Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

High-pressure synthesis, crystal structure and magnetic properties

of TlCrO₃ perovskite[†]

Wei Yi,^{*a,b*} Yoshitaka Matsushita,^{*c*} Yoshio Katsuya,^{*d*} Kazunari Yamaura,^{*e*} Yoshihiro Tsujimoto,^{*f*} Igor A. Presniakov,^{*g*} Alexey V. Sobolev,^{*g*} Yana S. Glazkova,^{*g*} Yuliya O. Lekina,^{*g*} Naohito Tsujii,^{*h*} Shigeki Nimori,^{*i*} Kanji Takehana,^{*i*} Yasutaka Imanaka^{*i*} and Alexei A. Belik^{**a*}

^aInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. E-mail: Alexei.Belik@nims.go.jp

^bInstitute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China.

^cMaterials Analysis Station, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^{*d*}Synchrotron X-ray Station at SPring-8, NIMS, Kohto 1-1-1, Sayo-cho, Hyogo 679-5148, Japan.

^eSuperconducting Properties Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

^fMaterials Processing Unit, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

⁸Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia.

^hQuantum Beam Unit, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

¹Tsukuba Magnet Laboratory, NIMS, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan.

[†] Electronic supplementary information (ESI) available: laboratory XRPD patterns, temperature dependence of the lattice parameters between 5 and 300 K, details of magnetic properties.

Abstract

TIMO₃ perovskites (M^{3+} = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl³⁺-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO3 investigated with Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO₃ perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of $TICrO_3$ is refined using synchrotron X-ray powder diffraction data: space group *Pnma* (No. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO₃ crystallizes in the GdFeO₃-type structure similar to other members of the perovskite chromite family, $ACrO_3$ (A^{3+} = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO₃ are close to those of DyCrO₃; however, the Néel temperature of TlCrO₃ ($T_{\rm N} \approx 89$ K) is much smaller than that of DyCrO₃ and close to that of InCrO₃. Isothermal magnetization studies show that $TlCrO_3$ is a fully compensated antiferromagnet similar to ScCrO₃ and InCrO₃, but in contrast with $RCrO_3$ ($R^{3+} = Y$ and La-Lu). ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at $T_{N2} = 87.0$ K and T_{N1} = 89.3 K. Magnetic anomalies near T_{N2} are suppressed by static magnetic fields and by 5 % iron doping.

Introduction

Perovskite-type compounds with the general formula $R^{3+}B^{3+}O_3$, where $R^{3+} = Y$ and La-Lu and $B^{3+} = V$, Cr, Mn, Fe, Co, Ni and Ni_{0.5}Mn_{0.5}, have been attracting a lot of attention for decades. RVO₃ compounds have been investigated in connection with different orbital and spin orderings and negative magnetization.¹⁻³ Some RCrO₃ compounds exhibit spin-reorientation transitions, and doped RCrO₃ are good oxygenion conductors and show sensitivity toward methanol, ethanol, some gases and humidity.⁴ RMnO₃-based materials exhibit multiferroic properties, colossal magnetoresistance, different charge and orbital orderings, and ferromagnetic (FM), antiferromagnetic (AFM), insulating and metallic properties.⁵ RFeO₃ compounds have high magnetic ordering temperatures^{6,7} and also multiferroic properties.⁸ RCoO₃ compounds have been investigated a lot because of spin-state transitions of Co^{3+,9} RNiO₃ compounds are interesting because of charge orderings and metal-insulator transitions.¹⁰ Most of the $R^{3+}B^{3+}O_3$ perovskites crystallize in the GdFeO₃-type Pnma structure, and monoclinic distortions of the GdFeO₃ structure are observed in RNiO₃ due to charge disproportionation on Ni^{3+} ions¹⁰ and R_2NiMnO_6 due to Ni^{2+} and Mn^{4+} ordering.¹¹

If we consider the extended family of $R^{3+}B^{3+}O_3$ perovskites (abbreviated as $A^{3+}B^{3+}O_3$ hereinafter) we will find more peculiarities and interesting behaviours. All members with A^{3+} = Bi show distinct structural and physical properties in comparison with R^{3+} = Y and La-Lu because of the lone electron pair of Bi³⁺ and the covalency of the Bi³⁺-O bonds.¹² BiCrO₃ and BiMnO₃ adopt the space group *C*2/*c*, and BiMnO₃ is the only stoichiometric trivalent perovskite manganite with ferromagnetic properties ($T_{\rm C} = 100$ K). BiCoO₃ has a polar *P*4*mm* structure with supertetragonality and high-spin Co³⁺ ions.¹³ BiNiO₃ has the charge disproportionation on the Bi ions to actually yield Bi_{0.5}³⁺Bi_{0.5}⁵⁺Ni²⁺O₃ and triclinic symmetry (space group *P*-1); but the charge distribution restores to the trivalent Bi³⁺Ni³⁺O₃, and the symmetry to the *Pnma* space group above about 4 GPa at room temperature (RT).¹⁴ BiFeO₃ (space group *R*3*c*)¹⁵

