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Correlative relationship of multiple types of conventional sensors can be used to 

detect contamination event.  
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Early warning systems are often used to detect deliberate and accidental 

contamination events in a water system. Conventional methods normally detect a 

contamination event by comparing the predicted and observed water quality 

values from one sensor, which suffer from high false positive and false negative 

rates. This paper proposes a new method for event detection by exploring the 

correlative relationships between multiple conventional water quality sensors, 

which could detect a contamination event 9 minutes after the introduction of 

lead nitrate solution (0.01mg/l). By implementing the proposed method, the 

accuracy and efficiency of an early warning system can be improved. 
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Abstract 8	  

Early warning systems are often used to detect deliberate and accidental 9	  

contamination events in a water system. Conventional methods normally detect a 10	  

contamination event by comparing the predicted and observed water quality values 11	  

from one sensor. This paper proposes a new method for event detection by exploring 12	  

the correlative relationships between multiple types of conventional water quality 13	  

sensors. The performance of the proposed method was evaluated using data from 14	  

contaminant injection experiments in a laboratory. Results from these experiments 15	  

demonstrated the correlative responses of multiple types of sensors. It was observed 16	  

that the proposed method could detect a contamination event 9 minutes after the 17	  

introduction of lead nitrate solution with a concentration of 0.01mg/l. The proposed 18	  

method employs three parameters. Their impact on the detection performance was 19	  

also analyzed. The initial analysis showed that the correlative response is 20	  

contaminant-specific, which implies that it can be utilized not only for contamination 21	  
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	   2	  

detection, but also for contaminant identification.    22	  

 23	  

Keywords 24	  

Contamination event detection, conventional sensor, correlative response, early 25	  

warning system, water quality 26	  

 27	  

1. Introduction 28	  

Water systems are vulnerable to contamination accidents and bioterrorism attacks 29	  

because they are relatively unprotected, accessible, and often isolated1-3. In 2005, for 30	  

example, the Songhua River was contaminated by nitrobenzene from a chemical plant 31	  

explosion, which resulted in a 4-day suspension of water supply service to Harbin, 32	  

China4. Besides this, about 1906 contamination accidents occurred per year in China 33	  

between 1992-20065. An emerging area of water security research involves 34	  

developing methods to minimize the public health and economic impact of a 35	  

large-scale accident or attack. An intense effort is currently underway to improve 36	  

analytical monitoring and detection of biological, chemical, and radiological 37	  

contaminants in drinking water systems as part of the overall aim of securing drinking 38	  

water supplies6. One approach for avoiding or mitigating the impact of contamination 39	  

is to establish an Early Warning System (EWS). EWS should provide a fast and 40	  

accurate means to distinguish between normal variations and contamination events7.  41	  

Ideally, it should be inexpensive, easy to maintain and integrate into network 42	  
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	   3	  

operations and reliable, with few false positives and negatives8.  43	  

 44	  

A key part of an EWS is the detection module, which utilizes online sensors to 45	  

evaluate water quality and detect the presence of contamination. Generally, there are 46	  

two types of online water quality sensors. The first type refers to non-compound 47	  

specific or conventional water quality sensors, which are normally used for routine 48	  

water quality parameters, including pH, chlorine, total organic carbon (TOC), 49	  

oxidation reduction potential (ORP), conductivity and temperature. Many 50	  

commercially-available technologies for these parameters provide reliable means of 51	  

detecting anomalies within water systems. The second type is compound specific 52	  

water quality sensors or advanced sensors, which are capable of confirmative 53	  

detection at low concentrations for a specific component and are mainly based on 54	  

emerging detection technologies. Examples are Algae Toximeter for detection of the 55	  

presence of toxic substances9, Daphnia Toximeter for pesticides10, Fish Activity 56	  

Monitoring System for toxins11, biological sensors relying on the detection of specific 57	  

biomolecules (including adenosine triphosphate (ATP), enzymes, immunoassay and 58	  

polymerase chain reaction (PCR) techniques), evaporative light scattering, refractive 59	  

index measurement, fluorescence, and Raman spectroscopy12-14.  60	  

 61	  

Although compound specific sensors are capable of confirmative detection for 62	  

contaminants at low concentration, their application in EWS for quick contamination 63	  
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	   4	  

screening and detection is not popular since the type of potential contaminant is 64	  

unknown at the time of sensor selection. It is difficult to determine which contaminant 65	  

must be tested at such an early stage. In the past, conventional water quality sensors 66	  

were generally used by operators in process control and regulatory compliance. In 67	  

recent years, they have played a growing role in EWS. These sensors are 68	  

advantageous in operational economics15. This type of ‘dual-use’ is practically 69	  

attractive. For example, in the Water Security Initiative program in the United States, 70	  

pH, turbidity, temperature, conductivity, TOC, and chlorine were chosen on the basis 71	  

of their sustainability for long-term operation, and to provide ‘dual-use’ benefits to 72	  

drinking water utilities, such as improved water quality management16-17. 73	  

 74	  

For an EWS with conventional water quality sensors, performance is highly 75	  

dependent on the contamination detection method. Numerous publications have been 76	  

devoted to discussing different ways of event detection using data from conventional 77	  

water quality sensors. These mainly include statistical, artificial intelligence and data 78	  

mining methods. For example, Hart et al.18, reported two state estimation based 79	  

algorithms for event detection, a linear prediction coefficient filter (LPCF) and a 80	  

multivariate nearest-neighbor (MVNN) algorithm. These algorithms process the water 81	  

quality data at each time step to identify periods of anomalous water quality and 82	  

provide the probability of a water quality event existing at that time step. The LPCF 83	  

method predicts the water quality at a future time step and evaluates the residual 84	  
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	   5	  

between predicted and observed water quality values. The MVNN approach provides 85	  

a measure of the similarity between the sampled water quality and the previously 86	  

measured samples contained in the history window. Klise and McKenna19 developed 87	  

an algorithm to classify the current measurement as normal or anomalous by 88	  

calculating multivariate Euclidean distance. Bucak and Kalik20 and  Bouamar and 89	  

