Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

Environmental Impact statement.

Statistical models of nutrient concentrations in all 140 UK catchments, combined with river flow data, gave estimates of nutrient export loads to coastal seas 1993-2003. Nitrate concentrations were stable while orthophosphate declined in many catchments. The N:P ratios in export loads revealed that most catchments in Scotland, Wales and southwest England were potentially P limited, very few catchments were potentially N-limited, while those in central and eastern England were seasonally variable- potentially N-limited during summer and P-limited during winter. This provides crucial data needed to respond to the Water Framework Directive which requires management of nutrients at catchment level. The UK N and P export loads to the North Sea were small (<3%) when compared to inputs from continental estuaries and from the north Atlantic.

1	
2	
3	
4	UK catchment nutrient loads 1993-2003, a new approach using Harmonised
5	Monitoring Scheme data: temporal changes, geographical distribution, limiting
6	nutrients and loads to coastal waters.
7	
8	
9	
10	
11	Timothy J. Earl ^{a,c} , Graham J. G. Upton ^b , David B. Nedwell ^{a,d}
12	
13	
14	
15	
16	
17	^a Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester.
18	^b Department of Mathematical Sciences, University of Essex, Wivenhoe Park,
19	Colchester.
20	^C Present address: Centre for the Environment, Fisheries and Aquaculture Sciences,
21	Pakefield Road, Lowestoft
22	^d Author for correspondence
23	

24	Abstract

25	The work provides robust estimates of nutrient loads (nitrate and phosphate) from all
26	UK catchments: as as required by the Water Framework Directive to monitor
27	catchments' health , and to inform management of these environments. To calculate
28	nutrient loads, data for nutrient concentrations and water flow are combined. In the
29	UK, flow data are typically available at hourly intervals at more than 1300 gauging
30	stations but concentration data are collected less frequently (roughly weekly) and at
31	fewer locations (about 280). The sparseness of the concentration data limits the
32	occasions for which load can be calculated, so a mathematical model was derived
33	which was used to interpolate the concentrations between measurements. The model's
34	parameters provide useful information about the annual nutrient concentration cycles
35	within any catchment, and permitted improved estimates of both the annual loads of N
36	and P, and of the N:P ratios, from mainland UK catchments. Data from 1993-2003
37	showed nitrate loads from UK catchments were generally constant, while
38	orthophosphate loads generally declined. N:P ratios suggested that most catchments in
39	the north and west of the UK were potentially P-limited although a few were
40	potentially N-limited, while many in central and eastern UK oscillated seasonally
41	between N and P limitation. Knowledge of the nutrient which is potentially limiting to
42	biological productivity is a key factor for management of a catchment's nutrient loads.
43	Calculations of nutrient export loads to coastal regions showed that UK catchments
44	contributed only about 16.5% of total fluvial loads of nitrate to the North Sea, or
45	about 3% of the total N loads when inputs from the Atlantic were included.
46	Orthophosphate loads from the UK catchments into the North Sea were only 1.7% of
47	the total P inputs from rivers and the Atlantic but did not include riverine inputs of P
48	adsorbed to particles.

- 50 Key words:, nitrate, phosphate, Redfield ratios, nutrient loads, , eutrophication,
- 51 catchments.

53 **1. Introduction**

54	Nitrogen (N) and phosphorus (P) are essential nutrients for biological primary
55	production, but anthropogenic enrichment of nutrients (nutrification) can result in
56	changes in the biological communities (eutrophication) in the rivers, estuaries and
57	marine ecosystems receiving the nutrients $(^{1,2})$. Enhancement of N can lead to
58	increased phytoplankton growth and biomass, and to depletion of silicate as it is
59	assimilated by diatoms, with the consequence that with any further increase of N load
60	diatoms decrease in relative importance due to Si limitation while microflagellates
61	become increasingly dominant $(^{3,4,5})$. As diatoms form the basis of grazing food
62	chains leading to commercially important species, whereas flagellates and
63	microflagellates are the basis of microbial food chains, such changes induced by
64	nutrification can be of great ecological and commercial importance (⁶). Concern for
65	the consequences of nutrification has led to legislation at both national and
66	international levels to regulate and minimise the impact of loading of nutrients to
67	water bodies. In Europe, the Water Framework Directive (2000/60/EC) requires the
68	development of management plans to control and limit the discharge of nutrients to
69	catchments, in order to maintain biological populations within acceptable limits $(^{2})$.
70	However, such management plans are only possible with understanding of the sources
71	and magnitudes of the loads of nutrients in a catchment.
72	Typically, aquatic primary producers such as microalgae and diatoms consume

- 73 nutrients from the environment in the Redfield Ratio (atom:atom) of 106C : 16N :
- 16Si : 1P. As nutrients are assimilated by algal growth, the nutrients in the water may
 become depleted until one becomes limiting to further growth (biomass production).
 An environment is said to be limited by a particular nutrient when that nutrient is used
- vp, but enough of the other nutrients remain to potentially support more biological

Environmental Science: Processes & Impacts Accepted Manus

78	activity. It also assumes that production is not limited by other variables such as light.
79	In addition to nutrient concentrations, changes in the ratios of the limiting nutrients can
80	have significant impact on the structure of communities. The Redfield Ratio provides a
81	useful comparison to the nutrient ratios actually observed in rivers and estuaries and
82	indicates which elements, in the presence of non-limiting sunlight, will potentially
83	limit the growth of the microalgae. Primary production in rivers and lakes is usually P-
84	limited (^{7, 8}) but can be N limited or oscillate seasonally between P or N limitation
85	However, coastal waters tend to be N-limited (⁹), although the general evidence for this
86	marine limitation is not as conclusive as for freshwaters. Furthermore, discharge of
87	treated sewage effluent, which has high P content, can change the receiving waters from
88	P-limited to N-limited (e.g. ⁸). Not all nitrogen in river water is biologically available
89	(dissolved organic nitrogen, DON, may not be 'bioavailable', e.g. ¹⁰) so that
90	considering only the biologically available compounds may give a better indication of
91	which nutrients will be limiting primary production. Moreover, some biologically
92	available compounds are used in preference to others (e.g. ammonium preferred to
93	nitrate by algae $(^{11,12})$ when both are available), suggesting that the Redfield Ratio can
94	be an oversimplification of the true situation. Again, if all nutrients occur at high,
95	saturating concentrations (typically $\ge 2\mu g l^{-1}$ for algae e.g. ⁷), the nutrient ratios may
96	be irrelevant, as all nutrients will be in excess and growth rates maximal. Hessen, $(^{13})$
97	also warns against the traditional assumption that if primary production is well
98	correlated with a single nutrient concentration, then that nutrient must be limiting. The
99	arguments against this assumption are 1] that there is a time lag between nutrient
100	loads increasing and primary production following, 2] that the water (especially in
101	lakes) may not be well mixed, or 3] that light may be limiting rather than a nutrient.
102	Furthermore, there is enough variation in nutrient uptake between organisms that the