There exist a number of perovskite compounds with $A^{3+} = \text{In}$, for example, InCrO₃,¹⁷ InRhO₃,¹⁷ (In_{1-y}Mn_y)MnO₃ (1/9 $\leq y \leq 1/3$)¹⁸ and In₂NiMnO₆,¹⁹ whose structural and physical properties have just recently been clarified.¹⁸⁻²¹ Interestingly, even though Sc^{3+} ($r_{VIII} = 0.870$ Å) is smaller than In^{3+} ($r_{VIII} = 0.92$ Å),²² the number of reported perovskites with $A^{3+} = Sc$ is larger than that with $A^{3+} = In$.²³ They include $ScVO_3$,²⁴ $ScCrO_3$,^{20,25} $ScMnO_3$,²⁶ $ScRhO_3$,²¹ ($Sc_{0.95}Co_{0.05}$)CoO₃,²³ $Sc_2NiMnO_6^{23}$ and $Sc(Ni,Mn)O_3$;²⁷ most of them have been prepared just recently for the first time. Peculiarities in perovskites with $A^{3+} = Sc$ and In appear because of the small size of Sc^{3+} and In^{3+} ions and resulting large structural distortions and because of the covalency of the In^{3+} -O bonds.

One can expect peculiarities in perovskites with $A^{3+} = Tl^{17,28}$ because of the strong covalency of the Tl³⁺-O bonds. Detailed structural and physical properties have been reported for TlFeO₃,^{6,7} TlNiO₃^{29,30} and just recently for TlMnO₃.³¹ It was indeed found that the Néel temperatures, T_N , of TlFeO₃ and TlNiO₃ are much smaller than those of the corresponding *R*FeO₃ and *R*NiO₃ families (R = Y and La-Lu), while the unit cell volumes of TlFeO₃ and TlNiO₃ are close to those of DyFeO₃ and DyNiO₃, respectively.^{6,29} TlMnO₃ was found to crystallize in a triclinically distorted GdFeO₃-type structure with space group *P*-1, and properties of TlMnO₃ are distinct from those of all other *A*MnO₃ manganites ($A^{3+} = Sc$, Y, La-Lu and Bi).³¹ For TlCrO₃, only lattice parameters but no properties have been reported.¹⁷

Therefore, in this work, we describe the synthesis, crystal structure and properties of TlCrO₃. We find that TlCrO₃ has the same peculiarities as those found in TlFeO₃^{6,7} and TlNiO₃,^{29,30} namely, T_N of TlCrO₃ is much smaller than that of DyCrO₃, but the unit cell volume and Cr-O-Cr bond angles of TlCrO₃ are close to those of DyCrO₃. Isothermal magnetization studies show that TlCrO₃ is a fully compensated antiferromagnet similar with ScCrO₃ and InCrO₃, but in contrast with *R*CrO₃ ($R^{3+} = Y$ and La-Lu). ac and dc magnetization measurements revealed the existence of two Néel temperatures with very close values at $T_{N2} = 87.0$ K and $T_{N1} = 89.3$ K.

Experimental

TlCrO₃ was prepared from a stoichiometric mixture of Cr_2O_3 (99.9 %) and Tl_2O_3 (99.99 %) taking care because of the high toxicity of thallium and its compounds. The mixture (with the weight of about 0.7 g) was placed in Au capsules and treated at 6 GPa in a belt-type high-pressure apparatus at 1500 K for 2 h (heating rate to the desired temperature was 10 min). After the heat treatment, the samples were quenched to RT, and the pressure was slowly released. The TlCrO₃ samples were dark-green

pellets, stable in air. $TlCr_{0.95}{}^{57}Fe_{0.05}O_3$ was prepared using the same method from stoichiometric mixtures of Cr_2O_3 , Tl_2O_3 and ${}^{57}Fe_2O_3$.

X-ray powder diffraction (XRPD) data were collected at RT on a RIGAKU Ultima III diffractometer using CuK α radiation (2 θ range of 10–100°, a step width of 0.02°, and a counting time of 2 s/step). TlCrO₃ contained trace amounts of Cr₂O₃ impurity (Figure S3 in electronic supplementary information (ESI)). The refined lattice parameters of TlCr_{0.95}⁵⁷Fe_{0.05}O₃ at RT were a = 5.4009(1) Å, b = 7.6461(2) Å and c =5.2991(1) Å. Low-temperature XRPD data of TlCrO₃ were measured between 4.8 and 300 K on a RIGAKU SmartLab instrument using CuK α 1 radiation (45 kV, 200 mA; 2 θ range of 5–120°, a step width of 0.01°, and scan speed of 4 deg/min) and a 4 K cryostat system. No structural phase transitions were detected, and no anomalies in the temperature dependence of the lattice parameters were found at T_N (Figure S4 in ESI); the refined lattice parameters of TlCrO₃ at 4.8 K were a = 5.3974(1) Å, b =7.6426(2) Å and c = 5.2928(1) Å.

