Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Ethylene Polymerisation and Ethylene/Norbornene Copolymerisation by Aryloxo-Modified Vanadium(V) Complexes Containing 2,6-Difluoro-, Dichloro-Phenylimido Complexes

Nichabhat Diteepeng,^{*a,b,*‡} Xiaoyan Tang,^{*a,c,*‡} Xiaohua Hou,^{*a*} Yue-Sheng Li,^{*c*} Khamphee Phomphrai,^{*b*} and ^{*s*} Kotohiro Nomura^{*a*}*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Aryloxo-modified vanadium(V) dichloride complexes containing dichloro- or difluoro-phenylimido ligand of type, $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [X = Cl (1), F (2); R = Me (a), F (b)], showed

¹⁰ remarkable catalytic activity in ethylene polymerisation and the copolymerisation with norbornene (NBE) in the presence of Et_2AlCl ; the activities were higher than that by V(N-2,6-Me_2C_6H_3)Cl_2(O-2,6-Me_2C_6H_3) reported previously. Complex **1a** is a suitable catalyst precursor in terms not only of the activity, but also for synthesis of high molecular weight copolymers with both unimodal molecular weight distributions and uniform compositions.

15 Introduction

Due to a high reactivity toward olefins observed in olefin polymerisation using the classical Ziegler-type vanadium catalyst systems [e.g. consisting of V(acac)₃, VOCl₃ etc. and Et₂AlCl, EtAlCl₂, ⁿBuLi etc.],¹⁻⁵ design and synthesis of the efficient ²⁰ vanadium complex pre-catalysts for olefin polymerisation attract

considerable attention in the fields of catalysis, organometallic chemistry as well as polymer chemistry.⁵⁻⁷ We have focused on (imido)vanadium(V) complexes containing anionic donor ligands of the type, $V(NAr)Cl_2(X)$ (X = aryloxo, ketimide, phenoxyimine,

- $_{25}$ imidazolin-2-iminato, imidazolidin-2-iminato etc.), 5c,e,6,8 and demonstrated that these complexes, especially V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (A) and V(N-2,6-Me₂C₆H₃)Cl₂[1,3-(2,6-Pr₂C₆H₃)₂(CH₂N)₂C=N] (B), exhibit remarkable catalytic activities for ethylene polymerisation in the
- ³⁰ presence of Al cocatalyst (Scheme 1).⁶ In particular, the phenoxy analogue (**A**) showed remarkable catalytic activities for the ethylene/norbornene (NBE) copolymerisation with rather efficient NBE incorporation; both the activity and the NBE incorporation were strongly affected by Al cocatalyst (and
- ³⁵ solvent) employed.^{6c-d} Moreover, we also demonstrated that (imido)vanadium(V) complexes containing (2-anilidomethyl)pyridine ligand efficiently dimerize ethylene with both notable catalytic activity and high selectivity in the presence of methylaluminoxane (MAO).⁸
- ⁴⁰ 2,6-Dichlorophenylimido ligand was used in molybdenumalkylidene complexes,⁹ and these complexes showed unique reactivity especially in ring-closing metathesis reaction.⁹ Two probable benefits to use this ligand is that (i) the dichlorophenylimido ligand is smaller than the dimethylphenyl imido

45 (less steric bulk) and (ii) placement of electron withdrawing

group that may contribute to the unique reactivity toward olefins; these would affect nature of the coordinated olefins. We thus have an interest for syntheses of aryloxo-modified 2,6dichlorophenyl and 2,6-difluorophenylimido analogues of type, 50 V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me (a), F (b)], and their use as the catalyst precursors for ethylene polymerisation and ethylene/norbornene copolymerisation.¹⁰

Scheme 1. Reported complexes as effective pre-catalysts for ethylene/ 55 norbornene copolymerisation. (Complex A is also used 3a in this text for comparison).

Results and Discussion

1. Synthesis of V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me (a), F (b)].

 $V(N-2,6-X_2C_6H_3)Cl_3$ (X = Cl, F) could be prepared in high yields (70-80 %) from VOCl₃ with ArNCO (Ar = 2,6-X_2C_6H_3) in

n-octane at 140 °C, established method for synthesis of a series of (imido)vanadium(V) trichloride analogues.¹¹ The resultant complexes were identified by ¹H, ¹³C and ⁵¹V (and ¹⁹F) NMR spectra, and elemental analysis. A series of (arylimido)-⁵ vanadium(V) dichloride complexes containing aryloxo ligands, V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me

- (a), F (b), Scheme 2] could be prepared in moderate yields from the trichloride analogue, V(N-2,6- $X_2C_6H_3$)Cl₃ with 0.9 equiv. of 2,6- $X_2C_6H_3$ OH in *n*-hexane at -30 °C. The reactions with 2,6-¹⁰ F₂C₆H₃OH were carried out in the freezer in the drybox to eliminate by-production of the bis(phenoxide) complexes. The
- analytically pure samples were obtained by removing volatiles *in vacuo*. These complexes were identified on the basis of NMR spectra and elemental analysis.

Scheme 2. Synthesis of aryloxo-modified (arylimido)vanadium(V) dichloride complexes.

2. Ethylene Polymerisation by $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [X = Cl (1), F (2); R = Me (a), F (b)] – Al Cocatalyst ²⁰ Systems.

- Ethylene polymerisations by $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [X = Cl (1), F (2); R = Me (a), F (b)] were conducted in toluene in the presence of d-MAO [prepared by removing toluene and AlMe₃ from the commercially available samples, TMAO-212.
- 25 9.1 wt% (Al) toluene solution, Tosoh Finechem Co.] or Et₂AlCl. The results by V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**3a**)^{6c} are also cited for comparison. The results are summarised in Tables 1-2. The resultant polymers are linear polyethylene (by NMR spectra, DSC thermograms) that are not sufficiently soluble in hot
- ³⁰ 1,2,4-trichlorobenzene (150 °C) required for a GPC analysis. Since, as described below, prepared poly(ethylene-*co*-norbornene)s possessed uniform molecular weight distributions, formation of ultrahigh molecular weight polymers was thus highly assumed in this catalysis as reported previously in the ³⁵ polymerisation by **3a** and the derivatives.^{6b-d}
- It turned out that the catalytic activities in the presence of MAO were affected by the Al/V molar ratio (Table 1), and the activity by $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ under the optimised molar ratios conducted at 25 °C increased in the order:
- ⁴⁰ 344 kg-PE/mol-V·h (**2b**, run 17) < 641 (**2a**, run 13), 643 (**1a**, run 2), 662 (**1b**, run 7) < 1770 (**3a**, X = Me, run 18^{6c}). The activities by **1a**,**b** at 0 °C were higher than those conducted at 25 °C, whereas the activities by **3a**, V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-^{*i*}Pr₂C₆H₃) (**3c**) at 0 °C were lower than those conducted at 25 °C
- ⁴⁵ [activities by **3a,3c** were 1770 kg-PE/mol-V·h, 1050 (25 °C) and 441, 758 (0 °C), respectively].^{6c} The activity decreased at 50 °C, and these might be due to a stability of the active species in this catalysis, although we do not have any clear reasons at this moment.