103	exact ratio of nutrient requirement is imprecise. However, , the levels of N and P give
104	important information on the status of a body of water that is useful in its
105	management.
106	
107	Catchments nutrient loads are derived from measurements of water flow rate and

108 nutrient concentration. Across UK rivers a network of more than 1300 gauging sites 109 provide real-time measurements of water flow (see the UK National River Flow 110 Archive at http://www.ceh.ac.uk/data/nrfa/index.html). Nutrient concentrations in 111 water from 277 selected sites sampled since 1975 are available under the Harmonised Monitoring Scheme (HMS) $(^{14, 15})$ for which data are held at the U.K. Environment 112 113 Agency Data Centre, Twerton, U.K. While these data bases provide a potentially 114 important resource, there has been only limited use of the data to understand the 115 magnitudes of nutrient loads from UK catchments, or seasonal or regional changes in loads or nutrient ratios. Littlewood et al. (¹⁶) described the estimation of mass loads of 116 117 solutes in the HMS data sets, and the problems associated with it, while Nedwell et al. 118 (⁸) reported N and P loads from UK catchments for the 95 major UK estuaries with data averaged from 1995 and 1996. Littlewood and Marsh (¹⁷) presented time series 119 120 from 1975-1994 of annual mass loads of suspended solids, total nitrogen and 121 orthophosphate to UK estuaries, and to the coastal areas around the U.K. The record of the exact combination of gauging stations used by Littlewood and Marsh (¹⁷) is not 122 123 now available, but a similar list, compiled in 1997, was provided by I. G. Littlewood 124 (personal communication, Jan. 2006). In the present work we use the data from all 125 available gauging and monitoring sites with adequate data sets, over an 11 year 126 period to detect trends of change in nutrient loads, seasonal changes and changes of 127 ratios for all monitored UK catchments.

129 Methods

130 Flow Measurements. Flow data are available as hourly or daily mean values from the

- 131 National River Flow Archive (see the UK National River Flow Archive at
- 132 <u>http://www.ceh.ac.uk/data/nrfa/index.html</u>). Examples of time series for two gauging
- 133 stations are shown in Figure 1.

134 *Concentration measurements.* Concentrations in river water are measured much less

- 135 frequently than flows (typically just once or twice a month, often using water samples
- 136 gathered manually) to monitor levels of up to 80 properties of the water in each
- 137 location, including six factors directly relevant to nitrogen and phosphorus
- 138 concentrations. Measurements are sporadic, although the largest rivers are generally
- 139 sampled at least fortnightly, but sampling has, if anything, decreased in frequency
- 140 over the last decade (see for example, nitrate and phosphate data from the River
- 141 Rother in Figure 1). Under the HMS, four different measurements are taken of
- 142 chemicals containing nitrogen, along with two measurements concerning phosphorus
- 143 (Table 1). Table 1 shows the annual average number of determinations made for each

144 variable during the 1993-2003 period of this work. For nitrogen, ammoniacal

145 nitrogen, nitrite and nitrate measurements are all made with a similar frequency. The

146 possibility of summing two or more of these N variables in estimating total N loads

147 was considered but rejected as this could only be done where a single sample had 148 been analysed for each of the determinands, which would significantly reduce the 149 number of usable observations. However, nitrate concentrations are usually at least 150 one order of magnitude larger than the other measurements, typically >90% of the

151 total dissolved inorganic nitrogen (DIN) concentration.

152 As well as orthophosphate, the total phosphorus measurements appear to give the

153	data required to calculate phosphorus loads, but these measurements are taken rarely
154	compared to the orthophosphate measurements. Furthermore, (see Table 1) the
155	average concentration measurement for orthophosphate is often higher than the
156	average measurement of total phosphorus, which is impossible. This could be due to
157	differences in the analytical methodology used to derive the results or due to space-
158	time sampling bias in the sites at which total phosphorus measurements are made, or a
159	combination of both factors. Therefore, the orthophosphate measurements were used
160	in calculating P loads as soluble orthophosphate is the biologically available form of
161	phosphate. We note that this is likely to underestimate the total P load because of
162	adsorption of phosphate to exported particulate material ($^{18, 19}$).
163	Validation of the concentration data
164	Before concentration data could be used for calculating loads, it needed to be
165	assessed for reliability. Some data may be unreliable for the following reasons:
166	• Some concentration data were duplicated on the database with more than one
167	observation for the same day. This could be due to more than one sample
168	being taken, more than one analysis of the sample, or duplicate data entry. All
169	measurements taken on the same day at the same site were converted to a
170	single measurement given by the average.
171	• Some of the concentration data were recorded as " <lod" (less="" limit<="" td="" than="" the=""></lod">
172	of Detection) where the value was below the minimum value that could be
173	detected by the chemical analysis. The LOD may vary over time, even at the
174	same gauging station, reflecting changed analytical methods, changed
175	equipment, or analysis being performed in different laboratories. Samples
176	marked as " <lod" after="" comparing="" for="" including="" rejected,="" results="" td="" them<="" were=""></lod">
177	as LOD or LOD/2, and finding that the calculated loads were similar (within