Synchrotron XRPD data of TlCrO₃ were measured at 293 K on a large Debye-Scherrer camera at the BL15XU beam line of SPring-8.^{32,33} The intensity data were collected between 1° and 61.5° at 0.003° intervals in 20; the incident beam was monochromatized at $\lambda = 0.65298$ Å. The sample was packed into a Lindenmann glass capillary (inner diameter: 0.1 mm), which was rotated during the measurement. The absorption coefficient was also measured, and Rietveld analysis was applied using the RIETAN-2000 program.³⁴

dc magnetic susceptibilities (χ = M/H) were measured with SQUID magnetometers (Quantum Design, MPMS-1T and MPMS-XL) between 2 and 400 K in different applied magnetic fields under both zero-field-cooled (ZFC) and fieldcooled (FC) conditions and using pieces of pellets. FC measurements were performed on cooling (FCC) from high temperatures to 2 K and on warming (FCW) after the FCC measurements. In all ZFC measurements, a sample was rapidly (within 3-5 min) inserted into a magnetometer, which was kept at 10 K; then, temperature was set to 2 K, and finally a measurement magnetic field was applied. Isothermal magnetization measurements (M vs H) were performed between -70 and 70 kOe at 2 K and between -10 and 10 kOe at other temperatures using the ZFC and FC regimes. In the FC regime, a sample was cooled to a desired temperature at 10 kOe from 300 K with the cooling rate of 10 K/min; two branches were measured from 10 kOe to -10 kOe and

Dalton Transactions Accepted Manuscript

from -10 kOe to 10 kOe. High-field M vs H measurements were performed on the NIMS hybrid magnet at 2 K between 0 and 280 kOe. In the ZFC regime, a sample was rapidly inserted into a magnetometer kept at a desired temperature; three branches were measured from 0 Oe to 10 kOe, from 10 kOe to -10 kOe, and from -10 kOe to 10 kOe. Frequency dependent ac susceptibility measurements at different static magnetic fields (H_{dc} = 0, 10, 100, 1000 and 10000 Oe) were performed with a Quantum Design MPMS-1T instrument from 150 to 2 K at frequencies (*f*) of 1.99 and 299.5 Hz and an applied oscillating magnetic field (H_{ac}) of 5 Oe. Specific heat, *C*_p, was recorded between 2 and 300 K on cooling at 0 and 90 kOe by a pulse relaxation method using a commercial calorimeter (Quantum Design PPMS). Dielectric properties of TlCrO₃ were measured using an Agilent E4980A LCR meter between 3 and 300 K in the frequency range of 100 Hz and 2 MHz.

⁵⁷Fe Mössbauer spectra were recorded at 12 and 300 K using a conventional constant-acceleration spectrometer MS-1104Em in the transmission geometry. A radiation source ⁵⁷Co(Rh) was kept at RT. All isomer shifts are referred to α -Fe at 300 K. Experimental spectra were processed and analysed using methods of spectral simulations implemented in the SpectrRelax program.³⁵ We had to use a relatively large ⁵⁷Fe concentration (5%) because of strong absorption of γ rays by heavy Tl³⁺ cations.

Results

Structural parameters of TlCrO₃ are summarized in Table 1, and a picture of the corresponding crystal structure is shown in Figure 1. Experimental, calculated and difference synchrotron XRPD profiles are shown in Figure 2. Our lattice parameters of TlCrO₃ (a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å) agree very well with the reported values (a = 5.405 Å, b = 7.647 Å and c = 5.302 Å).¹⁷ Table 2 gives the primary bond lengths and bond angles, bond-valence sums (BVS)³⁶ and a distortion parameter of the CrO₆ octahedron (Δ_d (Cr)). The BVS values of all the cation sites are close to the formal ionic values of +3.

The dc magnetic susceptibilities of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ are shown on Figure 3a and in Figures S5, S6 and S10-13 of ESI. At small magnetic fields, we

observed a difference between the ZFC and FCC curves below about 89 K for TlCrO₃ and 88 K for TlCr_{0.95}⁵⁷Fe_{0.05}O₃; the difference is typical for AFM materials with small spin canting. However, the FCC curves were different from those of materials with well-defined weak ferromagnetism, e.g. YCrO₃ (Figure S5 of ESI). In YCrO₃, FCC curves at small magnetic fields are much larger than ZFC curves, and FCC curves have a tendency to saturate. This fact shows that weak ferromagnetism of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ is extremely small; it is indeed suppressed above about 500 Oe in TlCrO₃ (Figure S6b of ESI) and 100 Oe in TlCr_{0.95}⁵⁷Fe_{0.05}O₃. The ZFC and FCC curves almost coincided with each other at 10 kOe; and except for peak-like anomalies at *T*_N, they were typical for antiferromagnets. Interestingly, the ZFC curves at 10 Oe, 100 Oe and 10 kOe also almost coincided with each other in TlCrO₃ (Figure S10 in ESI). The inverse FCC magnetic susceptibilities (at 70 kOe) between 200 and 400 K were fit by the Curie-Weiss equation