Ladjal21 utilized artificial neural networks (ANN) and support vector machines (SVM) 90	  

to classify water quality data into normal and anomalous classes. A common feature 91	  

of these methods is to compare observed and predicted responses from time series 92	  

data for one sensor. Meanwhile, several papers were published on optimal location of 93	  

sensors for event detection and response actions22-25. In most of these studies, an ideal 94	  

sensor is assumed. Actually, routine operation or equipment noise could result in 95	  

fluctuation, which might lead to a high false alarm rate.    96	  

 97	  

Several researchers have reported the phenomenon of correlative responses. For 98	  

example, Hall et al.26 reported a sensor response experiment for 9 types of 99	  

contaminants and realized that more than one sensor responded to each tested 100	  

contaminant. After noticing this phenomenon, researchers have attempted to develop 101	  

contaminant detection methods using responses from multiple types of sensors. Yang 102	  

et al.15 explored a real-time event adaptive detection, identification and warning 103	  

(READiw) methodology in a drinking water pipe. The suggested adaptive 104	  

transformation of sensory measurements reduced background noise and enhanced 105	  
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	   6	  

contaminant signals. In the method employed by Yang et al.15, the relative value of 106	  

concentrations of free and total chlorine, pH and ORP are used for contaminant 107	  

classification. This allowed for contaminant detection and further classification based 108	  

on chlorine kinetics. Kroll27 reported the Hach HST approach using multiple sensors 109	  

for event detection and contaminant identification. In the Hach HST approach, signals 110	  

from 5 separate orthogonal measurements of water quality (pH, conductivity, 111	  

turbidity, chlorine residual, TOC) are processed from a 5-paramater measure into a 112	  

single scalar trigger signal. The deviation signal is then compared to a preset 113	  

threshold level. If the signal exceeds the threshold, the trigger is activated28. Murray 114	  

et al.29 used Bayesian belief networks to detect a contamination event based on data 115	  

from multiple sensors. Aliker and A. Ostfeld30 reported the application of SVM to 116	  

detect contamination based on data from multiple sensors. Perelman et al.31 and Arad 117	  

et al.32 reported a general framework that integrates a data-driven estimation model 118	  

with sequential probability updating to detect quality faults in water distribution 119	  

systems using multivariate water quality time series. In particular, in Arad et al.’s 120	  

work, univariate event probabilities are fused to give a unified multivariate event 121	  

probability. The multivariate probability reflects the likelihood of a contamination 122	  

event based on all data analyzed from all parameters32. A common feature of these 123	  

methods is that efforts based on multivariate water quality measurements consider 124	  

correlations between parameters, even if a correlation coefficient is sometimes not 125	  

calculated explicitly. 126	  
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	   7	  

 127	  

In this paper, we will describe a new method for real-time contamination detection 128	  

using multiple types of conventional water quality sensors for source water. The 129	  

proposed method aims to achieve contamination detection by exploring the 130	  

correlative relationship between responses from multiple sensors for the same type of 131	  

contaminant. The proposed method is tested using data from contaminant dosing 132	  

experiments in a laboratory.  133	  

 134	  

 135	  

2. Materials and methods  136	  

 137	  

2.1 Pilot-scale contaminant injection and monitoring system  138	  

The pilot-scale system used in this study is a recirculating system simulator in the 139	  

School of Environment Laboratory at Tsinghua University, Beijing, China. A process 140	  

flow schematic of the pilot-scale system used for baseline establishment and 141	  

single-pass contaminant tests is shown in Figure 1 and the photograph of the 142	  

experiment setup (P1, supporting information). The water tank is approximately 85 143	  

cm high with a diameter of 70 cm, and has a total capacity of 300 L. The tank is 144	  

linked with on line water quality sensors via a peristaltic pump at 0.5 L per minute. 145	  
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	   8	  

 146	  

Figure 1 A process flow schematic of the pilot-scale system 147	  

The system was operated in recirculation mode for baseline establishment. In this 148	  

mode, 300L source water flows through the multi-sensors and back to the tank. The 149	  

characteristic of the source water is shown in Table 1. The entire volume of water in 150	  

the loop is replaced every 72 hours if no contaminant test is conducted. Generally, the 151	  

process of establishing baseline takes 2-3 hours before any contaminant experiments 152	  

can be carried out. When operating in single-pass contaminant mode, the target 153	  

contaminant is injected into the pipe connecting the tank and sensors via another 154	  

peristaltic pump33. It is injected at a rate of 2-20 mL per minute depending 155	  

concentration requirement. The water combined with contaminant flows through the 156	  

sensors directly into a specific waste liquid bucket, avoiding pollution of the water in 157	  

S ource	  water	  tank

Pump	  1

Pump	  2

C ontaminant	  tank

S crewed	  valve

A

B

pH/ORP Temperature UV-‐254

Nitrate-
nitrogen Conductivity Turbidity

Online	  monitoring	  sensors

Phosphate

Data	  transmiss ion
C omputer

Drainage	  
system
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	   9	  

the tank.  158	  

Table 1 Characterization of source water in current study 159	  
Parameter Concentration  Parameter Concentration  
Temperature 10 ℃ pH 7.31 
DO 12.77 mg/L Turbidity 1.39 NTU 
COD  4 mg/L BOD5 <2 mg/L 
Conductivity 690 /s cmµ  NH3-N 0.03 mg/L 
ORP 350 mV NOx-N 3.36 mg/L 
Sulfate  170 mg/L Total phosphorus 0.06 mg/L 
Chloride 28 mg/L Sulfide  <0.02 mg/L 
 160	  

 161	  

2.2 Sensors investigated 162	  

8 sensors developed by Hach Homeland Security Technologies were utilized in this 163	  

study. They can measure the following 8 parameters simultaneously and continuously: 164	  

temperature, pH, turbidity, conductivity, oxidation reduction potential (ORP), 165	  