178	5% in 96% of catchments). Littlewood and Marsh (¹⁷) arbitrarily calculated
179	mass loads using <lod 2.)<="" as="" data="" lod="" td=""></lod>
180	• At some stations the concentration data are quantised, that is, they take one of
181	very few distinct values. This would suggest that rounding errors will play a
182	larger part in these stations than in general (see below).
183	In general, the analysis of trends in the nutrient concentration will be more robust,
184	allowing for detection of subtler trends, if more data are included. Data from the
185	period 1993-2003 were initially validated and then used in our analysis as this
186	represented a period long enough to be able to detect temporal changes in
187	concentration, and included the most recently available (2003) data at the time that
188	this work was started.
189	
190	While calculation of loads requires knowledge of both flow rate and concentration,
191	the different frequencies of measurement of each variable limits precision of load
192	estimates. Much of an export load from a catchment may occur during periods of high
193	flow which may be missed by the infrequent sampling for measurement of nutrient
194	concentration (²⁰), but the more frequent measurements of flow rates may, however,
195	detect such episodic events. To permit more precise estimates of nutrient loads from
196	catchments, therefore, we adopted the strategy of modelling nutrient concentrations
197	from existing concentration data which could then be combined with the frequent
198	measurements of flow to provide a much more robust estimate of catchment nutrient
199	loads, including episodic events detected by flow. Littlewood et al (¹⁶) also advocated
200	the use of interpolation of HMS data where sampling is irregular.
201	Seasonal cycles in N and P concentrations. Initially, to get a robust picture of the
202	temporal variation in fluvial nitrate and phosphate concentration over Britain,

203	concentration data from all the selected catchment gauging stations were
204	amalgamated into one time series. To allow for the differences in magnitude of
205	concentration at each site, each measured concentration was normalised by dividing
206	by the average for that site. These values were then averaged by month to reduce all
207	the observations to 132 values (one for each of the 12 months for 11 years). The
208	presence of seasonal cycles for N and P and a long-term temporal trend for P in the
209	logged aggregated data (see Results) motivated the subsequent choice of model for
210	individual catchments.
211	Seasonal and long term trends in N and P concentrations in catchments. To
212	investigate the seasonal and long term trends in nutrient concentrations, those HMS
213	sites were selected which had sufficient data, and were close to an NRFA gauge that
214	could be used to calculate load. The requirements were that: 1] at least 60 of the
215	months in the 11 years' data should have acceptable concentration measurements
216	(typically the actual number averaged 100.); 2] more than ten distinct values of
217	concentration should be recorded – sites with fewer distinct values may be especially
218	biased by rounding errors.
219	
220	For the 140 catchments judged to have adequate nitrate concentration data by the
221	previous criteria, and for the 119 catchments with adequate phosphate concentration
222	data a statistical model which reflected the seasonally cyclical concentrations and had
223	the following properties was fitted to the concentration measurements:
224	• It allowed concentration to be estimated for days when there was no measured
225	concentration.
226	• It allowed outliers in the concentration data to be identified and removed.
227	Outliers were removed by identifying individual points that changed the fit of

228	the model significantly (F test, P<0.0001), and iteratively removing them one
229	at a time until no such points remained.
230	• It encapsulated the most important features of the data in a small number of
231	parameters that have ecological relevance.
232	The questions of ecological relevance that the model should be able to consider are:
233	1. How big is the average nutrient concentration ?
234	2. Is the concentration increasing or decreasing over time ?
235	3. How much larger is the peak seasonal concentration in proportion to
236	the annual average concentration ?
237	4. At what time of year does the peak concentration occur?
238	To meet these requirements we used the following statistical model:
239	$C = \exp(\alpha(1 + \beta t + \gamma \cos(2\pi[t - \tau]))) $ (1)
240	where <i>C</i> is the expected concentration, α , β , γ and τ are the parameters to fit the model
241	and t is the time in years (taking the midpoint of the study period as 0). The parameter
242	α is the average log concentration and β is the proportional annual change in log
243	concentration relative to mean log concentration. The term $\gamma cos(2\pi[t - \tau])$ in the
244	model represents the annual cycle of nutrient concentrations (see Fig 2) as described
245	by both magnitude (γ) and time of year (τ : see Fig 3 for interpretation of this value) of
246	the seasonal peak. γ is the proportional magnitude of the annual seasonal variability
247	relative to mean log concentration The α , , and γ components of the model were
248	chosen to be orthogonal over the study period, meaning that they can be interpreted
249	independently of one another, and improving the optimiser performance compared to
250	alternative parameterisations. This model has an infinite number of values of γ and τ
251	that give the same fit due to the periodicity of the cosine wave, so the following
252	restrictions are placed on the parameters:

$$253 \qquad \gamma \ge 0; \ 0 \le \tau < 1 \qquad (2)$$

254	The concentration data for each catchment with an acceptable concentration data set
255	was fitted to the statistical model by choosing α , β , γ and τ to minimise the least
256	squares difference between observed and modelled concentrations on a log-scale
257	using the software package R (R Development Core Team, 2007).
258	
250	For each catchment the modelled concentrations generated by the statistical model

For each catchment the modelled concentrations generated by the statistical model were checked by comparison with the actual measured concentration values for the same day. Overall, the modelled concentrations versus actual measured values for the same day had a slope coefficient of 1.003 ± 0.003 (P<001) for nitrate and explained 83% of variance; while for phosphate was 1.008 ± 0.004 (P < 0.001) and accounted for 74% of variance.

265 **Estimation of loads**. Nutrient loads (L) can be estimated as the product of water flow 266 rate (F) with the nutrient concentration (C), although there are several ways of calculating loads with different degrees of precision (see ^{16, 20, 21}). Generally, precision 267 268 increases by measuring nutrient loads over shorter periods of time, and summing the 269 loads; rather than averaging over longer periods, which may underestimate peak 270 loads. In our work, for each catchment daily nutrient load was calculated as the 271 product of the measured daily average flow from the NRFA, and the concentration 272 value obtained from Equation 1 fitted to the concentration data for that particular 273 catchment. Daily loads were then summed to get annual loads. It was a requirement 274 that HMS sites for concentration data were within 20 km of NRFA gauges. This 20km 275 limit may seem large, but in practice the mean distance was 6.6km and 75% of the 276 pairs were located within 5km of one another. Where HMS sites measured a sub-277 catchment of another HMS site, only the larger catchment was used to avoid double-

counting. This gave 140 sites selected for nitrate and 119 for phosphate loads. In
comparison, Littlewood et al (¹⁶) reported 150 sites with both HMS and NRFA data..
(There was no reliable flow data for the River Great Ouse draining central England
into the North Sea due to unmeasured cross pumping between parallel channels near
the mouth, although the concentration data were adequate.)