Table 1. Ethylene polymerisation by V(N-2,6-X ₂ C ₆ H ₃)Cl ₂ (O-2,6-R ₂ C ₆ H ₃)
[X = Cl (1), F (2), Me (3); R = Me (a), F (b)] - MAO catalysts.a

	aat	A 1/X/ b	toman	wield	a ativity.c
run	cat.	Al/V	temp.	yield	activity
	(µmol)		/ -C	/ mg	
1	la (2.5)	500	25	237	569
2	1a (2.5)	1000	25	268	643
3	1a (2.5)	1500	25	248	595
4	1a (5.0)	1000	25	389	467
5	1a (3.0)	1000	25	263	526
6	1b (2.5)	500	25	218	523
7	1b (2.5)	1000	25	276	662
8	1b (2.5)	1500	25	226	543
9	1b (5.0)	1000	25	336	403
10	2a (2.5)	500	25	166	398
11	2a (2.5)	1000	25	206	494
12	2a (2.5)	1500	25	234	562
13	2a (2.5)	2000	25	267	641
14	2a (2.5)	2500	25	271	650
15	2a (2.5)	3000	25	274	658
16	2a (5.0)	1000	25	358	430
17	2b (5.0)	1000	25	286	344
18	3a $(2.5)^d$	1000	25	737	1770
19	3a $(1.0)^d$	2500	25	488	2930
20	1a (2.5)	1000	0	388	931
21	1b (2.5)	1000	0	473	1140
22	2a (2.5)	2000	0	224	538
2	1a (2.5)	1000	25	268	643
7	1b (2.5)	1000	25	276	662
13	2a (2.5)	2000	25	230	552
23	1a (2.5)	1000	50	122	293
24	1b (2.5)	1000	50	158	379
25	2a (2.5)	2000	50	157	377

^{*a*}Conditions: toluene 30 mL, 10 min, ethylene 8 atm, d-MAO white solid [prepared by removing AlMe₃, toluene from TMAO-S]. ^{*b*}Al/V molar ⁵⁵ ratio. ^{*c*}Activity in kg-PE/mol-V·h. ^{*d*}V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**3a**) cited from reference 6c.

Note that the catalytic activities by 1a,b and 2a were higher than that by 3a,^{6d} when these ethylene polymerisations were 60 conducted in the presence of Et₂AlCl in place of MAO at 0 °C (Table 2). The observed activities on the basis of polymer yields were also affected by the Al/V molar ratios. The activity at 0 °C under the optimised Al/V molar ratio increased in the order: 11700 kg-PE/mol-V·h (**3a**, run 38^{6d}) < 17400 (**1b**, run 32) < 65 31900 (2a, run 35) < 55800 (1a, run 27). The trend observed here is an interesting contrast to that in the presence of MAO (shown in Table 1). Interestingly, activity at 25 °C increased in the order: 15800 kg-PE/mol-V·h (1a, run 39) < 17300 (1b, run 40 < 22200 (2a, run 41), and the degree of decrease in the 70 activity was somewhat dependent upon the ligand set employed, as shown in Figure 1. Moreover, the activity by 2a at 50 °C (13900 kg-PE/mol-V h, run 44) was also higher than those by 1a,b (runs 42-43). Although the activity decreased upon increasing the reaction temperature, 2a seems to be rather suitable 75 as the catalyst precursor in terms of catalytic activity at 50 °C. This is also an interesting contrast because a rapid decrease in the activity was observed if V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-ⁱPr₂C₆H₃) (3c) was employed as the catalyst precursor [the activity by 3c in the presence of Et₂AlCl: 7100 kg-PE/mol-V h (0 °C), 3980 (25 ⁸⁰ °C), 652 (40 °C), plotted in Figure 1].^{6b}

Table 2. Ethylene polymerisation by V(N-2,6-X ₂ C ₆ H ₃)Cl ₂ (O-2,6-R ₂ C ₆ H ₃)
$[X = Cl (1), F (2), Me (3); R = Me (a), F (b)] - Et_2AlCl catalysts.a$

	. (1)	1.1 m x h			
run	cat.(µmol)	Al/V °	temp.	yield	activity
			/ °C	/ mg	
26	1a (0.05)	1000	0	415	49800
27	1a (0.05)	2000	0	465	55800
28	1a (0.05)	3000	0	445	53400
29	1a (0.02)	1000	0	168	50400
30	1a (0.02)	2000	0	144	43200
31	1b (0.05)	500	0	129	15500
32	1b (0.05)	1000	0	145	17400
33	1b (0.05)	2000	0	132	15800
34	2a (0.05)	500	0	178	21400
35	2a (0.05)	1000	0	266	31900
36	2a (0.05)	2000	0	251	30100
37	2a (0.05)	3000	0	227	27200
38	3a $(0.05)^d$	5000	0	97	11700
27	1a (0.05)	2000	0	465	55800
32	1b (0.05)	1000	0	145	17400
35	2a (0.05)	1000	0	266	31900
39	1a (0.02)	2000	25	132	15800
40	1b (0.05)	1000	25	144	17300
41	2a (0.05)	1000	25	185	22200
42	1a (0.02)	2000	50	59	7080
43	1b (0.05)	1000	50	49	5880
44	2a (0.05)	1000	50	116	13900

^{*a*}Conditions: toluene 30 mL, 10 min, ethylene 8 atm. ^{*b*}Al/V molar ratio. ^{*c*}Activity in kg-PE/mol-V·h. ^{*d*}V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) s (**3a**) cited from reference 6d.

Figure 1. Temperature dependence toward the catalytic activity in ethylene polymerisation by $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [1a,b,2a; X = Cl(1), F(2); R = Me(a), F(b)] - Et₂AlCl catalyst systems. Data by 10 $V(N-2,6-Me_2C_6H_3)Cl_2(O-2,6-iPr_2C_6H_3)$ (3c)^{6b} were placed for comparison.

Figure 2 shows plots of the catalytic activity (under optimised conditions summarised in Table 3) against the chemical shifts (δ in ppm) in the ⁵¹V NMR spectra in CDCl₃ (at 25 °C), because we recently demonstrated a good relationship between the catalytic ¹⁵ activity and the chemical shift in the ethylene polymerisation

- using (arylimido)vanadium complexes containing imidazolin-2iminato or imidazolidin-2-iminato ligand in the presence of Et₂AlCl cocatalyst.^{6h} It is interesting to note that a fairly good relationship was also observed in **1a**,**b** and **2a**. The fact might ²⁰ also suggest that a certain degree of electron donation plays a role toward the activity. As assumed in our previous report,^{6h} one simple assumption which one might take into consideration on the basis of the results reported for the half-titanocenes such as
- $Cp'Ti(OMe)_3$ (Cp' = cyclopentadienyl group) in the syndio-²⁵ specific styrene polymerisation¹² or $Cp'TiCl_2(O-2,6-{}^{i}Pr_2C_6H_3)$ in ethylene polymerisation¹³ could be that a stabilization of the active site by more electron-donating substituents is important for the observation of high activity.¹⁴

³⁰ **Table 3.** Summary in ethylene polymerisation by V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me (a), F (b)] - Et₂AlCl catalysts (at 0 $^{\circ}$ C).^{*a*}

run	cat. (µmol)	Al/V ^b	activity ^c	δ (ppm) ⁵¹ V NMR
27	1a (0.05)	2000	55800	-19.4
32	1b (0.05)	1000	17400	-6.0
35	2a (0.05)	1000	31900	-13.0
38	3a $(0.05)^b$	5000	11700	40.3

^{*a*}Data cited from Table 2. ${}^{b}V(N-2,6-Me_2C_6H_3)Cl_2(O-2,6-Me_2C_6H_3)$ (3a) cited from reference 6d.