UV-254, nitrate-nitrogen and phosphate. Table 2 shows a list of the parameters and 166	  

the detailed information of their associated sensors.  167	  

Table 2 Detailed information of the parameters and sensors 168	  
Parameter  Sensor name Measuring range Sensitivity Measuring 

interval 

Temperature DPD1R1-WDMP -10-50℃ ±0.01℃ 1 min 

pH DPD1R1-WDMP -2.00-14.00 ±0.01 1 min 

Turbidity LXV423.99.10100 0.001-4000 NTU ±0.001 NTU 1 min 

Conductivity D3725E2T-WDMP 0-2000000 /s cmµ  ±1 /s cmµ  1 min 

ORP DRD1R5-WDMP -1500-1500 mV ±0.5 mV 1 min 

UV-254 LXG418.99.20000 0.01-60 1/m ±0.01 1/m 1 min 
Nitrate-nitrogen LXG.717.99.50000 0.1-100.0 mg/L ±0.1 mg/L 1 min 

Phosphate LXV422.99.20102 0.05-15 mg/L ±0.05 mg/L 5 min 

 169	  

2.3 Contaminants investigated 170	  

Specific quantities of various contaminants were injected into the system simulator. 171	  
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	   10	  

The contaminants were determined according to statistical reports on water pollution 172	  

incidents in urban water supply systems in China in the past 20 years and included 173	  

three types of the most commonly seen pollutants: herbicides (glyphosate), pesticides 174	  

(atrazine) and heavy metals (lead nitrate, cadmium nitrate, nickel nitrate and trivalent 175	  

chromium). They were also selected based on China’s national standards regarding 176	  

source water quality GB3838-2002. The concentration ranges were decided by the 177	  

concentration limit given in the standards (Table 3). 178	  

Table 3 Concentration limits in GB3838-2002 179	  
Contaminant Concentration limit (mg/L) 
Glyphosate 0.7 

Lead 0.01 
Atrazine 0.003 
Nickel  0.02 

Chromium  0.01 
Cadmium 0.001 

 180	  

2.4 Experimental procedure 181	  

Sensors were calibrated in accordance with the manufacturer’s recommendations and 182	  

were verified with a calibration check standard. Before the introduction of 183	  

contaminants, the experimental system was kept running to establish a baseline. 184	  

Sensor data were collected continuously and archived electronically to establish stable 185	  

baseline conditions and to record sensor responses to injected contaminants. Data 186	  

from the ORP, nitrate, temperature, pH, conductivity, turbidity and UV sensors were 187	  

monitored and recorded every 1 minute during the test period, while the phosphate 188	  

sensor was recorded every 5 minutes. After the baseline was established, a specific 189	  
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	   11	  

concentration of contaminant was injected. Each contaminant injection lasted for over 190	  

30 minutes to reach a stabilized reading. The sensors were then supplied with 191	  

uncontaminated raw water and the responses returned to the baseline. Another 192	  

different concentration of the same contaminant was injected after sensor responses 193	  

had returned to the baseline following the previous test.  194	  

 195	  

2.5 Detection Method  196	  

In this research, it is assumed that multiple water quality sensors can respond to a 197	  

contaminant simultaneously. The proposed method detects contamination by 198	  

exploring the correlative relationship between responses from multiple water quality 199	  

sensors. This relationship is evaluated using the Pearson correlation coefficient. The 200	  

window size is the number of past observations used to calculate the Pearson 201	  

correlation coefficient. For each sensor, a new observation enters the sliding window 202	  

at every time step t and the oldest observation exits (i.e., first in first out). 203	  

 204	  

The value of 𝑟!" is between -1 and 1. In this study, a correlation indicator 𝐶!" is 205	  

calculated using  206	  

𝐶!" = 0              𝑖𝑓   𝑟!" < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(   𝑜𝑟  𝑥 = 𝑦
𝐶!" = 1            𝑖𝑓  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( ≤ 𝑟!" < 1                          

          (1) 207	  

A contamination alarm will be trigged if 208	  

   209	  

𝐶!"∀
! ≥    𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$          ∀

!       (2) 210	  
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	   12	  

in which 𝑥 ≠ 𝑦, 𝑥 ∈ 𝑝𝐻,𝑂𝑅𝑃,𝑈𝑉…… ,𝑦 ∈ (𝑝𝐻,𝑂𝑅𝑃,𝑈𝑉…… ) . The value of 211	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(   and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ can be determined based on experimental 212	  

and practical analysis.  213	  

 214	  

The performance of the detection method is measured through detection time (DT), 215	  

true positive rate (TPR) and false positive rate (FPR). TPR and FPR can be calculated 216	  

by 217	  

𝑇𝑃𝑅 =    !"
!"!!"

          (3)    218	  

𝐹𝑃𝑅 =    !"
!"!!"

          (4) 219	  

where TP (true positive) is the detection of an actual event (alarm on); FP (false 220	  

positive) refers  to a routine operation being incorrectly classified as a contamination 221	  

event (alarm on); TN (true negative) refers to a routine operation correctly being 222	  

classified as such (alarm off); FN (false negative) is the situation that an actual event 223	  

is not detected (alarm off). A greater TPR means the method is more capable to detect 224	  

a real event, while a small FPR implies the method is less likely to classify a routine 225	  

operation as an event.  226	  

 227	  

DT is defined as the time difference between a contamination event taking place and 228	  

when it is detected, and is evaluated by 229	  

𝐷𝑇 = 𝑇! − 𝑇!            (5) 230	  

where 𝑇! is the time when the contamination event occurs and 𝑇! is the time when 231	  
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	   13	  

the contamination event is detected. A smaller DT means the detection method is 232	  

more effective and can detect contamination within a shorter time frame. 233	  

In this study, the calculation is based on a 1 minute step. A contaminant injection with 234	  

period of t is assumed to be t contamination events. Then TPR is used to evaluate the 235	  

performance. For example, for a contamination injection with period of 30 minutes, if 236	  

a contamination event is first detected at the 10th minute and 4 contamination events 237	  

are detected within the remaining 20 minutes, DT and TPR will be 10 minutes and 238	  

(!!!)
!"