283

284 In order to estimate nutrient loads to estuaries and coastal seas the catchments flowing 285 to each coast of the U.K., and catchment areas for gauging stations were deduced from the CEH Digital Terrain Model $(^{22,23}$; and see 17). The total load to each coastal 286 287 region was calculated by summing the loads from the catchments that flow into that 288 region, and dividing by the proportion of the area draining to that region that is within 289 the modelled catchments. This accounted for ungauged catchments, areas downstream 290 of gauging stations, and catchments with inadequate data by assuming that they export 291 the same load per unit area as the neighbouring gauged areas flowing into that coastal 292 region. This gave estimates of total nutrient loads to the North Sea, the Irish Sea, 293 Celtic Sea, Atlantic coast and the English Channel.

294

295 **Results and Discussion**

296 Aggregated and normalised data for all catchments. The log transformed

- 297 aggregated concentration data from all catchments (Fig 2) showed significant annual
- 298 cycles in both N and P concentrations, informing the annually cycling model
- subsequently used for concentrations, and a significant temporal decrease over 11
- 300 years 1993-2003 in P concentrations, but not in N concentrations. Littlewood et al (¹⁶)
- 301 also reported decrease of orthophosphate loads to UK estuaries for the period 1985-
- 302 90.

303	U.K. wide variations in nutrient concentrations. Figures 3(A) and 4(A) illustrate
304	the values of the parameters α , (the logarithm of average concentration, in mg N or P
305	l^{-1}) from the nitrate and phosphate concentration models. The catchments shaded in
306	grey are those which have inadequate concentration data sets while the white areas
307	indicate regions where data are not available. Lack of data may result from gauging
308	stations not being at tidal limits and thus some parts of the catchments being below a
309	gauging station yet above tidal limits. Some small catchments are not gauged, such as
310	those in northern Scotland which would require a large effort to monitor relative to
311	their small size and nutrient load, and so measurement effort is focused on larger,
312	more accessible catchments.
313	Figure 3(A) shows results for nitrates. The highest values of α are in the Midlands
314	and the south-east of England, while the lowest are in northern Scotland and the west
315	of Wales. The spatial coherence of the concentrations indicates that there are
316	underlying factors (such as geology or land use) influencing the loads, rather than
317	simply random differences between catchments. (We will consider elsewhere the
318	underlying causes of these catchment loads (Earl et al, in preparation)). The high
319	values of α in the Midlands and South East suggest that nitrates are dependent on a
320	combination of human population density and agriculture as reported previously (24),
321	as these areas have the highest population densities and most intensive agriculture.
322	Neither factor alone adequately explains the concentration, as the catchments with
323	high nitrate concentration in the south east of England (in North Norfolk, for
324	example) have a relatively low population density, whereas the catchments around
325	Liverpool and London have high nutrient concentrations despite being areas with little
326	agriculture.
327	Figure 4(A) shows the log of average phosphate concentration. Phosphate

328 concentrations were highest in the catchments which include major urban areas such
329 as London and Merseyside, suggesting that the main source of phosphate is from
330 sewage.

331	Long-term trends in nutrient concentrations. Figures 3B) and 4(B) show the
332	corresponding results for the parameter β , which is the proportional change in the log
333	concentration per year. Therefore, a value of ± 0.05 represents a compound change in
334	concentration of over 70% in the 11-year period being studied. Only those catchments
335	where β is statistically significant (P<0.05) are coloured. Figure 3(B) shows that for
336	much of Britain (86/140catchments) the nitrate concentrations have not changed
337	significantly during the study period, which agrees with the aggregated national data
338	illustrated in Figure 2. However, there are some exceptions:-
339	• In Northern Scotland, a cluster of catchments showed an apparently
340	significant increase during 1999-2001 in nitrate concentrations at gauges
341	11002 (River Shin), 11003 (River Conon), 11004 (River Beauly) and 11005
342	(River Ness), where concentrations were approximately double that of
343	previous years. The geographically consistent nature of this anomaly
344	suggested that there had been an analytical data processing or entry error, or a
345	change in analytical procedure, rather than a real change.
346	• The River Mersey showed a highly significant increase in nitrate
347	concentration over 1993-2003, which does not arise from any obvious
348	anomalies and indicates a real change. This might be the effect of
349	improvements in the sewage treatment works achieving greater nitrification,
350	resulting in a decrease of ammonium and corresponding increase of nitrate.
351	The River Thames showed a significant decrease of nitrate over the period,
352	largely driven by high nitrate concentrations in 1996 and 1997. As these were

353	both years of low rainfall and low flow in the Thames, and hence low
354	dilution, it seems plausible that these high measurements were a true
355	reflection of the change of nitrate concentrations in the river.
356	When the concentration model was applied to phosphate concentrations there were
357	significant (at the 0.05 level) changes in 68 of the 119 catchments with useful data.
358	The change of P with time (Figure 4(B)), illustrates a trend of general decrease of
359	phosphate concentrations (and see
360	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69592/
361	pb13811-waste-water-2012.pdf) over 1993-2003, with very few catchments
362	increasing. The decrease in phosphate may be attributable to decreasing use of
363	polyphosphates in detergent, or increase in phosphate stripping in sewage treatment
364	works (e.g. ^{25,26}) since the introduction of the Urban Waste Water Treatment
365	Directive in 1991. The two catchments (16007 & 16008) with apparent steep
366	increases of P in Western Scotland may result from change in measurement accuracy,
367	or local changes in agriculture or sewage treatment provision.
368	Seasonal variations in nutrient concentrations. Figure 3(C) shows results for
369	nitrate of parameter γ , (the magnitude of the seasonal variation of nitrate
370	concentrations) and Figure 3D shows parameter τ (the timing of the peak nitrate
371	concentration). In both cases they are coloured only if γ is significant (τ is
372	meaningless in the absence of significant seasonal variation). Of the 140 catchments
373	to which the model was fitted, 128 had significant (P < 0.05) seasonal variation. For
374	nitrate concentrations (Fig 3D) the majority of catchments have a value for τ around
375	0.1-0.2, indicating the peak of nitrate concentrations in February, suggesting that high
376	rainfall in this winter period washes out of the catchment soil nutrients that may have
377	accumulated over the year. The catchments that appear in green have the opposite

