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Environmental impact statement 

Wastewater treatment plant (WWTP) effluents are the primary source of emerging 

contaminants in a receiving river system in Ontario, Canada. Example contaminants 

include the artificial sweetener acesulfame-K (ACE-K) and the pharmaceutical 

compounds carbamazepine (CBZ), caffeine (CAF), sulfamethoxazole (SMX), 

ibuprofen (IBU), gemfibrozil (GEM), and naproxen (NAP). ACE-K was the most 

persistent compound at concentrations at least one order of magnitude higher than the 

pharmaceuticals over a 31 km stretch of the river. Concentrations of ACE-K, CBZ, 

GEM, NAP, and Cl
-
 were strongly correlated, suggesting these compounds can be 

used as co-tracers of wastewater. The use of multiple tracers, such as artificial 

sweeteners combined with pharmaceutical compounds, greatly increases the 

confidence of tracking wastewater in aquatic environments. 
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Acesulfame-K and pharmaceuticals as co-tracers of 
municipal wastewater in a receiving river 

YingYing Liu, David W. Blowes, Laura Groza, Michelle Sabourin, and Carol J. 
Ptacek*   

Wastewater treatment plant (WWTP) effluents are important sources of emerging contaminants 
at environmentally-relevant concentrations. In this study, water samples were collected from a 
river downstream of two WWTPs to identify practical tracers for tracking wastewater. The 
results of the study indicate elevated concentrations of Cl-, nutrients (NH3-N and NO2

-), the 
artificial sweetener acesulfame-K (ACE-K), and the pharmaceuticals carbamazepine (CBZ), 
caffeine (CAF), sulfamethoxazole (SMX), ibuprofen (IBU), gemfibrozil (GEM), and naproxen 
(NAP) in the river close to the WWTPs that decreased with distance downstream. A correlation 
analysis using the Spearman Rank method showed that ACE-K, CBZ, GEM, NAP, and Cl- 
were strongly correlated with each other over a 31 km stretch of the river in the study area. The 
strong correlations of these target compounds indicate that the artificial sweetener ACE-K and 
the pharmaceuticals CBZ, GEM, and NAP can potentially be used as co-tracers to track 
wastewater. 
 

 

Introduction  

Sewage effluents are considered the primary source of 
emerging contaminants in the environment.1 Chemical tracers 
for wastewater contamination should be conservative and 
present in most wastewaters, and ideally be derived only from 
wastewater. In addition, the concentrations of tracers should be 
well above analytical detection limits and not vary greatly over 
time.2, 3 Chloride and nutrients have been used as conventional 
tracers of wastewater contamination; however, other 
anthropogenic sources, such as road salts and fertilizer, can 
contribute to loadings in surface and ground waters thus 
making these constituents potentially less reliable as tracers.  
 Artificial sweeteners such as acesulfame-K (ACE-K) and 
sucralose are particularly widespread and persistent in surface 
water and groundwater, and therefore have been suggested as 
ideal tracers of domestic wastewater in the environment.4-6 In 
addition, some pharmaceuticals, such as carbamazepine (CBZ) 
and caffeine (CAF), have been proposed as indicators of 
wastewater contamination in the environment.7-9 However, 
CBZ and naproxen (NAP) can adsorb to sediment10, 11 and CAF 
tends to biodegrade12. These natural attenuation processes make 
these pharmaceuticals less ideal as wastewater tracers. 
Therefore, the use of multiple tracers would greatly increase the 
confidence of identifying wastewater in aquatic environments.3, 

13    
 In this study, samples of river water were collected and 
analyzed for several potential tracers to track wastewater from 
two WWTPs in the Grand River watershed. The Grand River is 
the largest watershed in southwestern Ontario, Canada, flowing 
300 km through a number of municipalities before discharging 

to Lake Erie. The persistence of several target compounds—
ACE-K, CBZ, CAF, NAP, sulfamethoxazole (SMX), 3,4-
methylenedioxyamphetamine (MDA), 3,4-
methylenedioxymethamphetamine (MDMA), ibuprofen (IBU), 
and gemfibrozil (GEM)—was compared to conventional 
wastewater parameters to determine the potential use of these 
compounds as tracers. 
 
Materials and Methods 

Water sampling and field analyses 

Samples of river water were collected at 10 locations over a 
distance of 32.1 km along the Grand River near the cities of 
Waterloo and Kitchener (southwestern Ontario, Canada) in 
August 2012 and July 2013. Winter samples were not available 
due to the weather limitations. The 10 sampling locations are 
labeled GR 1 to GR 10 (Figure 1). GR 8 and GR 1 are upstream 
of GR 2 (the location of the first WWTP; WWTP-1), then GR 
3, 9, 10, 4, 5, 6, 7 are located sequentially downstream. GR 5 is 
located at the intake of a Water Treatment Plant-1 (WTP-1) 
where Grand River water is treated to provide a drinking water 
supply, and GR 6 is located 0.1 km downstream of the effluent 
of WWTP-2. The average discharge of the Grand River 
measured at a gauge station near GR 6 (Grand River near 
DOON, station number 02GA048)14 was 9.8 m3 s-1 for the 
sampling dates in 2012 (August 9-10) and 56.7 m3 s-1 for the 
sampling dates in 2013 (July 8-9).  
 All river water samples were collected in a consistent 
manner 5 m away from the river bank on the side of the river 
into which WWTP-1 and WWTP-2 effluents are discharged. 
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Ministry of Research and Innovation. Peng Liu, Sara Fellin, 
Emily Saurette, Ellie Owens, and Amy Kenwell provided 
assistance with the Grand River sampling. 
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