Figure 2. Plots of catalytic activity (kg-PE/mol-V·h) in ethylene polymerisation (in the presence of Et₂AlCl at 0 °C) vs chemical shifts (δ in ppm) of the vanadium complexes (on the basis of data in Table 3).

3. Ethylene/Norbornene Copolymerisation by V(N-2,6- $_{40} X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [X = Cl (1), F (2); R = Me (a), F (b)] – Al Cocatalyst Systems.

Certain cyclic olefin copolymers (COCs) are amorphous materials with a promising combination of high transparency in the UV-Vis region along with humidity-, heat-resistance (high ⁴⁵ glass transition temperature, T_g),¹⁵ and these polymers have been commercialized (as TOPAS[®])¹⁶ by using metallocene catalysts as ultra-pure (applicable to advanced pharma packaging, food contact films), crystal clear (glass clear, amorphous), high barrier (resistant to moisture, alcohols, acids) materials.¹⁶⁻¹⁸ Since we ⁵⁰ previously reported that V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**3a**) showed unique characteristics as the catalyst precursor in this copolymerisation, we thus explored possibilities for V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me (**a**), F (**b**)] in the presence of Al cocatalysts. The results are summarised in

55 Table 4.

Scheme 3. Copolymerisation of ethylene with norbornene (NBE) by $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ [X = Cl (1), F (2); R = Me (a), F (b)] – Al cocatalyst systems.

⁶⁰ It turned out that these complexes (**1a**,**b**, **2a**,**b**) exhibited remarkable catalytic activities for the copolymerisation, affording high molecular weight polymers with uniform molecular weight

This journal is © The Royal Society of Chemistry [year]

distributions. As reported previously by **3a**, the activities in the presence of Et₂AlCl were higher than those in the presence of MAO. The activity in the presence of MAO (conditions: ethylene 8 atm, NBE 1.0 mmol/mL) increased in the order: 367

- s kg-polymer/mol-V·h (**3a**, run 54),^{6d} 470 (**2a**, run 50) < 775 (**2b**, run 52) < 1540 (**1a**, run 46) < 2450 (**1b**, run 48). The activity in the presence of Et₂AlCl (conditions: ethylene 8 atm, NBE 1.0 mmol/mL) increased in the order: 24000 kg-polymer/mol-V·h (**3a**, run 64),^{6d} 22600 (**2b**, run 62) < 33000 (**1b**, run 58) < 43200
- 10 (2a, run 60) < 44200 (1a, run 56). In terms of the activity, it thus seems likely that the 2,6-dichlorophenylimido analogue (1a) showed the higher catalytic activity than the 2,6-difluorophenylimido analogue (2a) and 2,6-dimethylphenylimido analogue (3a). These also indicate that an introduction of</p>

¹⁵ halogen (Cl, F) into 2,6-position in the phenylimido ligand is effective to increase the catalytic activity as observed in the ethylene polymerisation (Tables 1-2).

In contrast, the NBE contents in the resultant copolymer (estimated by ¹³C NMR spectra according to the reported ²⁰ procedure¹⁷⁻¹⁹) prepared by these complexes (**1a**,**b** and **2a**,**b**) in the presence of Al cocatalyst (under the same conditions) were lower than those by **3a** in most cases [NBE content¹⁹ under ethylene 8 atm, NBE 1.0 mmol/mL: (MAO cocatalyst) 15.8 mol% (**1a**), 16.3 (**1b**) < 22.9 (**2a**), 24.7 (**2b**) < 32.9 (**3a**); (Et₂AlCl ²⁵ cocatalyst) 12.1 mol% (**1a**) < 14.2 (**1b**), 14.3 (**2a**) < 16.8 (**2b**), 17.3 (**3a**)], whereas, as demonstrated previously,^{6d,e} the NBE incorporation was affected by the Al cocatalyst employed.

Table 4. Copolymerisation of ethylene with norbornene (NBE) by V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2), Me (3); R = Me (a), F (b)] – Al ³⁰ cocatalyst systems.^{*a*}

run	cat. (µmol)	Al cocat.	Al/V ^b	NBE conc. ^c	temp. / °C	yield / mg	activity ^d	NBE ^e / mol %	$M_{ m w} imes 10^{-4}$	$M_{\rm w}/M_{\rm n}^{f}$	$T_{\rm g} \left(T_{\rm m}\right)^{\rm g} / {\rm ^oC}$
45	1a (1.0)	d-MAO	2500	0.5	25	347	2080	9.6	20.3	2.98	-2.2 (63.4)
46	1a (1.0)	d-MAO	2500	1.0	25	257	1540	15.8	25.5	2.70	7.5
47	1b (0.5)	d-MAO	1500	0.5	25	265	3180	10.4	22.9	3.31	-4.6 (65.8)
48	1b (0.5)	d-MAO	1500	1.0	25	204	2450	16.3	26.3	2.69	5.5
49	2a (2.5)	d-MAO	2000	0.5	25	272	653	20.9	7.80	1.91	38.8
50	2a (2.5)	d-MAO	2000	1.0	25	196	470	22.9	7.00	1.53	44.9
51	2b (2.5)	d-MAO	1500	0.5	25	387	929	23.8	6.40	1.58	42.4
52	2b (2.5)	d-MAO	1500	1.0	25	323	775	24.7	7.40	1.56	83.6
53	3a $(1.0)^h$	d-MAO	2500	0.5	25	146	875	23.9	53.5	1.79	
54	3a (2.5) ^h	d-MAO	1000	1.0	25	153	367	32.9	20.4	1.85	
55	1a (0.05)	Et ₂ AlCl	2000	0.5	0	416	49900	9.4	9.07	1.66	-4.0 (43.9)
56	1a (0.05)	Et ₂ AlCl	2000	1.0	0	368	44200	12.1	9.52	1.45	2.3
57	1b (0.05)	Et ₂ AlCl	1000	0.5	0	285	34200	8.0	15.1	1.63	-6.0 (57.5)
58	1b (0.05)	Et ₂ AlCl	1000	1.0	0	275	33000	14.2	13.7	1.57	6.1
59	2a (0.05)	Et ₂ AlCl	1000	0.5	0	354	42500	10.0	8.14	1.58	-2.8 (41.8)
60	2a (0.05)	Et ₂ AlCl	1000	1.0	0	360	43200	14.3	6.72	1.58	6.6
61	2b (0.05)	Et ₂ AlCl	1000	0.5	0	206	24700	11.6	13.7	1.69	-4.3 (46.2)
62	2b (0.05)	Et ₂ AlCl	1000	1.0	0	188	22600	16.8	13.1	1.51	8.5
63	3a $(0.05)^{h}$	Et ₂ AlCl	5000	0.5	0	265	31700	10.4	58.2	1.29	
64	3a $(0.05)^h$	Et ₂ AlCl	5000	1.0	0	200	24000	17.3	35.0	1.53	