$$\chi(T) = \mu^2_{\text{eff}} N(3k_{\text{B}}(T-\theta))^{-1}$$
(1)

where μ_{eff} is effective magnetic moment, *N* is Avogadro's number, k_B is Boltzmann's constant, and θ is the Weiss constant. The fitting parameters were $\mu_{eff} = 3.973(8)\mu_B$ and $\theta = -245(2)$ K for TlCrO₃ and $\mu_{eff} = 4.049(6)\mu_B$ and $\theta = -234(2)$ K for TlCr_{0.95}⁵⁷Fe_{0.05}O₃. The μ_{eff} values were very close to those of ScCrO₃ ($\mu_{eff} = 3.965\mu_B$), InCrO₃ ($\mu_{eff} = 3.945\mu_B$) and YCrO₃ ($\mu_{eff} = 3.958\mu_B$)²⁰ and to the localized Cr³⁺ moment of $3.87\mu_B$.

Specific heat of TlCrO₃ showed sharp anomalies near $T_N = 89$ K (Figure 3b) indicating the onset of long-range magnetic ordering. The magnetic field of 90 kOe had almost no effect indicating the robustness of the AFM state. The specific heat between 2 and 17 K could be fit by the equation (the insert of Figure 3b)

$$C_{\rm p}(T) = \gamma T + \beta_1 T^3 + \beta_2 T^5$$
 (2)

where the first term is associated with the electronic contribution, and the second and third terms describe the lattice contribution. The γ coefficient was found to be very small; therefore, γ was fixed at zero. The fitted parameters were $\beta_1 = 0.2238(11)$ mJmol⁻¹K⁻⁴ and $\beta_2 = 4.92(5) \times 10^{-4}$ mJmol⁻¹K⁻⁶. The β_1 value gives the Debye temperature, $\Theta_D = (234Nk_B/\beta_1)^{1/3}$, of 206 K. A broad peak was observed at 19.6 K on C_p/T^3 vs T curves of TlCrO₃, which could originate from the Einstein mode in the lattice contribution to the specific heat because of the presence of heavy Tl³⁺ ions (Figure S14 of ESI).

The M vs H curves of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ at 2 K are given on Figure 4a; they showed an up-turn deviation from the linear behaviour at magnetic fields higher than about 20 kOe. This fact could indicate an increase of a ferromagnetic contribution and a possible field-induced phase transition above 70 kOe. The M vs H curves of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ were very close to each other and to those of ScCrO₃ and InCrO₃.²⁰ The magnetization of TlCrO₃ reached about $0.04\mu_B$ at 2 K and 50 kOe. The M vs H curves were shifted from the origin (a negative exchange bias effect) when they were measured in the FC regime below $T_{\rm N}$ (Figure 4b). No shifts were found in the ZFC regime below $T_{\rm N}$ and in the FC regime above $T_{\rm N}$. This behaviour was observed in many other materials 3,37 (e.g. ScCrO₃ and InCrO₃) 23 and attributed to different inhomogeneities, such as, the presence of magnetic impurities, where some spins can be pinned. Despite the detection of extremely weak ferromagnetism on the FCC χ vs T curves at small magnetic fields (Figure 3a), the (ZFC) M vs H curves showed no detectable hysteresis and no remnant magnetization (Figure 4) indicating a fully compensated antiferromagnetic state. To check the existence of field-induced transitions, M vs H curves of TlCrO₃ and ScCrO₃ were measured up to 280 kOe at 2 K (Figure 5). Field-induced transitions were indeed detected from about 98 kOe in ScCrO₃ and 104 kOe in TlCrO₃, where the M vs H curves demonstrated changes in the slope. The magnetization of TlCrO₃ reached about $0.28 \mu_B$ at 2 K and 280 kOe, and that of ScCrO₃ - $0.36 \mu_B$. The M vs H curves between 200 and 280 kOe followed the following equations: $M = 4.30(9) * 10^{-2} \mu_B +$ $1.127(4)*10^{-6}$ H(Oe) for ScCrO₃ and M = $0.96(11)*10^{-2}\mu_B + 9.70(4)*10^{-7}$ H(Oe) for TlCrO₃. It means that the field-induced small canted magnetic moment is larger in ScCrO₃ in comparison with TlCrO₃. We note that very similar high-field M vs H curves were observed in BiFeO₃, where a field-induce transition from about 200 kOe corresponds to the destruction of the cycloid magnetic structure.¹⁵