=0.17.  239	  

 240	  

2.6 Evaluation of reproducibility 241	  

In this research, the reproducibility of the proposed detection method is evaluated 242	  

using a concordance correlation coefficient method34. Taking the Pearson correlation 243	  

coefficients as an example, the concordance correlation coefficient method is briefly 244	  

introduced here. Let us assume that pairs of Pearson correlation coefficients of one 245	  

type of sensor to the others (Yil, Yi2), i = 1, 2 …, n, are calculated from two 246	  

independent contaminant injection experiments with means of 𝜇!   and 𝜇!  and 247	  

covariance matrix 248	  

𝜎!! 𝜎!"
𝜎!" 𝜎!!

        (6) 249	  

The concordance correlation coefficient is calculated by  250	  

𝜌! =
!!!!!!

!!!!!!! ![!!!(!!!!)!!]!
     (7) 251	  

in which 𝛽! = (𝜎! 𝜎!)𝑟 and 𝛽! = 𝜇! − 𝛽!𝜇!  represent the regression slope and 252	  

intercept, respectively. 𝑟  is the Pearson correlation coefficient. If 𝜌! = 1 , two 253	  
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	   14	  

groups of Pearson correlation coefficients of one sensor from two experiments are in 254	  

perfect agreement or in perfect reversed (if 𝜌! =-1) agreement. For more information 255	  

about the concordance correlation coefficient method, the readers can refer to Lin’s 256	  

work34.  257	  

 258	  

3. Experiments and Results 259	  

 260	  

3.1 Correlative responses 261	  

As an example, the results from the experiment involving lead nitrate are shown in 262	  

Figure 2. The experimental results for glyphosate, atrazine, cadmium nitrate, nickel 263	  

nitrate and trivalent chromium can be found in the supporting information (See Figure 264	  

F1, F2, F3, F4, F5, supporting information). In the experiment, lead nitrate solutions 265	  

with concentrations of 0.01mg/l, 0.02mg/l, 0.04mg/l and 0.08mg/l were added in 266	  

sequence. The concentrations are at the sensors, not in the contaminant tank. This is 267	  

illustrated using solid green bars at the top of Figure 2. As shown in Figure 2, ORP 268	  

and nitrate increase due to the presence of lead nitrate, while pH decreases. Sensor 269	  

responses show correlative relationships, especially for pH, nitrate, ORP and 270	  

temperature. This suggests the correlative response is caused by the introduction of 271	  

contaminant and implies that this type of phenomenon can be utilized for detection of 272	  

the presence of contamination. The magnitudes of the sensors’ responses were related 273	  

to contaminant concentrations. In order to justify the applicability of the proposed 274	  
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method, the lead nitrate injection experiment with the same configuration was 275	  

repeated with drinking water. The sensors’ responses are shown in Figure F6 276	  

(supporting information). As shown in Figure F6, the responses of sensors are similar 277	  

to the case of source water. This suggests the proposed method can also be used for 278	  

contamination detection for drinking water. By comparing with results from other 279	  

types of contaminants (See Figure F1, F2, F3, F4, F5, F6, supporting information), it 280	  

is clear that the response curves are contaminant-specific, which implies that the 281	  

correlative response could be utilized not only for contamination detection, but also 282	  

for contaminant identification.   283	  

 284	  

 285	  

Figure 2 Sensor responses for lead nitrate (concentrations: 0.01, 0.02, 0.04, 0.08mg/l) 286	  

 287	  

Table 4 summarizes the responding sensors for different contaminants. As shown in 288	  

Table 4, the nitrate, conductivity and UV sensors have correlative responses to the 289	  
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introduction of atrazine. For ORP, pH, conductivity and nitrate also respond 290	  

simultaneously to the presence of cadmium nitrate. ORP shows response to atrazine, 291	  

glyphosate and lead nitrate. Other studies have also revealed a similar phenomenon. 292	  

For example, Hall et al.26 conducted a sensor response experiment for 9 types of 293	  

contaminants and realized that there was more than one sensor responding to each 294	  

tested contaminant. Yang et al.15 also reported similar findings from an experiment 295	  

for 11 contaminants. Drinking water was used in the studies by Hall et al. and Yang et 296	  

al., while source water is utilized in the current study. The sensor arrays adopted and 297	  

manufacturers were also different in these three experiments. Therefore, comparisons 298	  

are difficult to make. However, as shown in Table 4, for all tested contaminants, it 299	  

was found that multiple types of sensors respond to the introduction of a contaminant 300	  

and a sensor can respond to different types of contaminants. This verified the 301	  

correctness of the assumption of the proposed method.  302	  

Table 4 The responding sensors to different contaminants  303	  

Contaminant 

Responding sensors 
Hall et al. (2007) Yang et al. (2009) Current study 

Sensor array: 
A, B, D, E, G, H, 

I 

Sensor array: 
A, B, C, D, F 

Sensor array: 
D, F, G, I, J, K, L, 

M,  
Water type: 

Drinking water 
Water type: 

Drinking water 
Water type: 

Source water 
Aldicarb A,B,D,E,I A,B,C,D  

Arsenic trioxide A,B,D,G,H,I   
Atrazine   D,G,I,J,K,L,M 

Cadmium nitrate   D,F,G,I,J,K,M 
Colchicine  A,B,C,D  
Dicamba  D,F  
E. coli  A,B,E,H,I A, B, C, D, F  
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Glyphosate A,C,D,E A, B, C, D, F D,F,G,I,J,M 
K Ferricyanide  B,C,D  

Lead nitrate   D,F,G,I,J,M 
Malathion A,D,E,I   

Mercuric Chloride  A,C,D,F  
Nickel Nitrate   D,F,G,I,J 

Nicotine A,B,D,E,G,H A,B,D,F  
Nutrient broth  A,B,C,D  

Potassium 
Ferricyanide 

A, C,D,E, G,H,   

Terrific broth A,B,D,E,I A,B,D,F  
Trivalent 
chromium 

  D,F,G,I,J 

Typtic soy broth  A,B,C,D  

Note: A - Free chlorine; B – Total chlorine; C – Chloride; D – ORP; E – TOC; F – pH; 304	  