^{*a*}Conditions: toluene 30 mL, ethylene 8 atm, 10 min, d-MAO white solid [prepared by removing AlMe₃, toluene from TMAO-S] or Et₂AlCl. ^{*b*}Al/V molar ratio. ^cNBE concentration charged (mol/L). ^{*d*}Activity in kg-polymer/mol-V·h. ^{*e*}NBE content (mol %) estimated by ¹³C NMR spectra. ^{*f*}GPC data in 1,2,4-trichlorobenzene *vs* polystyrene standards. ^{*g*}By DSC thermograms. ^{*b*}Data by V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**3a**) cited from reference 6d.

- Table 5 summarizes results in the copolymerisation by 1b MAO and $1a Et_2AlCl$ conducted under rather high NBE concentration and/or low ethylene pressure conditions. The catalytic activity by 1b MAO catalyst system decreased upon increasing the NBE concentration charged, whereas increase in the NBE content in the resultant copolymer was observed without ⁴⁰ significant difference in the M_w values. The similar trend was
- ⁴⁰ significant difference in the M_w values. The similar defined was observed in the copolymerisation by $1a - Et_2AlCl$ catalyst system. The NBE contents prepared by 1b - MAO catalyst system are apparently higher than those prepared by $1b - Et_2AlCl$ catalyst system, due to effect of Al cocatalyst as observed in Table 4 as ⁴⁵ well as reported previously.^{6d,e} No significant decreases in the
- $M_{\rm w}$ values in the resultant copolymers were observed even upon increasing the NBE concentration in the copolymerisation using $1a - Et_2AlCl$ catalyst system. Although the observed fact is somewhat analogous to that in the copolymerisation by 3a - Al
- ⁵⁰ cocatalyst systems, **1a** Et₂AlCl catalyst system showed better catalyst performance in the copolymerisation especially in terms of catalytic activity *under high NBE concentrations* [for example,

the activity by **3a** under NBE conc. of 2.0, 4.0 M were 2440 kgpolymer/mol-V·h, 792, respectively^{6d} vs the activity by **1a** were ⁵⁵ 22700, 13900, respectively]. Moreover, it has been well known that the activities by ordinary metallocene and linked halftitanocene (exemplified as CGC) under these conditions were low.^{18b} Therefore, using **1a** seems to be suitable for synthesis of high molecular weight copolymer with rather high NBE content.

⁶⁰ The resultant polymers were high molecular weight poly(ethylene-*co*-NBE)s with uniform compositions (confirmed by DSC thermograms) as well as molecular weight distributions. On the basis of plots of glass transition temperature (T_g) vs the NBE contents (mol%), the T_g values increased linearly upon ⁶⁵ increasing the NBE contents (Figure 3), as demonstrated previously.^{17,18} A high molecular weight copolymers with rather high T_g value as well as with uniform composition (and molecular weight distribution) could be thus prepared in this catalysis.

Figure 4 shows selected ¹³C NMR spectrum (in 1,2-⁷⁰ dichlorobenzene- d_4 at 120 °C) for poly(ethylene-*co*-NBE)s prepared by V(N-2,6-Cl₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**2a**) – Et₂AlCl catalyst system (ethylene 8 atm, NBE 5.0 M, run 74, NBE content: 32.5 mol%, Table 5).¹⁹ Resonances ascribed to alternating ethylene-NBE sequences as well as isolated NBE units (33.0-33.5 ppm) were observed and no resonances ascribed

s to NBE repeat units were observed.¹⁷⁻¹⁹ Therefore, it seems difficult to prepare the copolymer with an NBE content higher than 50 mol% in this catalytic copolymerisation.

¹⁰ Table 5. Copolymerisation of ethylene with norbornene (NBE) by V(N-2,6-Cl₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [R = Me (1a), F (1b)] – Al cocatalyst systems.^a

run	cat. (µmol)	ethylene / atm	NBE conc. ^b	Al cocat.	yield/ mg	activity ^c	NBE ^d / mol %	${M_{ m w}}^e \times 10^{-5}$	$M_{\rm w}/M_{\rm n}^{\ e}$	$T_{\rm g} (T_{\rm m})^f$ / °C
47	1b (0.5)	8	0.5	d-MAO	265	3180	10.4	2.29	3.31	-4.6 (65.8)
48	1b (0.5)	8	1.0	d-MAO	204	2450	16.3	2.63	2.69	5.5
65	1b (1.0)	8	2.0	d-MAO	269	1610	25.5	1.79	1.92	41.7
66	1b (2.0)	8	3.0	d-MAO	456	1370	27.9	2.59	1.88	71.1
67	1b (2.0)	8	4.0	d-MAO	427	1280	30.1	inse	oluble	75.6
68	1b (2.5)	8	5.0	d-MAO	468	1120	34.4	inse	oluble	82.9
69	1b (2.5)	4	5.0	d-MAO	153	367	35.7	inse	oluble	104.5
70	1b (2.5)	2	5.0	d-MAO	81	194	41.1	inso	oluble	112.4
55	1a (0.05)	8	0.5	Et ₂ AlCl	416	49900	9.4	0.91	1.66	-4.0 (43.9)
56	1a (0.05)	8	1.0	Et ₂ AlCl	368	44200	12.1	0.95	1.45	2.3
71	1a (0.05)	8	2.0	Et ₂ AlCl	189	22700	16.4	16.4	1.57	19.7
72	1a (0.10)	8	3.0	Et ₂ AlCl	298	17900	21.2	12.1	1.45	39.8
73	1a (0.20)	8	4.0	Et ₂ AlCl	462	13900	29.7	12.6	1.74	66.8
74	1a (0.30)	8	5.0	Et ₂ AlCl	284	5680	32.5	13.2	1.77	65.0
75	1a (0.30)	2	5.0	Et ₂ AlCl	86	1720	38.8	1.71	1.59	107.2

^{*a*}Conditions: toluene 30 mL, 10 min, ethylene 8 atm, 25 °C (d-MAO, Al/V = 1500, molar ratio) or 0 °C (Et₂AlCl, Al/V = 2000, molar ratio). ^{*b*}Norbornene (NBE) concentration charged (mol/L). ^{*c*}Activity in kg-polymer/mol-V·h. ^{*d*}NBE content (mol %) estimated by ¹³C NMR spectra.¹⁹ °GPC data in -1,2,4-trichlorobenzene vs polystyrene standards. ^{*f*}By DSC thermograms.