The ac susceptibility data of TlCrO₃ measured with a step of 0.2 K near T_N showed that there are two transitions with close temperatures at $T_{N2} = 87.0$ K and $T_{N1} = 89.3$ K (Figure 6a). The transition at 87.0 K had very sharp peaks (the width of the peaks was about 1 K) on both χ' vs T and χ'' vs T curves; the existence of peaks on the χ'' vs T curves indicates the appearance of a weak ferromagnetic moment. The transition at 89.3 K showed λ -type anomalies on the χ' vs T curves and no anomalies at the χ'' vs T curves. Identical behaviour was found in ScCrO₃ with $T_{N2} = 68.6$ K and $T_{N1} =$

73.0 K.²⁰ Sharp anomalies at T_{N2} on both χ' vs T and χ'' vs T curves were completely suppressed in TlCr_{0.95}⁵⁷Fe_{0.05}O₃, that is, by doping; and this compound showed only λ -type anomalies on the χ' vs T curves at $T_N = 87.5$ K (Figure S7 of ESI). Sharp anomalies at T_{N2} on both χ' vs T and χ'' vs T curves in TlCrO₃ were also suppressed by a static magnetic field (Figure 7a); at fields above 100 Oe, no anomalies can be detected on T_{N2} . On the other hand, a static magnetic field of even 10 kOe had no effects on other parts of the χ' vs T and χ'' vs T curves of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ (Figure S7 of ESI).

After finding the existence of two Néel temperatures at $T_{N2} = 87.0$ K and $T_{N1} = 89.3$ K by ac susceptibility measurements, dc magnetic susceptibility measurements were repeated with a fine step of 0.2 K near T_N (Figures 7b and 8). With the 0.2 K step, dc data also revealed the existence of two peaks on the ZFC curves and two steps on the FCC and FCW curves. dc magnetic anomalies near $T_{N2} = 87.0$ K were strongly suppressed by a magnetic field. It should be noted that no signs of a double transition near T_N were detected with a measurement step of 1 K (Figure S12 of ESI).

Dielectric measurements showed a very small kink on the dielectric constant of TlCrO₃ at T_N (Figure S15 of ESI) similar to the dielectric data of ScCrO₃ and InCrO₃.²⁰ The kink in TlCrO₃ was observed at frequencies of 200 kHz-2 MHz; at low frequencies, strong dielectric relaxation appeared that masked the anomaly at T_N . The dielectric relaxation appeared at the intermediate temperatures of 90-160 K and at low temperatures of 5-30 K; the similar behaviour was also found in ScCrO₃.²⁰ We note that the dielectric constant of TlCrO₃ exhibited a much stronger kink at about 45 K (at 2 MHz); however, that kink was strongly frequency-dependent and coincided with the dielectric relaxation processes, therefore, it is believed to be extrinsic.

Mössbauer spectra of TlCr_{0.95}⁵⁷Fe_{0.05}O₃ recorded at $T > T_N$ consisted of a symmetric quadrupole doublet (Figure 9a) with the isomer shift ($\delta_{300K} = 0.36(1)$ mm/s) corresponding to the high spin Fe³⁺ ions in the octahedral oxygen coordination.³⁸ Full width at half maximum ($W_{300K} = 0.31(1)$ mm/s) of the doublet was close to the instrumental resolution (0.28(1) mm/s for α -Fe₂O₃) giving evidence for one crystallographic site for Fe³⁺ ions in agreement with the crystal structure. The quadrupole splitting of the doublet ($\Delta_{300K} = 0.46(1)$ mm/s) was in good agreement with $\Delta_{623K} = 0.47(2)$ mm/s in TlFeO₃.⁶ The electric field gradient (EFG) at the ⁵⁷Fe nuclei in electronically isotropic Fe³⁺(d^5 , ${}^6A_{1g}$) ions originates from the distortion of

their crystal environment (a lattice contribution). Our calculations of the EFG tensor⁶ using the crystal data for TlCrO₃ showed that, in addition to a monopole lattice contribution, a dipole contribution has a large weight coming from the induced electric dipole moment of oxygen O²⁻ anions that depends on oxygen dipole polarizability (α_0). The best agreement between the theoretical and experimental values of the quadrupole splitting was obtained for the polarizability of $\alpha_0 \approx 1.1$ Å³ (using formal charges $Z_{Tl} = +3$, $Z_{Cr} = +3$ and $Z_0 = -2$). The obtained high value of α_0 agrees well with the data for other oxides ($\alpha_0 = 0.5$ -1.5 Å³).³⁹

Mössbauer spectra recorded at $T < T_N$ (Figure 9b) consisted of hyperfine Zeeman structures reflecting combined electric and magnetic hyperfine interactions. The spectra could be well described as a superposition of two sextets, Fe1 and Fe2, having very different partial contributions ($I_{Fe1} \approx 83\%$ and $I_{Fe2} \approx 17\%$ at 12 K). The most intense Fe1 sextet with the saturated hyperfine field (at $T \rightarrow 0$ K) on ⁵⁷Fe nuclei of $H_{hf1}(0) = 497(1)$ kOe can be assigned to Fe³⁺ ions antiferromagnetically coupled with the six nearest Cr³⁺ neighbors (6Cr³⁺; 0Fe³⁺). The second Fe2 sextet with $H_{hf2}(0)$ = 455(2) kOe can be assigned to Fe³⁺ ions for which one of the six nearest Cr³⁺ neighbors is replaced by an Fe³⁺ cation resulting in the (5Cr³⁺; 1Fe³⁺) local surrounding. The partial contribution ($I_{Fe2} \approx 17\%$) of the Fe2 sextet is in agreement with the expected one from the binomial formula (~22 %).