G – Nitrate-nitrogen; H – Ammonia-nitrogen; I – Turbidity; J – Temperature; K – 305	  

Conductivity; L – UV; M - Phosphate 306	  

 307	  

3.2 Contamination detection  308	  

Taking lead nitrate as an example, the implementation of the proposed method is 309	  

demonstrated here. Figure 3 presents the responses of 8 types of sensors before and 310	  

after introduction of lead nitrate solution with concentration of 0.01mg/l (the 1st lead 311	  

nitrate experiment). As shown in Figure 3, from the 1st to the 60th minute, the system 312	  

was running on baseline and no contaminant was added. The lead nitrate solution was 313	  

introduced at the 61st minute and lasted for 37 minutes. The values of 314	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ and window size adopted were 0.8, 6 and 30 315	  

respectively. The Pearson correlation coefficients for each couple of sensors and the 316	  

correlation indicators for ‘no contamination’ and ‘contamination’ scenarios were 317	  
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calculated and are listed in Table 5 and Table 6 respectively. The ‘no contamination’ 318	  

and ‘contamination’ scenarios represent two extreme situations. In the ‘no 319	  

contamination’ scenario, the dataset containing observations from the 31st to 60th 320	  

minute (the baseline) were used, while in the ‘contamination’ scenario, data from the 321	  

69th to 98th minutes (lead nitrate injected) were adopted.  322	  

 323	  

 324	  

Figure 3 Sensor responses for lead nitrate (concentration: 0.01mg/l) 325	  

 326	  

As shown in Table 5, the relationships between sensors’ responses in the ‘no 327	  

contamination’ scenario are weak. Only turbidity and pH show a moderate negative 328	  

relationship with a coefficient of -0.61. All Pearson correlation coefficient values are 329	  

smaller than the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( , and the value of the correlation 330	  

indicator is 0. Therefore, no contamination alarm was trigged off for the ‘no 331	  

contamination’ scenario.  332	  
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 333	  

Table 5 Pearson correlation coefficients and correlation indicators (no contamination)  334	  

 Turb. pH Cond. Temp ORP Nitra. UV Phos. 
Turb. 1.00(0) -0.61(0) 0.34(0) 0.04(0) 0.09(0) -0.12(0) -0.19(0) 0.00(0) 
pH -0.61(0) 1.00(0) -0.45(0) -0.25(0) 0.14(0) 0.49(0) 0.07(0) 0.00(0) 

Cond. 0.34(0) -0.45(0) 1.00(0) 0.16(0) 0.08(0) -0.13(0) 0.05(0) 0.00(0) 
Temp. 0.04(0) -0.25(0) 0.16(0) 1.00(0) 0.28(0) -0.35(0) 0.20(0) 0.00(0) 
ORP 0.09(0) 0.14(0) 0.08(0) 0.28(0) 1.00(0) 0.09(0) 0.17(0) 0.00(0) 
Nitra. -0.12(0) 0.49(0) -0.13(0) -0.35(0) 0.09(0) 1.00(0) -0.35(0) 0.00(0) 
UV -0.19(0) 0.07(0) 0.05(0) 0.20(0) 0.17(0) -0.35(0) 1.00(0) 0.00(0) 

Phos. 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 1.00(0) 
Sum of correlation indicator: 0 

Note: numbers outside of brackets are Pearson correlation coefficients; numbers in 335	  

brackets are correlation indicators. 336	  

 337	  

In the ‘contamination’ scenario, as shown in Table 6, ORP and nitrate show strong 338	  

negative relationships with pH. The Pearson correlation coefficients are -0.88 (ORP), 339	  

and -0.99 (nitrate) respectively. ORP shows strong positive relationships with nitrate 340	  

(0.84), and negative relationships with phosphate (-0.84) and pH (-0.89). The value of 341	  

the correlation indicator was calculated to be as 18. Based on this evaluation, a 342	  

contamination event was confirmed at the 99th minute.  343	  

Table 6 Pearson correlation coefficients and correlation indicators (lead nitrate, the 1st 344	  

experiment) 345	  

 Turb. pH Cond. Temp ORP Nitra. UV Phos. 
Turb. 1.00(0)  0.59(0)  -0.14(0)  -0.68(0)  -0.75(0)  -0.50(0)  -0.38(0)  0.73(0)  

pH 0.59(0)  1.00(0)  -0.26(0)  -0.98(1)  -0.89(1)  -0.99(1)  -0.48(0)  0.82(1)  

Cond. -0.14(0)  -0.26(0)  1.00(0)  0.32(0)  0.28(0)  0.25(0)  -0.07(0)  -0.27(0)  

Temp. -0.68(0)  -0.98(1)  0.32(0)  1.00(0)  0.93(1)  0.95(1)  0.38(0)  -0.84(1)  

ORP -0.75(0)  -0.89(1)  0.28(0)  0.93(1)  1.00(0)  0.84(1)  0.43(0) -0.84(1)  
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Nitra. -0.50(0)  -0.99(1)  0.25(0)  0.95(1)  0.84(1)  1.00(0)  0.49(0)  -0.76(0)  

UV -0.38(0)  -0.48(0)  -0.07(0)  0.38(0)  0.43(0)  0.49(0)  1.00(0)  -0.44(0)  

Phos. 0.73(0)  0.82(1)  -0.27(0)  -0.84(1)  -0.84(1)  -0.76(0)  -0.44(0)  1.00(0)  

Sum of correlation indicator: 18 

Note: numbers outside of brackets are Pearson correlation coefficients; numbers in 346	  

brackets are correlation indicators. 347	  

 348	  

Figure 3 shows that graphs for turbidity, conductivity and UV have a number of peaks 349	  

and troughs. No significant differences before and after introduction of lead nitrate 350	  