Figure 3. Plots of glass transition temperature (T_g) vs NBE contents.¹⁹

Figure 4. ¹³C NMR spectrum (in 1,2-dichlorobenzene- d_4 at 120 °C) for poly(ethylene-*co*-norbornene)s prepared by V(N-2,6-Cl₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (**2a**) – Et₂AlCl catalyst system (ethylene 8 atm, NBE 5.0 M, ²⁰ run 74, NBE content: 32.5 mol%, Table 5).¹⁹

Conclusions

In summary we have shown that V(N-2,6-X₂C₆H₃)Cl₂(O-2,6-R₂C₆H₃) [X = Cl (1), F (2); R = Me (a), F (b)] – Al cocatalyst systems showed remarkable catalytic activity in ethylene ²⁵ polymerisation, and the activities by 1a,b,2a in the presence of Et₂AlCl were higher than V(N-2,6-Me₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (3a). Complex 2a seems to be rather suitable as the catalyst

This journal is © The Royal Society of Chemistry [year]

precursor in terms of the activity at 50 °C. These complexes also showed higher catalytic activities in the ethylene ³⁰ copolymerisation with norbornene (NBE) than **3a**, affording high molecular weight copolymer with unimodal molecular weight distributions as well as uniform compositions (confirmed by DSC thermograms). In terms of the activity under high NBE concentration, **1a** is the suitable catalyst precursor for synthesis of

³⁵ high molecular weight copolymer with rather high NBE content. We highly believe that this is a promising characteristics for using 2,6-dichlorophenylimido and 2,6-difluorophenylimido analogues as the catalyst precursor for olefin polymerisation, and the fact observed here should be promising for better design of ⁴⁰ efficient catalyst precursors for precise olefin polymerisation.

Experimental Section

General procedure.

All experiments were carried out under a nitrogen atmosphere in a Vacuum Atmospheres drybox. Anhydrous grade toluene, 45 benzene, n-hexane, and dichloromethane (Kanto Kagaku Co., Ltd.) were transferred into a bottle containing molecular sieves (a mixture of 3A 1/16, 4A 1/8, and 13X 1/16) in the drybox under N₂ and were passed through a short alumina column under a N₂ stream prior to use. All chemicals used were of reagent grades 50 and were purified by standard purification procedures. Toluene and AlMe₃ in the commercially available methylaluminoxane [TMAO-212. 9.1 wt% (Al) toluene solution, Tosoh Finechem Co.] were removed under reduced pressure (at ca. 50 °C for removing toluene, AlMe₃ and then heated at >100 °C for 1 h for 55 completion) in the drybox to give white solids. Ethylene for polymerisation was of polymerisation grade (purity >99.9%, Sumitomo Seika Co., Ltd.) and was used as received. Elemental analyses were performed by using EAI CE-440 CHN/O/S

Elemental Analyzer (Exeter Analytical, Inc.). All ¹H, ¹³C, ¹⁹F, and ⁵¹V NMR spectra were recorded on a Bruker AV500 spectrometer (500.13 MHz for ¹H, 125.95 MHz for ¹³C, 470.40 MHz for ¹⁹F, and 131.55 MHz for ⁵¹V). All spectra were

- ⁵ obtained in the solvent indicated at 25 °C unless otherwise noted. Chemical shifts are given in ppm and are referenced to SiMe₄ (δ 0.00 ppm, ¹H, ¹³C), CFCl₃ (δ 0.00, ¹⁹F), and VOCl₃ (δ 0.00, ⁵¹V). Chemical shifts are given in ppm and are referenced to SiMe₄ (δ 0.00 ppm, ¹H, ¹³C) and VOCl₃ (δ 0.00 ppm, ⁵¹V). Coupling
- ¹⁰ constants and half-width values, $\Delta v_{1/2}$, are given in Hz. ¹³C NMR data of the polymers were obtained on a Varian Unity-400 MHz spectrometer at 125 °C, with o-C₆D₄Cl₂ as a solvent, and the NMR spectra were recorded with proton decoupling, and the pulse interval was 5.2 sec, the acquisition time was 0.8 sec, the
- ¹⁵ pulse angle was 90°, and the number of transients accumulated was ca. 6000.
- Molecular weights and molecular weight distributions for the resultant polymers were determined at 150 °C by a PL-GPC 220 type high-temperature chromatograph equipped with three Plgel
- ²⁰ 10- μ m Mixed-B LS type columns. 1,2,4-Trichlorobenzene (TCB) was employed as the solvent at a flow rate of 1.0 mL/min. The calibration was made by polystyrene standard EasiCal PS-1 (PL Ltd). The melting temperatures (T_m) and glass transition temperatures (T_g) of the polymers were measured by differential
- $_{25}$ scanning calorimetry (DSC) using a TA Instruments Q2000 calorimeter equipped with an automated sampler. The data were collected with the heat/cool/heat cycle at a heating rate of 20 °C/min under N_2 atmosphere.

Synthesis of V(N-2,6-Cl₂C₆H₃)Cl₃.

- ³⁰ Into an *n*-octane solution (20 mL) containing 2,6-Cl₂C₆H₃NCO (2.00 g, 10.7 mmol) was added VOCl₃ (2.78 g, 16.1 mmol). The reaction mixture was stirred at 140 °C for overnight and CO₂ gas was released during the reaction time. After the reaction, the mixture was then filtered through a Celite pad using CH₂Cl₂ as
- solvent. The solvent was removed *in vacuo* to give a green solid. The solid was then dissolved in a small amount of CH_2Cl_2 layered by *n*-hexane. The solution was placed in the freezer at – 30 °C to obtain green solid. Yield: 2.44 g (72%). ¹H NMR (C₆D₆): δ 6.29 (d, J = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 7.5 Hz, 1H, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 10.0 Hz, 2H, Ar-H) (t, L_2 = 10.0 Hz, 2H, Ar-H), 5.81 (t, J = 10.0 Hz, 2H, Ar-H) (t, L_2 = 10.0 Hz, 2H
- ⁴⁰ Ar-*H*). ¹³C NMR (CDCl₃): δ 135.8, 131.8, 128.3. ⁵¹V NMR (C₆D₆): δ 262.3 ($\Delta v_{1/2}$ = 358 Hz). Anal. Calcd. for C₆H₃Cl₅NV: C, 22.71; H, 0.95; N, 4.41. Found: C, 22.69; H, 0.71; N, 4.36.

Synthesis of V(N-2,6-F₂C₆H₃)Cl₃.