Discussion

The unit cell volume of TlCrO₃ ($V = 219.1 \text{ Å}^3$) is close to that of DyCrO₃ ($V = 219.4 \text{ Å}^3$) similar to the pairs of TlFeO₃/DyFeO₃ (225.7 Å³/226.3 Å³),^{6,7} TlNiO₃/DyNiO₃ (213.3 Å³/213.4 Å³),^{29,30} TlMnO₃/DyMnO₃ (227.2 Å³/227.2 Å³)³¹ and TlCoO₃/DyCoO₃ (205.79 Å³/206.47 Å³; a = 5.3000(2) Å, b = 7.4519(3) Å and c = 5.2106(2) Å for TlCoO₃). This fact suggests a revision (proposed in Ref. 29) of the Shannon ionic radius of Tl³⁺, which is currently close to that of Lu³⁺,²² to be similar to Dy³⁺. The Cr-O-Cr bond angles of TlCrO₃ (144.18° and 145.91°) are also close to those of DyCrO₃ (143.71° and 146.93°: experimental data from neutron diffraction).⁴⁰ However, we should mention that the available Cr-O-Cr bond angles of *R*CrO₃ show large variations even for the same composition, for example, 147.8° and 148.8° for YCrO₃ (XRPD),⁴¹ 145.6° and 146.3° for YCrO₃ (neutron),⁴² 145.9° and 148.2° for HoCrO₃ (XPRD),⁴¹ 144.3° and 147.7° for ErCrO₃ (neutron),⁴³ 143.3° and 146.7° for

 ErCrO_3 (XPRD),⁴⁴ 140.3° and 145.3° for TmCrO_3 (XPRD),⁴⁵ 147.5° and 148.0° for DyCrO_3 (neutron).⁴⁶ Theoretical studies predicted the average Cr-O-Cr bond angle of DyCrO_3 to be about 145.5°.⁴⁷ Systematic studies of *R*CrO_3 by neutron powder diffraction gave about 148° for DyCrO_3,⁴⁸ and the average Cr-O-Cr angle of TlCrO_3 is close to that of YbCrO_3 based on the results of Ref. 48.

Independent of the Tl³⁺ size used ($r_{VIII}(Tl^{3+}) = 0.98 \text{ Å}^{22}$ or $r_{VIII}(Tl^{3+}) = r_{VIII}(Dy^{3+}) = 1.027 \text{ Å}$) the unit cell parameters of TlCrO₃ show significant deviations from the general trends of the ACrO₃ (A = Sc, Y and La-Lu) family, namely, the *b* and *c* parameters are larger than expected, and the *a* parameter is smaller (Figure 10). The same deviations were observed in InCrO₃.²³ Such peculiarities of InCrO₃ and TlCrO₃ could originate from the strong covalency of the In³⁺-O and Tl³⁺-O bonds.

In the ACrO₃ (A = Sc, In, Y and La-Lu) family, the Néel temperature (T_N) monotonically decreases with decreasing the radius of the A^{3+} ions from $T_N = 288$ K for LaCrO₃ to $T_{\rm N} = 112$ K for LuCrO₃,^{4,20} $T_{\rm N} = 93$ K for InCrO₃²⁰ and $T_{\rm N} = 73$ K for $ScCrO_{3}^{20}$ It is well known that the *B*-O-*B* bond angle (9), which is reduced from 180° due to cooperative rotations of BO_6 octahedra in orthorhombic perovskites, is a major factor that governs the evolution of the superexchange coupling parameter, $J \propto \cos^2 \vartheta$, since $T_{\rm N} = 4S(S+1)J/k_{\rm B}$ in the mean-field theory approximation.⁴⁸ The evolution of $T_{\rm N}$ with the Cr-O-Cr superexchange angle (9) for ACrO₃ is presented in Figure 11. T_N of TlCrO₃ is smaller than even that of InCrO₃. From this point of view, TlCrO₃ is similar with TlFeO₃ ($T_{\rm N}$ = 560 K) and TlNiO₃ ($T_{\rm N}$ = 105 K), whose $T_{\rm N}$'s are significantly smaller than those of LuFeO₃ ($T_N = 625$ K) and LuNiO₃ ($T_N = 130$ K), respectively.^{6,29} But T_N of TlMnO₃ ($T_N = 92$ K) having a different structural distortion (space group P-1) is close to that of the lighter rare earth manganite $PrMnO_3$ ($T_N =$ 100 K).³¹ For AFeO₃ (A = Tl and Pr-Lu), a correlation was found between T_N and the lattice parameter ratio, $2^{-1/2}b/c$ (in the *Pnma* setting); TIFeO₃ has the significantly lower $T_{\rm N}$ and $2^{-1/2}b/c$ values in comparison with RFeO₃ (R = Pr-Lu).^{6,7} However, we could not find such a correlation in ACrO₃ (A = Sc, In, Tl, Y and La-Lu): the $2^{-1/2}b/c$ ratio of TlCrO₃ (1.020) is close to that of LuCrO₃ (1.021).