(the left and right parts of each graph) can be observed. The peaks and troughs are 351	  

mainly due to equipment noises. These noises are independent and not related to other 352	  

sensors’ responses. This is verified by the weak Pearson correlation coefficients for 353	  

turbidity, conductivity and UV in Table 5 and Table 6. This also suggests that 354	  

turbidity, conductivity and UV do not respond to the presence of lead nitrate. If a 355	  

detection decision were drawn in the light of these peaks or troughs, false positive and 356	  

false negative errors would be obtained.  357	  

 358	  

A common question for the contamination detection method is how fast the 359	  

contamination event can be detected or what the detection time is. In a practical 360	  

situation, the proposed method will calculate the Pearson correlation coefficients and 361	  

correlation indicators, and make a detection decision at each time step (1 minute for 362	  

the sensors used in this research) once the new readings from online sensors are 363	  

received. As shown by the rectangle with a dashed line in Figure 3, the calculation 364	  
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starts from the 30th minute with the time step of 1 minute. The sums of correlation 365	  

indicators and detection time are listed in Table 7. It is shown that the proposed 366	  

method can detect a contamination event 9 minutes after a 0.01 mg/l lead nitrate 367	  

solution is added to the water, with the window size of 30, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( value 368	  

of 0.8 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ value of 6. Meanwhile, using Equation 3 and 4, the TPR 369	  

and FPR were calculated as being 78.95% and 0, respectively.   370	  

Table 7 The correlation indicator and detection time  371	  
Time 
(m) 

Sum of 
Cxy 

DT(m) Time 
(m) 

Sum of 
Cxy 

DT(m) Time 
(m) 

Sum of 
Cxy 

DT(m) 

30 2 N/T 53 0 N/T 76 6 16 
31 2 N/T 54 0 N/T 77 6 17 
32 2 N/T 55 0 N/T 78 6 18 
33 2 N/T 56 0 N/T 79 6 19 
34 2 N/T 57 0 N/T 80 6 20 
35 2 N/T 58 0 N/T 81 10 21 
36 2 N/T 59 0 N/T 82 10 22 
37 2 N/T 60 0 N/T 83 10 23 
38 2 N/T 61 0 N/T 84 8 24 
39 2 N/T 62 0 N/T 85 8 25 
40 2 N/T 63 0 N/T 86 10 26 
41 2 N/T 64 2 N/T 87 10 27 
42 2 N/T 65 2 N/T 88 12 28 
43 2 N/T 66 2 N/T 89 12 29 
44 2 N/T 67 4 N/T 90 12 30 
45 2 N/T 68 2 N/T 91 12 31 
46 2 N/T 69 6 9 92 12 32 
47 2 N/T 70 6 10 93 12 33 
48 0 N/T 71 6 11 94 12 34 
49 0 N/T 72 6 12 95 12 35 
50 0 N/T 73 6 13 96 14 36 
51 0 N/T 74 6 14 97 16 37 
52 0 N/T 75 6 15 98 18 38 

Note: N/T means ‘not detected’. 372	  

Meanwhile, for the contaminants examined in this study, Table 8 summarizes 373	  

detection performances. As shown in Table 8, by taking the default parameter values, 374	  
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the proposed method has rather good performance for all contaminants under 375	  

discussion.  376	  

Table 8 Summary of detection performance for different contaminants 377	  
Contaminant TPR FPR Detection time 

(minute) 
Glyphosate 0.80 0.10 2 
Cadmium  1.00 0.00 1 
Atrazine  1.00 0.00 1 
Nickel  0.76 0.00 3 

Chromium  0.79 0.00 8 
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟= 0.6, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑙𝑎𝑟𝑚= 8 and window size = 30 

 378	  

4. Discussion 379	  

4.1 Discrimination of equipment noise and contamination  380	  

In previous studies, a detection alarm was normally set off if the deviation between 381	  

the predicted and observed sensor values was greater than a preset threshold value. 382	  

However, this type of judgment is greatly dependent on the reliability and stability of 383	  

a sensor. For example, as shown in Figure 3, some peaks and troughs (e.g. point a in 384	  

the UV graph) shifted significantly from the previous reading due to equipment noise. 385	  

This type of shift is difficult to predict and a big deviation between prediction and 386	  

observation can be expected. If the detection decision is made based on the deviation, 387	  

a false positive error would occur. Taking the autoregressive moving average method 388	  

reported by Hou35 as an example, and setting the 1% deviation of prediction and 389	  

observation as the detection threshold, point a in Figure 3 (also in Figure F7 in the 390	  

supporting information) was grouped into a contamination event, which is obviously a 391	  

false positive. Meanwhile, Figure F7 shows all the deviations between the predictions 392	  

Page 24 of 38Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



	   23	  

and observations. The red line is the detection threshold. The TPR and FPR were 393	  

calculated as 0.28 and 0.32. In this study, the proposed method overcomes this by 394	  

exploring the correlative response between sensors. As shown in Figure 3 and Table 5, 395	  

although conductivity, UV and ORP show obvious fluctuations at the same time 396	  

period, their correlative relationships are weak, which means the fluctuations are more 397	  

related to the equipment noise than external reasons, for example, presence of 398	  

contamination. By exploring the internal relationship proposed in this method, the 399	  

influence of equipment reliability and stability on detection can be reduced.  400	  

 401	  

In the case of ORP, as shown in Table 5 and Table 6, the Pearson correlation 402	  

coefficients of ORP with other sensors are 0.09 (turbidity), 0.14 (pH), 0.08 403	  

(conductivity), 0.09 (nitrate), 0.17(UV) and 0.00 (phosphate) for the left part (no 404	  

contamination) and -0.75 (turbidity), -0.89 (pH), 0.28 (conductivity), 0.84 (nitrate), 405	  

0.43 (UV) and -0.84 (phosphate) for the right part (contaminant added) respectively.  406	  

