detected simultaneously due to the low mass
12	resolution inherent to these established analyzer designs. Using a new method,
13	"GC/high resolution mass spectrometry" described in this paper, real time monitoring of
14	gases emitted from soils can be achieved. In a soil incubation experiment, CO_2 and N_2O
15	started to increase just after water supplement and these gases varied similarly during
16	the experiment, thus showing that this improved gas analyzing system could monitor
17	short time response of gaseous production in soil.

18 **1. Introduction**

19	In recent years, the increase in greenhouse gases (CO ₂ , N ₂ O and CH ₄) emitted
20	from soils is becoming a global problem. It is known that these gases as well as N_2 , are
21	generated by soil microbial activities [1]. In particular, N ₂ O is known as one of the most
22	serious greenhouse gases, and is also involved in depressing the stratospheric ozone
23	layer [2]. According to the Intergovernmental Panel on Climate Change [3], warming
24	effects of N_2O and CH_4 are 298 and 25 times, "respectively" greater than that of CO_2 .
25	The emissions of gases are affected by the influence of fertilizer N application and
26	environmental factors (precipitation, temperature, wind speed, etc.). In the conventional
27	method of gas sampling and measurement, gases are collected from a sampling chamber,
28	taken to the laboratory, and measured by using gas analyzers [4]. It takes several hours
29	to collect gas samples at the field and measure gas concentrations in the laboratory, so
30	that frequent sampling of the gases to understand production and emission of gases has
31	been labor intensive and difficult. Therefore, on-site gas sampling and fast analysis have
32	been required to elucidate generating mechanisms and determine possible reduction
33	procedures of gases produced from agricultural soils. Conventionally, concentration of
34	N ₂ O in collected samples is analyzed using a gas chromatograph with an electron

35	capture detector (ECD) [5]. It is difficult to apply gas chromatography using an ECD on
36	the agricultural field because radioisotopes (e.g. ⁶³ Ni) are used in these detectors.
37	Current methods utilize an infrared (IR) analyzer to monitor concentration of CO ₂ [6]
38	and concentration of CH_4 is measured by a gas chromatograph with a flame ionization
39	detector (FID) [7]. Thus, it is impossible to detect these gases simultaneously in a single
40	analyzer. Due to the varied analyzers and conditions of this measurement technique,
41	complicated systematic errors are an inherent problem. Gas chromatography/mass
42	spectrometry (GC/MS) has the powerful potential to measure a large variety of gases in
43	the agricultural field. In the conventional method of gas analysis, using a gas
44	chromatograph-mass spectrometer [8, 9], the main components of air (e.g. N_2 , O_2 and
45	Ar), CH ₄ , CO ₂ and N ₂ O are separated using a PLOT (porous layer open tubular) column
46	and detected by the mass spectrometer. The schematic illustration of a chromatogram is
47	shown in Fig.1A. Analysis times on a scale of several minutes to detect CH ₄ , CO ₂ and
48	N ₂ O are a definite disadvantage of this method. In contrast, soil microbial activities are
49	influenced by sudden changes in the environmental conditions, therefore; a higher gas
50	sampling rate is essential. For a chromatographic separation, retention time is directly
51	proportional to the length of a column. We attempted to shorten the measurement time

52	by using a very short column. However, the insufficient chromatographic separation
53	might give rise to overlap of the peaks of CO_2 and N_2O , O (the fragment of O_2) and CH_4
54	(Fig.1B). Conventional miniaturized mass spectrometers, such as quadrupole mass
55	spectrometers or ion trap mass spectrometers cannot separate these doublets (mass
56	resolution <500), because the nominal mass of N_2O and CO_2 are the same. To separate
57	these gases in the field, it is necessary to introduce a miniaturized mass spectrometer,
58	which has high mass resolving power. Required mass resolution to separate CO ₂ and
59	N_2O doublet is larger than 8000 and resolution for doublet O and $\ensuremath{CH_4}\xspace$ is larger than
60	1500. Therefore a mass spectrometer with high mass resolving power will provide a
61	significantly reduced measurement time to separate components having the same
62	nominal mass (Fig.1C). In this case, GC separation could still be necessary, because the
63	target gases such as CO_2 and N_2O , (whose concentrations are small), are separated from
64	the main components of air (N_2, O_2) to avoid ion suppression in the EI ion source. In
65	our laboratory, the miniaturized multi-turn time-of-flight (TOF) mass spectrometer with
66	high mass resolving power 'MULTUM-S II' has been developed [10]. In previous work,
67	a combination of a multi-turn TOF mass spectrometer and a gas chromatograph was
68	applied to environmental research [11], and 1 ppb heptachlorinated biphenyl was