In addition to the smaller T_N of TlCrO₃ in comparison with those of *R*CrO₃, we find an abnormally low value of the hyperfine magnetic field at the ⁵⁷Fe nuclei in TlCr_{0.95}Fe_{0.05}O₃. Figure 11 shows the experimental angular dependences of the saturated hyperfine magnetic fields at ⁵⁷Fe nuclei, $H_{hf}(\vartheta)$, for *R*Cr_{0.99}Fe_{0.01}O₃ (with *R*

Dalton Transactions Accepted Manuscript

= La, Y and Lu) and TlCr_{0.95}Fe_{0.05}O₃.⁴⁹ For *R*Cr_{0.99}Fe_{0.01}O₃, the *H*_{hf} values decrease with increasing the average Cr-O-Cr bond angle. This behaviour is due to a supertransferred hyperfine field (*H*_{STHF}) resulting from a spin transfer from neighbouring *3d* orbitals of the Cr³⁺ cations via oxygen 2*p* orbitals into *ns* (*n* = 1 - 4) orbitals of central Fe³⁺ cation.⁵⁰ The *H*_{STHF} contribution is sensitive to the 9 angle in the Fe-O-Cr pathways: *H*_{STHF} = *H*_{\sigma}cos²9 + *H*_{\pi}sin²9, (*H*_{\sigma} and *H*_{\pi} are parameters representing the spin-transfer via the \sigma and \pi *B*-O bonds in the Fe-O-Cr pathways, respectively).^{49,50} The *H*_{hf}(0) value for TlCr_{0.95}Fe_{0.05}O₃ shows a noticeable deviation from the linear dependence *H*_{hf}(9) \approx cos²9 found in Ref. 49. We suggested that a possible reason for this effect is the indirect influence of Tl³⁺ cations on the parameters of the Cr-O and Fe-O chemical bonds.⁷ As Tl³⁺ cations have high polarizability and rather high electron affinity,³⁹ we assumed that the inductive redistribution within the Tl←O-(Cr,Fe) chains leads to weakening of Cr-O and Fe-O bonds (decrease in the *H*_{\pi} parameter) and, therefore, to decrease in the experimental *H*_{hf}(0) values for TlCr_{0.95}Fe_{0.05}O₃.

The size of Tl^{3+} is within the range of that of the rare-earth cations. Nevertheless, magnetic properties of TlCrO₃ are different from those of $RCrO_3$ (R = Y and La-Lu) and very close to those of $ScCrO_3$ with the smallest (reported so far) cation at the A site. RCrO₃ compounds exhibit well-defined weak-ferromagnetic properties because of spin canting of the overall G-type antiferromagnetic structure.^{4,20,41,43,44} M vs H curves of ScCrO₃²⁰ InCrO₃ and TlCrO₃ (Figures 4 and 5) show that they are fully compensated antiferromagnets without spin canting. This property is quite unexpected considering that all $ACrO_3$ compounds with A = Sc, In, Tl, Y and Lu-La are isostructural with each other, and the symmetry should allow spin canting.⁴⁷ Spin canting first appears at T_N in TlCrO₃ (Figure 3a) as expected, but then it is suppressed. There are some analogies in the M vs H and χ vs T curves of TlCrO₃ and BiFeO₃ (Figure S13 of ESI). The latter one has the short-range G-type antiferromagnetic ordering with spin canting, but the overall magnetic structure has no net moment because of an incommensurate spin cycloid structure with a very long period.¹⁵ dc susceptibility curves of TlCrO₃ and BiFeO₃ at larger magnetic fields exhibit strong peaks at T_N (Figure S13 of ESI), but then they start to decrease (in BiFeO₃, because of the cycloid structure with zero net magnetization). The M vs H curves of TlCrO₃ and BiFeO₃ demonstrate similar field-induced transitions (in BiFeO₃, due to the

12

destruction of the cycloid structure). Non-trivial magnetic structures of ScCrO₃, InCrO₃ and TlCrO₃ could be at the origin of their different properties in comparison with *R*CrO₃; this idea needs confirmation with neutron diffraction. Therefore, TlCrO₃ perovskite has many peculiarities in comparison with *R*CrO₃ (R = Y and La-Lu), originating from the strong covalency of the Tl³⁺-O bonds.