This means the fluctuations in the left part are mainly due to random equipment 407	  

noises, while the fluctuations in the right part are mainly due to the introduction of 408	  

contaminant. The significant values of Pearson correlation coefficients in Table 6 also 409	  

further indicate the correlative responses to the introduction of lead nitrate. A key to 410	  

an efficient contamination detection method is being able to discriminate between 411	  

these two types of fluctuations. As shown in the left part of the ORP graph, the peaks 412	  

or troughs shift significantly from other readings. If a detection decision is made 413	  
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based on the deviation of response from the sensor, a false positive can be expected. 414	  

In the proposed method, the difference between these two types of fluctuations is 415	  

evaluated and differentiated using the Pearson correlation coefficients.  416	  

 417	  

4.2 Impacts of parameters  418	  

In the proposed method, there are three parameters: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( , 419	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ and window size. The values of these parameters might influence the 420	  

performance of the detection method. In order to understand this, their impact on the 421	  

performance of the detection method was investigated. To facilitate the analysis, the 422	  

other two parameters were kept constant when analyzing one parameter. The default 423	  

values for 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ and window size were 0.8, 6 and 30 424	  

respectively. The performance of detection was evaluated using TPR and FPR. 425	  

 426	  

The data used for this analysis were originally from the first lead nitrate experiment 427	  

(Figure 2) with some arbitrary combinations. Four datasets were regrouped. Datasets 428	  

1, 2, 3, and 4 are the data for baseline and for lead nitrate with concentration of 0.01 429	  

mg/l, 0.02 mg/l, 0.04mg/l and 0.08 mg/l respectively. For each parameter 430	  

configuration, TPR and FPR were calculated with the time step of 1 minute. The total 431	  

number of calculations for each dataset for 1 parameter equals the difference between 432	  

the length of dataset and window size. The averaged TPR and FPR over the entire time 433	  

period were deemed to be the true positive rate and false positive rate associated with 434	  
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this parameter configuration. The analysis results are shown in Figure 4, Figure 5 and 435	  

Figure 6, in which TRP 1, TPR 2, TPR 3 and TPR 4 refer to the TPRs for the 436	  

concentration of 0.01 mg/l, 0.02 mg/l, 0.04 mg/l and 0.08 mg/l. 437	  

 438	  

4.2.1 Parameter 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒊𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓 439	  

In the analysis for 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(, its value changes from 0.6 to 0.9 with the step 440	  

of 0.1 while window size and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ are kept constant. As shown in Figure 441	  

4, FPR and TPRs decrease with an increase in the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( value. This 442	  

indicates that a small 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( value could incorrectly classify equipment 443	  

noise as a contamination event. Meanwhile, it also suggests that a high 444	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( might result in the overlook of a real contamination event.    445	  

	    446	  

Figure 4 Impact of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( on detection performance 447	  

 448	  

4.2.2 Parameter 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝒂𝒍𝒂𝒓𝒎 449	  

0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

0.6	   0.65	   0.7	   0.75	   0.8	   0.85	   0.9	  

FP
R 

TP
R 

Threshold	  indicator	  value 

TPR1	   TPR2	  

TPR3	   TPR4	  

FPR	  

Page 27 of 38 Environmental Science: Processes & Impacts

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



	   26	  

In the analysis for 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$, its value changes from 4 to 12 in step of 1. As 450	  

shown in Figure 5, when the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$increases, both FPR and TPRs decrease. 451	  

From 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$  = 5, FPR approaches 0, which means a large 452	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$  value can significantly reduce false positives. However, a large 453	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ can also lead to false negatives and result in a low true positive rate, 454	  

especially for the case of low concentrations. It also shows that the TPR1 for dataset 1 455	  

(lead nitrate concentration at 0.01 mg/l) drops significantly with an increase in the 456	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ value. This might be because the correlative responses are rather 457	  

weak at low concentration. This is consistent with the graphs in Figure 2.  458	  

 459	  

	    460	  

Figure 5 Impact of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ on detection performance 461	  

 462	  

4.2.3 Parameter window size  463	  

Window size denotes the number of data involved in the calculation of the Pearson 464	  
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correlation coefficient. In this analysis, the window size from 8 to 34 in step of 2. The 465	  

maximum value of the window size is based mainly on the contaminant injection 466	  

period. As shown in Figure 6, when window size is smaller than 18, TPRs decrease 467	  

with an increase in the value of window size, while they keep rather flat after 18. This 468	  

implies that the performance of the detection method is more sensitive to the small 469	  

values of window size. Figure 6 also suggests that FPR reaches peak values with 470	  

medium values of window size.   471	  

 472	  

	    473	  

Figure 6 Impact of window size on detection performance 474	  

 475	  

From Figures 4, 5 and 6, it is concluded that the values of parameters have impacts on 476	  

the performance of the detection method, which suggests that they should be 477	  

determined carefully to achieve a better detection performance in practical application. 478	  

For example, by taking the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'(= 0.75, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$= 6 479	  
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and window size = 30, as shown in Figure 4, a 0.01mg/l lead nitrate contamination 480	  

event can be detected with a true positive rate of 80% and false positive rate of 2%. 481	  

The detection time is 9 minutes (shown in Table T1 in supporting information). A 482	  

comprehensive sensitivity analysis would benefit the implementation of the proposed 483	  

method and the optimal values of parameters should be determined for a specific 484	  

contaminant through experiment and analysis.  485	  

  486	  

4.3 Reproducibility 487	  

Data from two independent lead nitrate injection experiments were used to evaluate 488	  

the reproducibility of the proposed detection method. Figure F8 shows the sensors’ 489	  

responses from the second lead nitrate injection with the sequence of 0.08mg/l, 490	  

0.04mg/l, 0.02mg/l and 0.01mg/l (Figure 2 is for the first injection experiment). The 491	  

experiment conditions in the two experiments are the same. Similar to Table 6, Table 492	  

9 shows the Pearson correlation coefficients for the 2nd experiment, which are 493	  

directly calculated from the experiment data. Each column represents the Pearson 494	  

correlation coefficients of other sensors and this sensor. For example, the 2nd column 495	  

lists the Pearson correlation coefficients of turbidity and other sensors. Using equation 496	  