378	trend of highest concentration in August, suggesting that they are dominated by
379	nitrates from sewage which is diluted at times of high rainfall but concentrated during
380	the summer months.
381	Similarly, Figures 4C and 4D illustrate the seasonality of the phosphate
382	concentrations : 106 of the 119 of the catchments have a significant seasonality, with
383	peaks typically in July-October. This seasonal trend is consistent with phosphate
384	sources being dominated by a relatively constant P input which is diluted most during
385	the winter and concentrated most in periods of low flow during the summer.
386	Ratios of nutrients. The continuous time series of nitrate and phosphate
387	concentrations can be plotted against one another as N:P (atom:atom) ratios to
388	indicate whether a catchment is generally likely to be N- or P-limited. This does not
389	imply that primary production in each catchment is actually limited by that nutrient
390	as it is only when the potentially limiting nutrient becomes depleted in concentration
391	that biological production becomes growth rate limited, but it is the potentially
392	limiting nutrient which is the first target nutrient which needs to be managed and
393	reduced to limit biological production and eutrophication, as required by the Water
394	Framework Directive. The N:P ratios were plotted over the 11 years of the study for
395	the 119 catchments where both N and P concentration time series had been
396	successfully created. While the use of solely soluble orthophosphate will
397	underestimate the total P load because of P adsorption to particulates $(^{18, 19})$, soluble
398	orthophosphate is the biologically available form of P and therefore appropriate for
399	calculating the N:P ratio. (In contrast, nitrate does not adsorb to particles.) Examples
400	are shown in Figure 5 for the HMS site 7004 (River Rother, Kent) and HMS site
401	1010 (River Wyre at St Michael's, Lancashire) catchments. The cycles in the data
402	reflect the annual nitrate and phosphate concentration cycles over 11 years, with

403	successive annual cycles differing slightly because of the long term trends in the
404	nutrient concentrations, particularly in the case of phosphate. The broken line shows
405	the Redfield Ratio in which these nutrients are used by a 'typical' phytoplankton,
406	while the black point represents the overall average N:P ratio that is often used to
407	decide whether the river is N- or P-limited. The Rother catchment appears to be
408	always P-limited because the N:P ratio is always above and to the left of the line
409	indicating the Redfield Ratio. In the River Wyre, though, while the average N:P ratio
410	indicates potential P-limitation, the seasonal cycle of N:P shows that the catchment is
411	P-limited from September through the winter until the end of April but during the
412	summer months the river is N-limited. As algae and higher plants need light for
413	primary production, the N-limitation during the summer months when sunlight
414	intensity is high is considerably more ecologically important than the P-limitation
415	over winter when light is low, and so the overall annual average value of N:P may be
416	deceptive.

417 The distribution of the N- and P-limited catchments is shown in Figure 6. Of 418 the 119 catchments that had adequate data for both nitrate and phosphate, the majority 419 (83) appeared to be potentially P-limited, while only 7 were potentially N-limited. It is 420 note-worthy that the potentially N-limited catchments generally occurred in the large 421 metropolitan areas (London, Birmingham, Liverpool, Manchester) where discharge of 422 P-rich treated sewage effluent would tend to increase the probability of N-limitation (e.g.⁸). The wide-spread occurrence of P limitation would imply that control of point 423 424 sources of P, such as sewage treatment works, in such catchments would facilitate 425 limitation of eutrophication, as required by the Water Framework Directive. Of the 426 remaining cases, 28 had an annual cycle that changed from N-limited in the summer 427 to P-limited in the winter over the annual cycle, and the other two changed from N-

Environmental Science: Processes & Impacts Accepted Manus

428	to P-limited over the 11 year period, but not on an annual cycle. It may be that the
429	seasonal oscillation of N or P limitation in some catchments is because high winter
430	rains washing out nitrate from catchments (see Fig 2) increases the N:P ratio whereas
431	P loads predominantly from STWs do not increase. Catchments in Scotland, Wales
432	and western England are almost entirely P-limited, whereas central and southern
433	England catchments oscillate over the annual cycle. The spatial coherence of the
434	limiting nutrient suggests that there is an underlying pattern, which could be due to
435	the terrain or land use (although the two factors are closely connected); for example,
436	the P-limited catchments are generally in the more rural areas where sewage inputs
437	are lower. [The Supplementary Material has a spread sheet which shows for each
438	named and numbered UK catchment the element which appears to be potentially
439	limiting to primary production, and hence most important in nutrient management.]
440	Estimated annual loads. Figure 7 shows the annual nitrate and phosphate loads
441	derived from the modelled concentrations and the measured flow, normalised by
442	catchment area. The lowest nitrate loads per unit area are observed in the sparsely
443	populated areas of northern Scotland. There is an area of high nitrate loads in central
444	England, corresponding with the area around the cities of the midlands and the north
445	west. The large area of white in central eastern England for the catchment of the River
446	Ely Ouse is the result of unreliable flow measurements for this catchment. Parallel
447	channels between which ungauged cross flow at Denver Sluice can occur at different
448	times of the year make load estimates highly problematic although concentration data
449	are satisfactory. The phosphate loads are highest in a region encompassing the urban
450	areas of the midlands and north-west. This adds weight to the generally accepted
451	hypothesis that population density (via sewage) is the major cause of high phosphate
452	loads.