Into an n-octane solution (20 mL) containing 2,6-F₂C₆H₃NCO

- ⁴⁵ (2.00 g, 12.89 mmol) was added VOCl₃ (3.35 g, 19.34 mmol). The reaction mixture was stirred at 140 °C for overnight and CO₂ gas was released during the reaction time. After the reaction, the mixture was then filtered through a Celite pad using CH₂Cl₂ as solvent. The solvent was removed *in vacuo* to give a green solid.
- ⁵⁰ The solid was then dissolved in a small amount of CH₂Cl₂ layered by *n*-hexane. The solution was placed in the freezer at 30 °C to obtain green solid. Yield: 2.97 g (81 %). ¹H NMR (C₆D₆): δ 5.93 (m, 1H, Ar-*H*), 5.87 (m, 2H, Ar-*H*). ¹³C NMR (CDCl₃): δ 133.1, 111.8, 111.6. ¹⁹F NMR (C₆D₆): δ -113.3. ⁵¹V
- $_{55}$ NMR (C_6D_6): δ 262.7 ($\Delta v_{1/2}$ = 371 Hz). Anal. Calcd. for C_6H_3Cl_3F_2NV: C, 25.34; H, 1.06; N, 4.93. Found: C, 25.49; H, 0.95; N, 4.94.

Synthesis of V(N-2,6-Cl₂C₆H₃)Cl₂(O-2,6-Me₂C₆H₃) (1a).

Into a *n*-hexane solution (50 mL) containing V(N-2,6-⁶⁰ Cl₂C₆H₃)Cl₃ (0.349 g, 1.10 mmol), a *n*-hexane solution (15 mL) of 2,6-Me₂C₆H₃OH (0.122 g, 1.00 mmol) was added in a dropwise manner at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 24 h. The solvent was removed *in vacuo*. The resultant dark ⁶⁵ purple residue was dissolved in *n*-hexane (ca. 10 mL). The solution was then placed in the freezer at -30 °C to obtain dark purple solid and was washed quickly with a small amount of cold hexane and dried *in vacuo*. Yield: 0.32 g (79 %). ¹H NMR (C₆D₆): δ 6.72-6.66 (m, 3H, Ar-*H*), 6.28 (d, *J* = 3.6 Hz, 2H, Ar-70 H), 5.76 (t, *J* = 8.2 Hz, 1H, Ar-*H*), 2.20 (s, 6H, -CH₃). ¹³C NMR

(CDCl₃): δ 129.6, 128.2, 127.8, 126.3, 125.9, 17.1. ⁵¹V NMR (C₆D₆): δ -19.4 ($\Delta v_{1/2}$ = 362 Hz). Anal. Calcd. for C₁₄H₁₂Cl₄NOV: C, 41.72; H, 3.00; N, 3.48. Found: C, 41.34; H, 2.85; N, 3.40.

Synthesis of V(N-2,6-Cl₂C₆H₃)Cl₂(O-2,6-F₂C₆H₃) (1b).

- ⁷⁵ Into a toluene solution (50 mL) containing V(N-2,6-Cl₂C₆H₃)Cl₃ (0.333 g, 1.05 mmol) was added dropwise an toluene solution containing 2,6-F₂C₆H₃OH (0.130 g, 1.0 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and then the mixture was stirred for 24 h. After the reaction, the solvent was removed *in vacuo* to give brown solid. The brown solid was dissolved in a small amount of *n*-hexane. The solution was placed in the freezer at -30 °C to obtain green microcrystal. Yield: 16 mg (52 %). ¹H NMR (C₆D₆): δ 6.39-6.29 (m, 2H, Ar-*H*), 6.26 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 6.20-6.14 (m, 1H, Ar-*H*), 5.76 (t,
- ⁸⁵ *J* = 7.9 Hz, 1H, Ar-*H*). ¹³C NMR (CDCl₃): δ 127.8, 111.6 (dd, *J* = 17.2, 4.9 Hz). ¹⁹F NMR (C₆D₆): δ -127.2. ⁵¹V NMR (C₆D₆): δ 6.0 ($\Delta v_{1/2}$ = 342 Hz). Anal. Calcd. for C₁₂H₆Cl₄F₂NOV: C, 35.07; H, 1.47; N, 3.41. Found: C, 34.81; H, 1.43; N, 3.37.

Synthesis of $V(N-2,6-F_2C_6H_3)Cl_2(O-2,6-Me_2C_6H_3)$ (2a).

⁹⁰ Into a toluene solution (40 mL) containing V(N-2,6-F₂C₆H₃)Cl₃ (0.171 g, 0.60 mmol), a toluene solution (15 mL) of 2,6-Me₂C₆H₃OH (61.0 mg, 0.50 mmol) was added dropwise at -30 °C. The reaction mixture was then warmed slowly to room temperature, and was stirred for 24 h. The solvent was removed
⁹⁵ *in vacuo*, and the resultant red purple residue was dissolved in *n*-hexane (ca. 8 mL). The solution was then placed in the freezer at -30 °C to obtain red purple microcrystals and was washed quickly with a small amount of cold hexane and dried *in vacuo*. Yield: 0.11 g (59 %). ¹H NMR (C₆D₆): δ 6.77-6.69 (m, 3H, Ar-H), 5.87-100 5.76 (m, 3H, Ar-H), 2.22 (s, 6H, -CH₃). ¹³C NMR: δ 130.45 (t, J = 9.2 Hz), 128.19, 126.34, 125.39, 111.23 (dd, J = 19.0, 3.6 Hz), 16.92. ¹⁹F NMR (C₆D₆): δ -115.2. ⁵¹V NMR (C₆D₆): δ -13.0 (Δv_{1/2} = 331 Hz). Anal. Calcd. for C₁₄H₁₂Cl₄NOV: C, 45.43; H, 3.27; N, 3.78. Found: C, 45.35; H, 3.25; N, 3.82.

¹⁰⁵ Synthesis of V(N-2,6-F₂C₆H₃)Cl₂(O-2,6-F₂C₆H₃) (2b).

Into a *n*-hexane solution (45 mL) containing V(N-2,6-F₂C₆H₃)Cl₃ (0.171 g, 0.60 mmol), a *n*-hexane solution (15 mL) of 2,6- $F_2C_6H_3OH$ (65 mg, 0.50 mmol) was added dropwise at -30 °C. The reaction mixture was stirred at -30 °C for 24 h. The solvent ¹¹⁰ was removed *in vacuo*, and the resultant dark brown residue was dissolved in toluene (ca. 1.5 mL), and layered with *n*-hexane (ca. 8 mL). The solution was then placed in the freezer at -30 °C to

6 | *Journal Name*, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

65

obtain dark brown microcrystals and was washed quickly with a small amount of cold *n*-hexane and dried *in vacuo*. ¹H NMR (C₆D₆): δ 6.43-6.35 (m, 2H, Ar-*H*), 6.26-6.20 (m, 1H, Ar-*H*), 5.84 (q, *J* = 8.9 Hz, 3H, Ar-*H*). ¹³C NMR (CDCl₃): 111.59 (dd, *J* = ⁵ 17.1, 5.0 Hz), 111.27 (dd, *J* = 18.9, 3.1 Hz). ¹⁹F NMR (C₆D₆): δ - 114.6, -127.7. ⁵¹V NMR (C₆D₆): δ 3.8 ($\Delta v_{1/2}$ = 370 Hz). Anal. Calcd. for C₁₄H₆Cl₂F₄NOV: C, 38.13 (34.96 + vanadium carbide); H, 1.60; N, 3.71. Found: C, 35.31; H, 1.48; N, 3.84.

Ethylene polymerisation and copolymerisation of ethylene 10 with norbornene (NBE).