69	detected at a resolution of 10000. Using GC-high resolution TOF mass spectrometer, 66
70	PCB (polychlorinated biphenyl) congeners were detected within 5 min [12]. In this
71	paper, the preliminary results of monitoring gas emitted from soils by using a
72	GC-multi-turn TOF mass spectrometer is reported.
73	
74	2. Instrumentation
75	Multi-turn TOF mass spectrometer (MULTUM)
76	A photograph of MULTUM-S II is shown in Fig.2. The MULTUM-S II consists
77	of an ion source, a multi-turn mass analyzer, a detector, a vacuum system, and an
78	electronic circuit/ control unit. The total size and weight of a MULTUM-S II is 45 cm
79	\times 25 cm \times 64 cm and 36 kg, respectively. The equipped ionization source is a
80	two-stage acceleration ion source of electron ionization (EI) type introduced by Wiley
81	and McLaren [13]. The mass resolution of the TOF mass spectrometer is proportional to
82	its total flight path length. In order to obtain a long flight path, it is necessary to place
83	the ions in a closed orbit and to pass the ions around the same orbit many times
84	(multi-turn). Our multi-turn system is capable of high mass resolution because of its
85	infinite flight path utilizing perfect space and time focused closed flight orbit [14]. It has

- 86 high mass resolution capability of (>30000) and high mass accuracy (<2.6 ppm). The
- 87 detailed discussion about MULTUM-S II was described elsewhere [10].
- 88

89 Gas sampling system

90 We developed a simple automatic gas sampling system. Figure 3(A) shows a 91 scheme of the gas sampling system to inject a pre-determined amount of gas into the 92MULTUM-S II periodically. This system consists of a 6-port valve (AU-CF-6, GL 93Science Inc., Tokyo, Japan), solenoid valves (USB 3-6-1, CKD Corporation, Aichi, 94 Japan), a mass flow controller (SEC-E40, HORIBA STEC, Kyoto, Japan), a 250 µL 95 sampling loop, a diaphragm pump (N84.3ANDC, KNF Neuberger Inc., Trenton, NJ) 96 and a short PLOT column (GS-CARBONPLOT, Agilent Technologies). A certain 97 amount of the gas was injected into the MULTUM-S II by this sampling system and the 98 loss of sample gas was kept to a minimum. Timing of switching for the valves and the 99 pump was controlled using a digital I/O device (USB-6501, National Instruments, TX, USA). The timing chart of gas sampling is shown in Fig.3(B). Before measurements, 100 101 the solenoid valve B was opened and the sampling loop was evacuated using the 102 diaphragm pump. After closing the solenoid valve B, the solenoid valve A was opened.

103	Then, the sampling loop was filled with sample gas, the solenoid valve C was opened
104	and purged with high purity He gas (99.9995 %, NERIKI, Hyogo, Japan) to prevent
105	atmospheric contamination. The pressure of purged high purity He gas was 1.02×10^5
106	Pa. After gas sampling, the 6-port valve was switched to flow the sample to the PLOT
107	column. Ultrapure He gas (99.99995 %, NERIKI, Hyogo, Japan) was used as a carrier
108	gas of the gas chromatograph. The mass flow controller was used to regulate the flow.
109	

110 Measurement of gas emission from soil

111 In this study, soil gas emissions were monitored using the gas sampling system. Soil 112for incubation experiment was collected in a cornfield in Shinhidaka, Hokkaido, Japan. 113 Soil type is classified as Andisol, and its pH, total carbon, total nitrogen, C:N ratio and 114 texture are 5.9, 5.22 %, 0.44 %, 11.9 and sandy clay loam, respectively. Concentrations 115of ammonium and nitrate are 4.75 mgN/kg, and 76.0 mgN/kg, respectively. In the 116experiment, 3 g of air-dried soil in the 200 mL Erlenmeyer flask is incubated at an 117aerobic condition. After 24.5 hours incubation, 2.1 mL water was added to the soils to 118change the water condition drastically and enhance N₂O and CO₂ production. Using the 119GC-MULTUM, we performed long term gas monitoring to detect changes of gas