453	
454	Significance of UK east coast nutrient loads to North Sea. Table 2 shows the
455	estimated loads from UK estuaries to each coast (as defined by PARCOM), averaged
456	over the 11 years of the study.
457	• the East Coast into the North Sea from Cape Wrath to the Thames estuary
458	• the Channel Coast from the Thames estuary to Lands End
459	• the South-West Coast into the Celtic Sea
460	• West coast into the Irish Sea.
461	• The Atlantic Ocean from the North Channel to Cape Wrath.
462	Clearly, the greatest loads from the U.K. are into the North Sea. The proportion of
463	gauged to non-gauged catchments calculated for each coast were identical to those
464	given by Littlewood et al $(^{16,17})$, and the total loads cited in Table 2 were derived by
465	dividing the figure for any gauged catchment area by the proportion of gauged area in
466	the total catchment. Bootstrap analyses gave 95% estimates for the annual export load
467	from UK to coastal waters of 22933-30458 Mmol N and 701-1391 Mmol P, although
468	the estimate for P will be solely for soluble orthophosphate. The 95% ranges of annual
469	loads from each U.K. coastal region are shown in Table 3.
470	
471	The average annual N and P area export loads to each coast were (in Mmol N or P
472	$km^{-2} y^{-1}$ for N and P loads respectively), North Sea catchments 0.117 and 0.005;
473	English Channel catchments 0.149 and 0.0025; Celtic Sea catchments 0.165 and
474	0.004; Irish Sea catchments 0.141 and 0.007; Atlantic Ocean catchments 0.089 and
475	0.0074. Our values for nitrate loads compare closely with those for total N (of which
476	the majority will be nitrate) given by Littlewood and March (17) as mean values for
477	1975-94

Environmental Science: Processes & Impacts Accepted Manuscr

478 The magnitude of the U.K. N load to the North Sea. By comparison with the UK 479 loads to the North Sea $(1.3 \times 10^4 \text{ Mmol N y}^{-1} \text{ or } 1.9 \times 10^5 \text{ tonnes N y}^{-1})$, the Scheldt alone exports 7.28 x 10^4 tonnes N y⁻¹ (5.2 x 10^3 Mmoles N y⁻¹) (²⁷), the Seine 9.24 x 480 10^4 tonnes N y⁻¹ (6.6 x 10^3 Mmol N y⁻¹) (Billen et al, unpublished data cited in ²⁸, and 481 the Rhine/Meuse had a load of about 4×10^5 tonnes N y⁻¹ (2.9 x 10⁴ Mmoles N y⁻¹) 482 between 1985-95 (²⁹). Laane et al. (³⁰) estimated total fluvial inputs to the North Sea 483 of 10^6 tonnes N y⁻¹ (7.2 x 10^4 Mmoles N y⁻¹), and Howarth et al., (²⁸) gave a similar 484 value of 1.22×10^6 tonnes y⁻¹ (8.7 x 10⁴ Mmoles y⁻¹), of which 34% was attributed to 485 486 STW inputs. The entire UK N load to the North Sea is therefore equivalent to 1.3 x $10^4/8 \times 10^4$ Mmoles y⁻¹, or at most 16.5 % of the total fluvial N load to the North Sea. 487 488 489 How significant are the UK east coast estuary loads relative to all N inputs to the North Sea, including those from the Atlantic ? Laane et al. $(^{30})$ gave total N inputs to 490 the North Sea as 6.48×10^6 tonnes y⁻¹, equivalent to 4.6×10^5 Mmoles N y⁻¹. Total 491 fluvial N inputs to the North Sea (mean 8×10^4 Mmoles N y⁻¹) therefore represent 492 493 only 19 % of the N inflow from the Atlantic. The relative load contributions of the

494 entire east coast UK estuaries are, therefore, $1.3 \times 10^4/4.6 \times 10^5$, or only about 2.9% of

495 the total N load to the North Sea. According to Howarth et al., $(^{28})$ the relative

496 contribution of urban wastewater sources will be about 30% of that i.e. < 1%.

The P load. The total fluvial export of orthophosphate is 6.0×10^2 Mmoles P through the UK east coast estuaries. Laane et al., (³⁰) cite a total P load to the North Sea of 1.3 x 10⁶ tonnes P y⁻¹, equivalent to 4.2 x 10⁴ Mmoles P y⁻¹. The North Sea Quality Status report (³¹) quotes 8 x 10⁵ tonnes (2.7 x 10⁴ Mmoles) phosphate from the Atlantic and fluvial inputs of 4.5 x 10⁴ tonnes (1.5 x 10³ Mmoles) y⁻¹: a total of 2.8 x 10⁴ Mmoles y⁻¹. The mean of the two estimates is 3.5 x 10⁴ Mmoles y⁻¹. Therefore, the annual

orthophosphate load from UK east coast is equivalent to $6 \ge 10^2/3.5 \ge 10^4 = 1.7$ % of
the total P load to the North Sea: although because of adsorption of P to suspended
particles (which were not included in the present estimates of loads) this will be an
underestimate of the total P load.
Acknowledgments. THE was supported by a CASE studentship
(NER/S/A/2004/1228) from the Natural Environment Research Council, U.K., with
additional financial support from the Centre for Environment, Fisheries and
Aquaculture Science, Loweston.