Ethylene polymerisations were conducted in toluene by using a 100 mL scale autoclave. The solvent and the prescribed amount of cocatalyst (total solvent volume = 30 mL) were charged into the autoclave in the drybox, and the apparatus was placed under

- ¹⁵ ethylene atmosphere (1 atm). After the addition of a toluene solution (1.0 mL) containing a prescribed amount of the vanadium pre-catalyst via a syringe, the reaction apparatus was immediately pressurized to 8, 4 or 2 atm and the mixture was stirred magnetically for 10 min. After the above procedure,
- ²⁰ ethylene was purged, and the mixture was then poured into MeOH (150 mL) containing HCl (10 mL). The resulting polymer was collected on a filter paper by filtration and was adequately washed with MeOH and then dried *in vacuo*. Experimental procedures for the copolymerisation of ethylene with NBE were
- ²⁵ the same as those for the ethylene polymerisation described above except that prescribed amounts of NBE were added into an autoclave.

Acknowledgment

This project is supported partly by an international joint research ³⁰ program sponsored by Tokyo Metropolitan University, TMU), and we are also grateful to Tosoh Finechem Co. for donating MAO. X.H. acknowledges to Tokyo Metropolitan government (Asian Human Resources Fund) for pre-doctoral fellowship, and N.D. expresses her thanks to DPST (Development and Promotion

³⁵ of Science and Technology Talents Project Scholarship) scholarship from Thailand.

Notes and references

^aDepartment of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-

⁴⁰ 0397, Japan. Fax&Tel: +81-42-677-2547; E-mail: ktnomura@tmu.ac.jp ^bDepartment of Chemistry, Faculty of Science, Mahidol University, Rama IV Rd., Bangkok 10400, Thailand

^cState Key Laboratory of Polymer Physics and Chemistry, Changchun

- Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 45 130022, China
- [†] Electronic Supplementary Information (ESI) available: Selected ¹³C NMR spectra and DSC thermograms for poly(ethylene-*co*-norbornene)s. See DOI: 10.1039/b000000x/
- ‡ N. Diteepeng and X.-Y, Tang: equal contribution as the first author
- ⁵⁰ 1 (a) W. L. Carrick, J. Am. Chem. Soc., 1958, **80**, 6455; (b) W. L. Carrick, R. W. Kluiber, E. F. Bonner, L. H. Wartman, F. M. Rugg and J. J. Smith, J. Am. Chem. Soc., 1960, **82**, 3883; (c) G. W. Phillips and W. L. Carrick, J. Polym. Sci., 1962, **59**, 401.
- 2 (a) E. Junghanns, O. Gumboldt and G. Bier, *Makromol. Chem.*, 1962,
 58, 18; (b) G. Natta, G. Mazzanti, A. Valvassori, G. Sartori and D. Fiumani, *J. Polym. Sci.*, 1961, 51, 411.
- 3 For example, D. L. Christman and G. I. Keim, *Macromolecules*, 1968, 1, 358.

- 4 (a) Y. Doi, S. Ueki and T. Keii, Macromolecules, 1979, 12, 814; (b)
- Y. Doi, T. Koyama and K. Soga, *Makromol. Chem.*, 1985, 186, 11.
 Related reviews for olefin polymerisation catalysts including vanadium complexes, (a) S. Gambarotta, *Coord. Chem. Rev.*, 2003, 237, 229; (b) H. Hagen, J. Boersma and G. van Koten, *Chem. Soc. Rev.*, 2002, 31, 357; (c) P. D. Bolton and P. Mountford, *Adv. Synth.*
 - *Catal.*, 2005, **347**, 355; (d) V. C. Gibson and Y. Mohlfold, *Auv. Synth. Catal.*, 2005, **347**, 355; (d) V. C. Gibson and S. K. Spitzmesser, *Chem. Rev.*, 2003, **103**, 283; (e) K. Nomura, In *New Developments in Catalysis Research*, Bevy L. P. Ed.; Nova Science Publishers, Inc.: New York, 2005, 199; (f) C. Redshaw, *Dalton Trans.*, 2010, **39**, 5595; (g) K. Nomura and S. Zhang, *Chem. Rev.*, 2011, **111**, 2342.
- Related references are cited therein. (h) K. Nomura and W. Zhang, in Lecture Notes in Chemistry series "Organometallic Reactions and Polymerization", ed. K. Osakada, Springer-Verlag, Berlin Heidelberg, 2014, p89.
- 6 (a) K. Nomura, A. Sagara and Y. Imanishi, *Chem. Lett.*, 2001, 30, 36;
 (b) K. Nomura, A. Sagara, Y. Imanishi, *Macromolecules*, 2002, 35, 1583;
 (c) W. Wang, J. Yamada, M. Fujiki and K. Nomura, *Catal. Commun.*, 2003, 4, 159;
 (d) W. Wang and K. Nomura, *Adv. Synth. Catal.*, 2006, 348, 743;
 (f) Y. Onishi, S. Katao, M. Fujiki and Y. Synth. Catal., 2006, 348, 743;
- K. Nomura, Organometallics, 2008, 27, 2590; (g) S. Zhang, S. Katao,
 W.-H. Sun and K. Nomura, Organometallics, 2009, 28, 5925; (h) K.
 Nomura, B. K. Bahuleyan, S. Zhang, P. M. V. Sharma, S. Katao, A.
 Igarashi, A. Inagaki and M. Tamm, Inorg. Chem., 2014, 53, 607.
 Selected examples for olefin polymerisation with vanadium complex
- Selected examples for olefin polymerisation with vanadium complex catalysts (at the early stage till 2002),^{5,6a,b} see: (a) F. J. Feher and R. L. Blanski, *Organometallics*, 1993, 12, 958; (b) M. P. Coles and V. C. Gibson, *Polym. Bull.*, 1994, 33, 529; (c) S. Scheuer, J. Fischer and J. Kress, *Organometallics*, 1995, 14, 2627; (d) P. Sobota, J. Ejfler, S. Szafert, T. Głowiak, I. O. Fritzky and K. Szczegot, *J. Chem. Soc.*,
- Dalton Trans., 1995, 1727; (e) N. Desmangles, S. Gambarotta, C. Bensimon, S. Davis and H. Zahalka, J. Organomet. Chem., 1998, 562, 53; (f) M. J. R. Brandsma, E. A. C. Brussee, A. Meetsma, B. Hessen and J. H. Teuben, Eur. J. Inorg. Chem., 1998, 1867; (g) E. A. C. Brussee, A. Meetsma, B. Hessen and J. H. Teuben, Organometallics,
- ^{1998,} 17, 4090; (h) P. T. Witte, A. Meetsma and B. Hessen, *Organometallics*, 1999, 18, 2944; (i) Z. Janas, L. B. Jerzykiewicz, R. L. Richards and P. Sobota, *Chem. Commun.*, 1999, 1015; (j) D. Reardon, F. Conan, S. Gambarotta, G. Yap and Q. Wang, *J. Am. Chem. Soc.*, 1999, 121, 9318; (k) E. A. C. Brussee, A. Meetsma, B.
- Hessen and J. H. Teuben, Chem. Commun., 2000, 497; (1) H. Hagen, J. Boersma, M. Lutz, A. L. Spek and G. van Koten, Eur. J. Inorg. Chem., 2001, 117; (m) V. V. Kotov, E. V. Avtomonov, J. Sundermeyer, E. Aitola, T. Repo and D. A. Lemenovskii, J. Organomet. Chem., 2001, 640, 21; (n) V. C. Gibson, C. Redshaw and D. J. C. Kotov, C. C. Redshaw and C. S. Statistica and C. S. Statistica and S. Statistica and S. S. Statistica and S. Statistica
- M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2001, 767; (o) S. Milione, G. Cavallo, C. Tedesco and A. Grassi, J. Chem. Soc., Dalton Trans., 2002, 1839; (p) K. Feghali, D. J. Harding, D. Reardon, S. Gambarotta, G. Yap and Q. Wang, Organometallics, 2002, 21, 968; (q) T. Rüther, K. J. Cavell, N. C. Braussaud, B. W. Skelton and A. H.
- 110 White, J. Chem. Soc., Dalton Trans., 2002, 4684; (r) D. Reardon, J. Guan, S. Gambarotta, G. P. A. Yap and D. R. Wilson, Organometallics, 2002, 21, 4390.
 - 8 (a) S. Zhang and K. Nomura, J. Am. Chem. Soc., 2010, 132, 4960; (b)
 A. Igarashi, S. Zhang and K. Nomura, Organometallics, 2012, 31,
- ¹¹⁵ 3575; (c) K. Nomura, A. Igarashi, S. Katao, W. Zhang and W.-H. Sun, *Inorg. Chem.*, 2013, **52**, 2607; (d) A. Igarashi, W. Zhang, W.-H. Sun and K. Nomura, *Catalysts*, 2013, **3**, 148; (e) X.-Y. Tang, A. Igarashi, W.-H. Sun, A. Inagaki, J. Liu, W. Zhang, Y.-S. Li and K. Nomura, *Organometallics*, 2014, **33**, 1053.
- For example, (*a*) R. R. Schrock, J. Y. Jamieson, S. J. Dolman, S. A. Miller, P. J. Jr. Bonitatebus and A. H. Hoveyda, *Organometallics*, 2002, 21, 409; (*b*) S. Arndt, R. R. Schrock and P. Müller, *Organometallics*, 2007, 26, 1279; (*c*) R. R. Schrock, *Chem. Rev.*, 2009, 109, 3211; (*d*) R. R. Schrock, A. J. Jiang, S. C. Marinescu, J. H. Simpson and P. Müller, *Organometallics*, 2010, 29, 5241.
 - 10 Part of these preliminary reulsts were presented at *the 60th symposium of Organometallic Chemistry, Japan*, Tokyo, Japan, September, 2013.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 | 7