120	concentrations (N ₂ , O ₂ , CO ₂ and N ₂ O) emitted from soils. The total duration of
121	measurement was 3 days (before adding water; 1 day, after adding water; 2 days).
122	Before adding water, gas sampling and measurement was carried out every 4 hours.
123	Between 30 min before adding water and 90 min after adding water, gas sampling and
124	measurement was carried out every 5 min. After that, the periodical sampling and
125	measurement was performed (27, 28, 29, 32, 36, 48, 52, 56, 60 and 75 hours). As the
126	headspace gas was taken, the pressure in the headspace was reduced. To maintain
127	constant atmospheric pressure in the headspace, air was injected into the flask. The
128	sample gas was replaced by an equal amount of the air.

130 **Operation of MULTUM-S II**

131 The mass spectrometer 'MULTUM-S II' was used in the 'multi-turn mode' with 132 electron ionization. The block diagram of the timing chart of operation of the 133 MULTUM-S II is shown in Fig.3(C). Ions are injected into the orbiting trajectory by 134 applying voltage to the Injection Electrode, and then the applied voltage to the Injection 135 Electrode is turned off after all ions are injected into the orbiting trajectory. When 136 voltage is applied to the Ejection Electrode, ions exit the orbiting trajectory and are

- 137 detected by the detector. The switching timing of the Ejection Electrode controls the
- 138 number of cycles.

140 GC-MS analysis

- 141 The conditions of GC were (i) ion source temperature: 200 °C, (ii) GC interface
- 142 temperature: 40 °C, (iii) flow rate of He gas: 7.0 cc/min (at constant flow) and (iv)
- 143 PLOT column: 10 m \times 0.32 mm i.d.; film thickness 3.00 μ m.

144

145 **3. Results and Discussion**

146 Separation of CO₂ and N₂O, O and CH₄

147	In this experiment, separating the doublets of ${}^{12}C^{16}O_2^+$ and ${}^{14}N_2{}^{16}O^+$, ${}^{16}O^+$ and
148	$^{12}\mathrm{CH_4}^+$ was carried out by using the MULTUM-S II. The mixture of CO_2 and N_2O
149	(49.4 %: 50.6 %) was purchased from DAIHO SANGYO Inc. (Tokyo, Japan). The gas
150	was introduced into the EI ion source via a needle valve. Figure 4 shows mass spectra of
151	the doublet of CO_2 and N_2O by changing the number of cycles. Since both CO_2 and
152	N_2O have same nominal mass of m/z 44, CO_2 and N_2O were detected as one peak after
153	2 cycles (Fig.4(A)). In this cycle, the doublet peak could not be separated due to the low

154	mass resolution (< 400). After 50 cycles, CO_2 and N_2O peaks were separated
155	completely (Fig.4(B)). A mass resolution of 15000 was achieved. The signal intensity at
156	50 cycles was decreased to 10 % of 2 cycles. Figure 4(C) shows the mass spectrum at
157	m/z 16 after 10 cycles. In this spectrum, the peak of ${}^{12}\text{CH}_4^+$ was separated from the peak
158	of ¹⁶ O ⁺ . A mass resolution greater than 2000 was achieved, hence using this TOF mass
159	spectrometer with high mass resolving power 'MULTUM-S II', CO_2^+ , N_2O^+ , ${}^{16}\text{O}^+$ and
160	CH_4^+ can be separated.

162 Evaluation of gas monitoring system GC-MULTUM

163	In this experiment, we performed fast GC-high resolution MS to evaluate
164	measurement of CO_2 and N_2O in the air. The atmospheric concentrations of CO_2 and
165	$N_{2}O$ were 380 ppm and 314 ppb, respectively. The conditions of MULTUM-S II were
166	(i) electron energy; 23 eV, (ii) filament current; 3.6 A, (iii) applied voltage to the
167	detector (ETP secondary electron multiplier 14880, SGE Analytical Science Pty Ltd,
168	Victoria, Australia); 2700 V and (iv) the number of cycles of ion packets; 50. The
169	obtained chromatograms and mass spectrum are shown in Fig.5. In the averaged mass
170	spectrum at the retention time of 36 to 39 sec, CO_2 and N_2O were separated by the mass