- 513 References
- 514
- ⁵¹⁵ ¹ Giraud, X., Quere, C.L. and Cunha, L.C.d., 2008. Importance of coastal nutrient
- 516 supply for global ocean biogeochemistry. Global Biogeochem Cycles, 22. GB2025
- ² Grizzetti, B., Bouraoui, F. and Marsily, G.D., 2008. Assessing nitrogen pressures on European surface waters. Global Biogeochem Cycles, 22, GB4023
- ³ Franzs, H.G., 1986. Effects of freshwater inflow on the distribution, composition
- 520 and production of plankton in Dutch coastal waters. . In: E. Skreslet (Editor), The role
- 521 of freshwater outflow in coastal marine ecosystems. NATO ASI Series G. Springer-522 Verlag, Berlin, pp. 241-24
- ⁴ Humborg, C., Ittekkot, V., Cociascu, A. and Bodungen, B.v., 1997. Effect of
- 524 Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 525 386: 385-388.
- ⁵Kocum, E., Nedwell, D.B. and Underwood, G.J.C., 2002a. Regulation of
- phytoplankton primary production along a hypernutrified estuary. Mar Ecol Progr Ser,231: 13-22.
- ⁶ Justic, D., Rabalais, N., Turner, R.E. and Dortch, Q., 1995. Changes in nutrient
- structure of river-dominated coastal waters: stoichiometric nutrient balance and itsconsequences. Estuar Coastal Shelf Sci, 40: 339-356.
- ⁷ Hecky, R.E. and Kilham, P., 1988. Nutrient limitation of phytoplankton in
- freshwater and marine environments: a review of recent evidence on the effects ofenrichment. Limnol Oceanogr, 33: 796-822.
- ⁸ Nedwell, D.B., Dong, L.F., Sage, A. and Underwood, G.J.C., 2002. Variations of the
- 536 nutrient loads to the mainland UK estuaries: correlations with catchment areas,
- 537 urbanisation and coastal eutrophication. Estuar. Coastal Shelf Sci, 54: 951-970.
- ⁹Howarth, R.W., 1988. Nutrient limitation of net primary production in marine
- 539 ecosystems. Ann Rev Ecol, 19: 89-110.
- ¹⁰ Agedah, E.C., Binalaiyifa, H.E., Ball, A.S. and Nedwell, D.B., 2009. Sources,
- 541 turnover and bioavailability of dissolved organic nitrogen (DON) in the Colne
- 542 estuary, UK. Mar Ecol Progr Ser, 382: 23-33.
- ¹¹ Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Progr Ser, 61: 183-201.
- ¹² Kocum, E., Underwood, G.J.C. and Nedwell, D.B., 2002b. Simultaneous
- 546 measurement of phytoplanktonic primary production, nutrient and light availability
- along a turbid, eutrophic UK east coast estuary (the Colne Estuary). Mar Ecol Progr
 Ser, 231: 1-12.
- ¹³ Hessen, D.O., 1999. Catchment properties and the transport of major elements to
- 550 estuaries. In: D.B. Nedwell and D.G. Raffaelli (Editors), Advances in Ecological
- 551 Research.4: 1-41. Academic Press, London,.
- ¹⁴ Hurley, M.A., Hilton, J. and Butterwick, C., 1994. Harmonised monitoring data for
- 553 England and Wales- a statistical appraisal., National Rivers Authority, Bristol.
- ¹⁵ Simpson, E.A., 1980. The harmonization of the monitoring of the quality of rivers in the United Kingdom. Hydrological Sciences Bulletin, 25: 13-23
- ¹⁶ Littlewood, I.G., Watts, C.D. and Custance, J.M., 1998. Systematic application of
- 557 United Kingdom river flow and quality data bases for estimating annual river mass
- 558 loads (1975-1994). The Science of the Total Environment., 210/211: 21-40.
- ¹⁷ Littlewood, I.G. and Marsh, T.J., 2005. Annual freshwater river mass loads from
- 560 Great Britain, 1975-1994: estimation algorithm, database and monitoring network
- 561 issues. J Hydrol, 304(1-4): 221-237.

¹⁸ House, W.A., Jickells, T.D., Edwards, A.C., Prastka, K.E. and Denison, F.H., 1998. 562 563 Reactions of phosphorus with sediments in fresh and marine waters. Soil Use Manag., 564 14: 139-146. ¹⁹ Prastka, K., Sanders, R. and Jickells, T., 1998. Has the role of estuaries as sources 565 566 or sinks of dissolved inorganic phosphorus changed over time? Results of a Kd study. 567 Mar Pollut Bull, 36: 718-728. ²⁰ Walling, D.E. and Webb, B.W., 1985. Estimating the discharge of contaminants to 568 coastal waters by rivers: some cautionary comments. Mar. Pollut Bull, 16: 488-492. 569 ²¹ Vries, A.d. and Klavers, H.C., 1994. Riverine fluxes of pollutants: monitoring 570 strategy first, calculation methods second. European Water Pollution Control, 4: 12-571 572 17. ²² Jenson, S.K. and Domingue., J.O., 1988. Extracting topographic structure from 573 574 digital elevation data for geographic information system analysis. Photogrammetric 575 engineering and remote sensing. 54(11): 1593-1600... ²³ Morris, D.G. and Flavin, R.W., 1990, A digital terrain model for hydrology., Fourth 576 International Symposium on spatial data handling. University of Zurich, Zurich, pp. 577 578 250-262. ²⁴ Peierls, B.L., Caraco, N.F., Pace, M.L. and Cole, J.J., 1991. Human influence on 579 580 river nitrogen. Nature, 350: 386-387 ²⁵ Neal C., Jarvie, H.P., Williams R, Love A, Neal M, Wickham H, Harman S, 581 Armstrong L., 2010 Declines in phosphorus concentration in the upper River Thames 582 (UK): Links to sewage effluent cleanup and extended end-member mixing analysis 583 584 Science Total Environ, 408:1315-1330 585 ²⁶ Bowes M.J., Neal C, Jarvie H P, Smith J T, Davies H N. 2010. Predicting 586 phosphorus concentrations in British rivers: improved phosphorus removal from 587 sewage effluent Science Total Environ, 408:4239-4250 588 ²⁷ Billen, G., Somville M., Debecker E., Servais P. 1985. A nitrogen budget of the 589 Scheldt hydrographical basin. Netherlands J Sea Res 19 (3-4): 223-230. 590 ²⁸ Howarth, R.W. et al., 1996. Regional nitrogen budgets and riverine N and P fluxes 591 592 for the drainages to the North Atlantic Ocean: natural and human influences. 593 Biogeochem, 35: 75-139. ²⁹ Nienhuis, P.H., 1996. The North Sea coasts of Denmark, Germany and the 594 595 Netherlands. . In: W. Schramm and P.H. Nienhuis (Editors), Marine benthic 596 vegetation: recent changes and the effects of eutrophication. . Spinger-Verlag, Berlin, pp. 187-221. 597 Laane, R.W.P.M., Groeneveld, G., Vries, A.D., Bennekom, J.V. and Sydow, S., 598 1993. Nutrients (P,N,Si) in the Channel and the Dover Strait: seasonal and year-to-599 600 year variation and fluxes to the North Sea. Oceanologica Acta 16: 607-616. 601 ³¹ North Sea quality status report 1993. OSPARCOM. ISBN 0 946956 32 4. 602 603

- 604
- 605

Table 1: Measured nitrogen and phosphorus variables taken under the Harmonised Monitoring Scheme. Measurement frequency refers to the total number of observations per year made across Britain during 1993-2003.