- 11 (a) D. D. Devore, J. D. Lichtenhan, F. Takusagawa and E. A. Maatta, J. Am. Chem. Soc., 1987, 109, 7408; (b) J. -K. F. Buijink, J. H. Teuben, H. Kooijman and A. L. Spek, Organometallics, 1994, 13, 2922; (c) K. Nomura, R. R. Schrock and W. M. Davis, Inorg. Chem., 1996, 35, 3695.
- ⁵ 1996, **35**, 3695.
 12 (a) J. Schellenberg, *Prog. Polym. Sci.*, 2009, **34**, 688; (b) N. Tomotsu, N. Ishihara, T. H. Newman and M. T. Malanga, *J. Mol. Catal. A*, 1998, **128**, 167; (c) N. Tomotsu and N. Ishihara, *Catal. Sur. Jpn.*, 1997, **1**, 89.
- 10 13 K. Nomura, N. Naga, M. Miki, K. Yanagi and A. Imai, Organometallics, 1998, 17, 2152.
- 14 Although the activity data are on the basis of those under the optimised conditions, we need further discussion and consideration concerning the percentage of the active species form in situ in the presence of these Al cocatalyst. According to this trend, it seems likely that 2b (δ 2.7 ppm in ⁵¹V NMR in CDCl₃ at 25 °C) showed the low activity.
- 15 (a) W. Kaminsky, I. Beulich and M. Arndt-Rosenau, Macromol. Symp., 2001, 173, 211; (b) W. Kaminsky, Angew. Makromol. Chem.,
- 20 1994, 223, 101; (c) H. Cherdron, M.-J. Brekner and F. Osan, Angew. Makromol. Chem., 1994, 223, 121; (d) V. Dragutan and R. Streck, "Catalytic Polymerisation of Cycloolefins," Studies in Surface Science and Catalysis, vol 131, Elsevier, Amsterdam, 2000; (e) K. Nomura, Chin. J. Polym. Sci., 2008, 26, 513. References are cited therein.
- 16 For example: http://www.topas.com/products/topas-coc-polymers.
- (a) A. Provasoli, D. R. Ferro, I. Tritto and L. Boggioni, Macromolecules, 1999, 32, 6697; (b) I. Tritto, C. Marestin, L. Boggioni, L. Zetta, A. Provasoli and D. R. Ferro, Macromolecules,
- 2000, 33, 8931; (c) I. Tritto, C. Marestin, L. Boggioni, M. C. Sacchi,
 H.-H. Brintzinger and D. R. Ferro, *Macromolecules*, 2001, 34, 5770;
 (d) I. Tritto, L. Boggioni, J. C. Jansen, K. Thorshaug, M. C. Sacchi and D. R. Ferro, *Macromolecules*, 2002, 35, 616.
- For example, (a) K. Nomura, M. Tsubota and M. Fujiki,
 Macromolecules, 2003, 36, 3797; (b) K. Nomura, W. Wang, M. Fujiki and J. Liu, *Chem. Commun.* 2006, 2659.
- 19 Selected ¹³C NMR spectra and DSC thermograms in the poly(ethylene-*co*-norbornene)s are shown in the Electronic Supplementary Information (ESI).

40

8 | Journal Name, [year], **[vol]**, 00–00

Contents Abstract

Ethylene Polymerisation and Ethylene/Norbornene Copolymerisation by Aryloxo-Modified Vanadium(V) Complexes Containing 2,6-Difluoro-,

Dichloro-Phenylimido Complexes

Nichabhat Diteepeng,^{*a,b,*‡} Xiaoyan Tang,^{*a,c,*‡} Xiaohua Hou,^{*a*} Yue-Sheng Li,^{*c*} Khamphee Phomphrai,^{*b*} and Kotohiro Nomura^{*a*}*

^aDepartment of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan. E-mail: ktnomura@tmu.ac.jp ^bDepartment of Chemistry, Mahidol University, Bangkok 10400, Thailand ^cState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

 $V(N-2,6-X_2C_6H_3)Cl_2(O-2,6-R_2C_6H_3)$ (X = Cl, F; R = Me, F), showed remarkable activity in ethylene polymerisation and the copolymerisation with norbornene in the presence of Et₂AlCl.