171	spectrometer with high mass resolving power. Furthermore, mass chromatograms were
172	extracted using a mass window of ± 0.0005 u. In this system, CO_2 and N_2O were
173	detected within 1 min. We found fast GC-high resolution MS could be performed. The
174	limit of detection (LOD) of N_2O was less than 300 ppb with a signal to noise ratio > 2.
175	The linear signal response was evaluated by the measurement of the diluent gas of N_2O .
176	The standard gas of 30 ppm $\mathrm{N}_{2}\mathrm{O}$ was purchased from DAIHO SANGYO Inc. The
177	standard gas was diluted in high purity helium from 0.3 ppm to 30 ppm (300 ppb, 3
178	ppm, 10 ppm and 30 ppm). A sample gas of 250 μL was measured by using the
179	GC-MULTUM. Figure 6 shows the concentration dependence of the peak intensities of
180	$N_2O.$ The linear signal response for MULTUM-S II was shown using diluted N_2O gases.
181	Peak intensities were plotted as a function of the concentration. The linear signal
182	response was $R^2=0.999$. The coefficient of variation (CV) for the standard gas of 30
183	ppm N_2O was less than 2.3 % (the number of measurements: 30).

185 Monitoring of gases emitted from soils

186 Gases emitted from soils were measured to evaluate our developed system for187 environmental monitoring. The conditions of the MULTUM-S II were (i) electron

13

188	energy; 60 eV, (ii) filament current 3.6 A (N_2 and O_2) and 4.2 A (CO_2 and N_2O), (iii)
189	applied voltage to the detector; 2700V (N $_2$ and O $_2$) and 3300 V (CO $_2$ and N $_2$ O) and (iv)
190	the number of cycles of the MULTUM; 2 (N $_2$ and O $_2$) and 50 (CO $_2$ and N $_2$ O). Figure 7
191	shows temporal changes in N_2 , O_2 , CO_2 and N_2O concentrations. We found steep and
192	large reduction of N_2 and O_2 concentrations after the addition of water (Fig.7(A)). These
193	reductions may be due to dissolution into the water, but a more detailed experiment
194	should be required to understand this variation. The concentrations of $N_{\rm 2}$ and $O_{\rm 2}$
195	decreased and returned to an atmospheric level at 75 hours, indicating the headspace of
196	the incubation system sustained an aerobic condition. The concentration of $N_2 \mathrm{O}$
197	increased with increasing the concentration of CO ₂ after the water application, reaching
198	a maximum at a concentration of 17 ppm. This result suggests that water is a trigger of
199	CO_2 production and $\mathrm{N}_2\mathrm{O}$ is affected by CO_2 production. Rewetting of dry soil often
200	induces CO_2 and N_2O flush from soil [16]. Both organic matter decomposition and
201	denitrification emit CO ₂ as a result of microbial aerobic and/or anaerobic respiration.
202	Similar change of CO_2 and N_2O concentrations just after adding water, therefore,
203	showed that CO_2 production on rewetting process was closely linked with that of $N_2\mathrm{O}$
204	production even in aerobic condition. Because N2O production in the process of

205	denitrification requires organic C as an electron donor, N2O production by
206	denitrification is often correlated with CO ₂ production in soil [17]. Thus, our monitoring
207	system could measure the response of CO_2 and $\mathrm{N}_2\mathrm{O}$ production induced by water
208	supply on a short-time scale. In the future our monitoring system, combined with some
209	closed chamber method or other gas sampling system, could be used for detailed
210	analysis of gas production and emission, especially in the field where the use of
211	large-scale equipment would be prohibitive. This will enable us to more easily
212	understand the mechanisms of material dynamics in environment. Furthermore this
213	methodology could be used to investigate other areas of interest like carbon
214	sequestration. We could envision using our system in a future trial to monitor CO_2
215	levels on the grounds of a carbon sequestration by plant to analyze this greenhouse gas
216	during specific periods of growing and non-growing seasons. This method could be
217	used to detail photosynthetic efficiency of plant, by comparing the quantities of gas
218	being absorbed and rereleased into the atmosphere during the day. There are many other
219	potential applications including, (but not limited to) monitoring the release of methane
220	from hydrates during deep sea drilling and potential bio photosynthetic monitoring.