HMS Code	Description	Units	Measurement	Average
			frequency per	concentration.
			year	(see units
				column)
D125	Ammoniacal Nitrogen	mg N l ⁻¹	5,000	0.36
D126	Nitrite	mg N l ⁻¹	4,300	0.08
D127	Nitrate	mg N l ⁻¹	4,900	5.2
D129	Ammonia (free)	mg NH ₃ l ⁻¹	1,600	0.0043
D212	Orthophosphate	mg P l ⁻¹	4,800	0.64
D213	Total Phosphorus	mg P l ⁻¹	880	0.5

Table 2. Annual export loads of nitrate (Mmol N y^{-1}) and orthophosphate (Mmol P y^{-1}) from UK catchments to coastal seas. Gauged percentages refer to the percentage of the area upstream of a gauging station used in this work compared to total catchment area. The directly gauged loads from the east coast to the North Sea excluded the Great Ouse catchment, for which flow data was unreliable, but the total North Sea load was adjusted proportionately to include the Great Ouse catchment area.

	gauged N load	gauged P load	N gauged	P gauged	Total	Total N load	Total P load
	$(Mmol N y^{-1})$	$(Mmol P y^{-1})$	percentage	percentage	catchment	$(Mmol N y^{-1})$	$(Mmol P y^{-1})$
					(km^2)		
North Sea	8,565	312	65%	52%	112,000	13,177	603
English Channel	1,551	25	65%	62%	16,000	2,386	40
Celtic Sea	3,673	88	72%	72%	31,000	5,102	122
Irish Sea	2,666	101	65%	52%	29,000	4,101	193
Atlantic Ocean	429	29	30%	24%	16,000	1,431	119
Total					204,000	26,198	1,078

& Impacts Accepted Manuscrip

Environmental Science: Processes

	Nitrate	Phosphate
North Sea	10011-16639	318-905
English Channel	1758-2892	24-65
Celtic Sea	4508-5544	42-169
Irish Sea	3141-5201	76-330
Atlantic Ocean	979-1738	49-157
Total	22933-30458	701-1391

Table 3. Ranges (95%) of annual nitrate and phosphate export loads to U.K. coastal areas (Mmol N or P y⁻¹).

		1 1 1			16
Table 1 Annual i	evnort loads of N and	P per km ² of catchmer	nt area ner vear (I &N	M are values given by I	ittlewood and March ¹⁰)
Table 4. Annual	caport loads of IN and	i per kin of catelline	in area per year (Leen	vi ale values given by i	Juie wood and Marsh .)

	Mmol N km ⁻² y ⁻¹	L&M values	Mmol P km ⁻² y ⁻¹	L&M values
North Sea	0.0894-0.1486	0.114	0.0028-0.0081	0.0013
English Channel	0.1099-0.1808	0.138	0.0015-0.0041	0.0009
Celtic Sea	0.1454-0.1788	0.146	0.0014-0.0055	0.0015
Irish Sea	0.1083-0.1793	0.144	0.0026-0.0114	0.0017
Atlantic Ocean	0.0612-0.1087	0.098	0.0031-0.0098	0.0012

ంర

Processes

Environmental Science:

List of supplementary material.

Suppl 1. Reference list of named and numbered UK catchments with their limiting nutrient (N or P or seasonally variable), and annual loads, area-normalised loads, and the values of the concentration model parameters for each catchment.

Figure 1: Example concentration and flow data from A. HMS site 1010 (River Wyre at St Michael's, Lancashire); and B. HMS site 7004 (River Rother, Kent). For each catchment, the plots show measured nitrate concentrations, phosphate concentrations and flow rate, with the modelled concentrations inserted for nitrate and phosphate.

Figure 2: Aggregated standardised nutrient concentrations by month for all U.K.catchments with adequate data sets showing within year (left) and between years (right) variation in nitrate (top) and phosphate (bottom) concentrations.

Figure 3: Nitrate model parameters for 140 UK catchments catchments A) α , mean log concentration in mg N l⁻¹. B) β , proportional change of concentration yr⁻¹. C) γ , proportional seasonal variation of concentration. D) τ , time of seasonal peak concentration (0= Jan, 0.25 = Apr, 0.5 = Jul, 1 = Oct). Grey catchments have inadequate data: white catchments areas have no data.

Figure 4: Phosphate model parameters for 119 UK catchments A) α , mean log concentration in mg P l⁻¹. B) β , proportional change of concentration yr⁻¹. C) γ , proportional seasonal variation of concentration. D) τ , time of seasonal peak concentration(0= Jan, 0.25 = Apr, 0.5 = Jul, 1 = Oct). Grey catchments have inadequate data: white catchments areas have no data.

Figure 5: Example of annual cycles in modelled N:P ratios from HMS site 1010 (River Wyre at St Michael's, Lancashire; top) and HMS site 7004 (River Rother; bottom), also showing annual mean concentrations (black point) and the Redfield Ratio (broken line). The arrows indicate the change in annual cycle over successive years, and the first year (1993) is labelled with the months of the year. River Wyre oscillates seasonally between N limitation in summer and P limitation in winter, while River Rother is permanently P limited.

Figure 6: Potential nutrient limitation in catchments based on N:P atom ratios. Red catchments indicate potential P-limitation, blue catchments indicate potential N-limitation, and green catchments indicate oscillation of potentially limiting nutrient between P in winter and N in summer. Grey/white catchments have inadequate or no data.

Figure 7: Nitrate (A) and phosphate (B) annual loads normalised for area (Mmol N or $P \text{ km}^{-2} \text{ yr}^{-1}$).