7, the concordance correlation coefficients of data in Table 6 and Table 9 were 497	  

obtained and are shown at the bottom of Table 9. As shown in Table 9, the 498	  

concordance correlation coefficients for turbidity, pH, temperature, ORP, nitrate and 499	  

phosphate are greater than 0.81, which suggests high agreement between the 500	  
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calculation results of the data from the 1st and the 2nd lead nitrate experiments. It is 501	  

also noticed the sensors with high concordance correlation coefficients consist with 502	  

the one having high correlative coefficients in Table 6 and Table 9. This implies that 503	  

the responses of these sensors are mostly due to injection of lead nitrate, rather than 504	  

equipment noises. For conductivity and UV, the concordance correlation coefficients 505	  

are low, which is consistent with their low values of Pearson correlation coefficients 506	  

in Table 6 and Table 9. This suggests the responses of conductivity and VU are 507	  

mostly from equipment noises. Therefore, their reproducibility is low. This will not 508	  

affect the reproducibility of the proposed method since the low Pearson correlation 509	  

coefficient values are not taken into account for the correlation indicator. By using the 510	  

same parameter values (the default ones), the TPR and FPR were calculated as being 511	  

78.95% and 0 respectively, which are the same as the ones from the first experiment. 512	  

In a summary, the proposed method has a good reproducibility.  513	  

 514	  

Table 9 The Pearson correlation coefficients and the concordance correlation 515	  

coefficients 𝜌! (lead nitrate, the 2nd experiment) 516	  

 Turb. pH Cond. Temp ORP Nitra. UV Phos. 
Turb. 1.00   0.53   -0.09   -0.62   -0.73   -0.45   -0.46   0.71   
pH 0.53   1.00   -0.18   -0.98   -0.88   -0.99   -0.62   0.74   

Cond. -0.09   -0.18   1.00   0.24   0.17   0.17   0.00   -0.22   
Temp. -0.62   -0.98   0.24   1.00   0.92   0.96   0.56   -0.78   
ORP -0.73   -0.88   0.17   0.92   1.00   0.83   0.61   -0.83   
Nitra. -0.45   -0.99   0.17   0.96   0.83   1.00   0.61   -0.67   
UV -0.46   -0.62   0.00   0.56   0.61   0.61   1.00   -0.53   

Phos. 0.71   0.74   -0.22   -0.78   -0.83   -0.67   -0.53   1.00   

ρ! 0.81 0.96 -0.06 0.96 0.86 0.95 0.53 0.88 
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 517	  

4.4 Future works 518	  

Using lead nitrate as an example, this study shows that the detection performance is 519	  

highly sensitive to the values of parameters. Meanwhile, in a real situation, the type of 520	  

contaminant is not known a priori. Therefore, the values of the parameters should not 521	  

be determined for a specific type of contaminant, but for a large group of 522	  

contaminants. A generalized set of values of parameters is more deserved. Therefore, 523	  

in the future, the optimal determination of the values of the parameters should be 524	  

conducted. 525	  

In an EWS, the question after detection of contamination is how to identify the type 526	  

of contaminant quickly. A commercially available Hach method relies on correlations 527	  

between responses of different types of sensors for contaminant identification. From 528	  

this study, as shown in the Figure F1, F2, F3, F4 and F5, the sensors’ responses are 529	  

contaminant dependent. For a clearer view, Figure 7 shows all sensors’ responses for 530	  

lead nitrate and atrazine using radar map. Obviously, the shapes formed by axes for 531	  

lead nitrate and atrazine are different. By utilizing the contaminant dependent feature, 532	  

it is possible to differentiate the types of the contaminants. Therefore, in the future, 533	  

more work should be done on how to extract features and patterns for contaminant 534	  

identification. Possible techniques are data mining and pattern recognition. For 535	  

example, by comparing the Euclidean distance between samples and classes for 536	  

different contaminants, it is possible to identify the type of the contaminant.   537	  
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 538	  

Figure 7 Radar map of sensor’s responses for lead and atrazine 539	  

5. Conclusion  540	  

EWS should provide a fast and accurate means to distinguish between normal 541	  

variations and contamination events. Compared with component-specific sensors, 542	  

conventional water quality sensors are still widely used because they are low cost and 543	  

easily maintained. For an EWS with conventional water quality sensors, a key issue is 544	  

how to efficiently detect the presence of contamination. In this study, a platform with 545	  

8 types of online water quality sensors was established and utilized for contaminant 546	  

injection experiment. By analyzing the results from the experiment, the following 547	  

conclusions are drawn.  548	  

1) A contamination detection method utilizing the correlations between multiple 549	  

types of conventional water quality sensors was proposed in this study. The 550	  

results from the experiment and analysis show that the proposed method could 551	  

detect a lead nitrate contamination 9 minutes after the introduction of 552	  

contaminant at the concentration of 0.01mg/l using responses from online water 553	  
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quality sensors. The TRP and FPR are 80% and 2% respectively. 554	  

2) It was noticed that multiple sensors responded simultaneously to the presence of 555	  

contamination. Initial analysis showed that the correlative response is 556	  

contaminant-specific, which implies that the correlative response could be 557	  

utilized not only for contamination detection, but also for contaminant 558	  

identification and even for quantification. Meanwhile, in some previous studies, 559	  

an ideal sensor is assumed. In a real situation, this is not always the case. If the 560	  

sensor fails to function properly, a false positive is expected. The proposed 561	  

method can overcome this by utilizing the correlations between sensors.  562	  

3) The proposed method employs three parameters: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"#!$%&'( , 563	  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"!#$ and window size. From the analysis, it was concluded that 564	  

these parameters have an impact on the detection performance. For a specific 565	  

contaminant, the optimal values of parameters should be determined through 566	  

experiment and analysis.  567	  

4) The basis of the proposed method is that multiple sensors respond to one type of 568	  

contaminant simultaneously. This has been verified by experiment in this study 569	  

and other studies. However, it should be envisaged that the types of 570	  

contaminants previously tested are still limited. More experiments should be 571	  

conducted in the future.  572	  
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