15

222 **4.** Conclusion

	Using a gas chromatograph-MULTUM-S II, we have demonstrated the ability of
224	simultaneous quantification of the gaseous compounds (CO ₂ , N ₂ O) within 1 minute.
225	Using this monitoring system, we achieved real-time monitoring of N_2O , CO_2 , N_2 and
226	O ₂ emitted from soils. The results indicate this newly developed system can be helpful
227	for elucidating the generating mechanism. In the future, it will be possible to achieve
228	on-site analysis of gaseous compounds using our methodology.
229	
230	Acknowledgements
231	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010)
231 232	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, Sports, Science and Technology, a supporting
231 232 233	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, Sports, Science and Technology, a supporting program for creating university ventures from the Japan Science and Technology
231 232 233 234	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, Sports, Science and Technology, a supporting program for creating university ventures from the Japan Science and Technology Agency (JST), and Support Program for Osaka University Future Research Initiative
231 232 233 234 235	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, Sports, Science and Technology, a supporting program for creating university ventures from the Japan Science and Technology Agency (JST), and Support Program for Osaka University Future Research Initiative Groups. The authors thank Mr. Shinichi Miki and Dr. Hirofumi Nagao of MSI.TOKYO
231 232 233 234 235 236	This work was supported by a Grant-in-Aid for Young Scientists (A) (21685010) from the Ministry of Education, Culture, Sports, Science and Technology, a supporting program for creating university ventures from the Japan Science and Technology Agency (JST), and Support Program for Osaka University Future Research Initiative Groups. The authors thank Mr. Shinichi Miki and Dr. Hirofumi Nagao of MSI.TOKYO Inc. for their technical support and discussion.

238

239 **References**

240	1.	R. Conrad, Soil microorganisms as controllers of atmospheric trace gases (H ₂ , CO,
241		CH ₄ , OCS, N ₂ O, and NO), <i>Microbiol. Rev.</i> , 1996 , 60 (4), 609-640.
242	2.	A. R. Ravishankara, John S. Daniel, Robert W. Portmann, Nitrous oxide (N ₂ O): the
243		dominant ozone-depleting substance emitted in the 21st century, Science, 2009, 326,
244		123-125; DOI 10.1126/science.1176985.
245	3.	IPCC (intergovernmental Panel on climate Change), 2007. The Physical Science
246		Basis. Climate Change 2007. Cambridge: Cambridge University Press.
247	4.	Y. Toma, S D. Kimura, H. Yamada, Y. Hirose, K. Fujiwara, K. Kusa and R. Hatano,
248		Effects of environmental factors on temporal variation in annual carbon dioxide and
249		nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in
250		Mikasa, Hokkaido, Japan, Soil Sci. Plant Nutr., 2010, 56 (4), 663-675; DOI
251		10.1111/j.1747-0765.2010.00486.x.
252	5.	H. Akiyama, H. Tsuruta, T. Watanabe, N2O and NO emissions from soils after the
253		application of different chemical fertilizers, Chemosphere., 2000, 2 (3-4), 313-320;

- 254 DOI 10.1016/S1465-9972(00)00010-6.
- 255 6. E. A. Davidson, K. Savage, L. V. Verchot, Rosa Navarro, Minimizing artifacts and

256	biases in chamber-based measurements of soil respiration, Agric. For Meteorol.,
257	2002 , 113 (1-4), 21-37; DOI 10.1016/S0168-1923(02)00100-4.
258	7. P. Ineson, P. A. Cowaard, U. A. Hartwig, Soil gas fluxes of N ₂ O, CH ₄ and CO ₂
259	beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide
260	enrichment experiment, Plant Soil, 1998, 198 (1), 89-95; DOI
261	10.1023/A:1004298309606.
262	8. K. Isobe, K. Koba, S. Ueda, K. Senoo, S. Harayama and Y. Suwa, A simple and
263	rapid GC/MS method for the simultaneous determination of gaseous metabolites, J.
264	Microbiol. Methods, 2011, 84 (1), 46-51; DOI 10.1016/j.mimet.2010.10.009.
265	9. D. Ekeberg, G. Ogner, M. Fongen, E J. Joner and T. Wickstrom, Determination of
266	CH_4 , CO_2 and $\mathrm{N}_2\mathrm{O}$ in air samples and soil atmosphere by gas chromatography mass
267	spectrometry, GC-MS, J. Environ. Monit., 2004, 6 (7), 621-623; DOI
268	10.1039/B401315H.
269	10. S. Shimma, H. Nagao, J. Aoki, K. Takahashi, S. Miki and M. Toyoda, Miniaturized
270	high-resolution time-of-flight mass spectrometer MULTUM-S II with an infinite
271	flight path, Anal. Chem., 2010, 82 (20), 8456-8463; DOI 10.1021/ac1010348.

272 11. S. Shimma and M. Toyoda, Greenhouse Gases - Emission, Measurement and

- 273 Management, Dr Guoxiang Liu (Ed.), ISBN: 978-953-51-0323-3, In Tech, 2012,
- 274 Chapter 11, 235-254; DOI 10.5772/33815.
- 275 12. S. Shimma, S. Miki and M. Toyoda, Polychlorinated biphenyls (PCBs) analysis
- using a miniaturized high-resolution time-of-flight mass spectrometer "MULTUM-S
- 277 II", J. Environ. Monit., 2012, 14 (6), 1664-1670; DOI 10.1039/C2EM30112A.
- 278 13. W. C. Wiley, I. H. Mclaren, Time of Flight Mass Spectrometer with Improved
- 279 Resolution, *Rev. Sci. Instrum.*, **1955**, 26 (12), 1150-1157; DOI 10.1063/1.1715212.
- 280 14. M. Toyoda, D. Okumura, M. Ishihara and I. Katakuse, Multi-turn Time-of-Flight
- 281 Mass Spectrometers with Electrostatic Sectors, J. Mass Spectrom., 2003, 38 (11),
- 282 1125-1142; DOI 10.1002/jms.546.
- 283 15. K. Kusa, T. Sawamoto, R. Hu, R. Hatano, Comparison of N₂O and CO₂
- concentrations and fluxes in the soil profile between a Gray Lowland soil and an
- 285 Andosol, Soil Sci. Plant Nutr., 2010, 56 (1), 186-199; DOI
- 286 10.1111/j.1747-0765.2009.00439.x.
- 287 16. D. G. Kim, R. Vargas, B. Boud-Lamberty, M. R. Turetsky, Effects of soil rewetting
- and thawing on soil gas fluxes: a review of current literature and suggestions for
 future research, *Biogeosciences Discuss.*, 2011, 8, 9847-9899; DOI

- 290 10.5194/bgd-8-9847-2011.
- 291 17. Y. Toma, R. Hatano, Effect of crop residue C:N ratio on N₂O emissions from Gray
- 292 Lowland soil in Mikasa, Hokkaido, Japan, Soil Sci. Plant Nutr., 2007, 53 (2),
- 293 198-205; DOI 10.1111/j.1747-0765.2007.00125.x.

294 Figure captions

310

soils.

- 295Fig.1 The schematic of chromatogram. (A) Conventional GC-MS (low mass 296 resolution), (B) fast-GC-MS (low mass resolution), (C) fast-GC-MS (high mass resolution). 297298Fig.2 (A) Photograph of MULTUM-S II. (B) Schematic of multi-turn part of 299 MULTUM-S II 300 Fig.3 The schematic of developed gas sampling system(A). Timing charts of gas 301 sampling (B) and mass spectrometer (C). Fig.4 Mass spectrum of ${}^{12}C^{16}O_2$ and ${}^{14}N_2{}^{16}O$ doublet after (A) 2 cycles and (B) 50 302 cycles. Mass spectrum of 16 O and 12 CH₄ doublet after 10 cycles (C). 303 Fig.5 The total ion current chromatogram and mass chromatograms of CO₂ and N₂O in 304 305the air (A) and the averaged mass spectrum at the retention time of 36 to 39 sec 306 (B). 307 **Fig.6** The signal response curve of N_2O from 0.3 ppm to 30 ppm. Fig.7 Temporal changes in N₂ and O₂ (A), CO₂ (B) and N₂O (C) concentrations emitted 308 309 from soils for 3 days. After 24.5 hours incubation, 2.1 mL water was added to the
 - 21

Fig. 1 Anan et al.

Environmental Science: Processes & Impacts Mass analyzer

Detector

(A)

Turbo molecular pump (x2)

> Diaphragm pump (x2)

45 cm x 23 cm x 64 cm, 36 kg

Fig. 2 Anan et al.

Fig. 3 Anan et al.

Fig. 6 Anan et al.