Conclusion

In conclusion, we prepared TlCrO₃ perovskite under high pressure (6 GPa) and high temperature (1500 K) conditions. Structural properties were investigated between 5 and 300 K. We found the existence of two Néel temperatures with very close values at $T_{N2} = 87.0$ K and $T_{N1} = 89.3$ K. The transition at T_{N2} is very sensitive to static magnetic fields and different perturbations, such as, small iron doping. Magnetic and dielectric properties of TlCrO₃ are very close to those of ScCrO₃ despite different sizes of Tl³⁺ and Sc³⁺ cations and different nature of Tl³⁺-O and Sc³⁺-O bonds. The absence of spin canting suggests a non-trivial magnetic structure in TlCrO₃. TlCrO₃ has many peculiarities in comparison with *R*CrO₃ (*R* = Y and La-Lu).

Acknowledgements

This work was supported by World Premier International Research Center Initiative (WPI Initiative, MEXT, Japan), the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)" and a JSPS Grant-in-Aid for Scientific Research (25289233). The synchrotron radiation experiments were performed at the SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (Proposal Number: 2014A4504). We thank Dr. J.-S. Zhou for providing numerical data of the average Cr-O-Cr bond angles from Ref. 48.

References

- 1. J. Fujioka, T. Yasue, S. Miyasaka, Y. Yamasaki, T. Arima, H. Sagayama, T. Inami, K. Ishii and Y. Tokura, *Phys. Rev. B*, 2010, **82**, 144425.
- 2. Y. Ren, T. T. M. Palstra, D. I. Khomskii, E. Pellegrin, A. A. Nugroho, A. A. Menovsky and G. A. Sawatzky, *Nature*, 1998, **396**, 441-444.
- 3. A. A. Belik, *Inorg. Chem.*, 2013, **52**, 8529-8539.
- 4. K. Sardar, M. R. Lees, R. J. Kashtiban, J. Sloan and R. I. Walton, *Chem. Mater.*, 2011, **23**, 48-56.
- 5. N. Izyumskaya, Ya. Alivov and H. Morkoc, *Crit. Rev. Solid State Mat. Sci.*, 2009, **34**, 89-179.
- 6. S. J. Kim, G. Demazeau, I. Presniakov and J. H. Choy, *J. Solid State Chem.*, 2001, **161**, 197-204.
- 7. I. A. Presniakov, A. V. Sobolev, A. V. Baranov, G. Demazeau and V. S. Rusakov, *J. Phys.: Condens. Matter*, 2006, **18**, 8943-8959.
- 8. Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima and Y. Tokura, *Nature Mater.*, 2009, **8**, 558-562.
- 9. M. Tachibana, T.Yoshida, H. Kawaji, T. Atake and E.Takayama-Muromachi, *Phys. Rev. B*, 2008, **77**, 094402.
- 10. M. L. Medarde, J. Phys.: Condens. Matter, 1997, 9, 1679-1707.
- R. J. Booth, R. Fillman, H. Whitaker, A. Nag, R. M. Tiwari, K. V. Ramanujachary, J. Gopalakrishnan and S. E. Lofland, *Mater. Res. Bull.*, 2009, 44, 1559-1564.
- 12. A. A. Belik, J. Solid State Chem., 2012, 195, 32-40.
- A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi and E. Takayama-Muromachi, *Chem. Mater.*, 2006, 18, 798-803.
- M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano and J. P. Attfield, *J. Am. Chem. Soc.*, 2007, 129, 14433-14436.
- 15. G. Catalan and J. F. Scott, Adv. Mater., 2009, 21, 2463-2485.
- 16. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa and M. Takano, J. Am. Chem. Soc., 2005, **127**, 8889-8892.
- 17. R. D. Shannon, *Inorg. Chem.*, 1967, 6, 1474-1478.
- 18. A. A. Belik, T. Furubayashi, Y. Matsushita, M. Tanaka, S. Hishita and E. Takayama-Muromachi, *Angew. Chem. Int. Ed.*, 2009, **48**, 6117-6120.
- 19. W. Yi, Q. Liang, Y. Matsushita, M. Tanaka and A. A. Belik, *Inorg. Chem.*, 2013, **52**, 14108-14115.
- 20. A. A. Belik, Y. Matsushita, M. Tanaka and E. Takayama-Muromachi, *Chem. Mater.*, 2012, **24**, 2197-2203.
- A. A. Belik, Y. Matsushita, M. Tanaka, E. Takayama-Muromachi, *Inorg. Chem.*, 2013, 52, 12005-12011.
- 22. R. D. Shannon, Acta Crystallogr., Sec. A 1976, 32, 751-767.
- 23. A. A. Belik and W. Yi, J. Phys.: Condens. Matter, 2014, 26, 163201.
- 24. E. Castillo-Martinez, M. Bieringer, S. P. Shafi, L. M. D. Cranswick and M. A. Alario-Franco, *J. Am. Chem. Soc.*, 2011, **133**, 8552-8563.
- 25. J. H. Park and J. B. Parise, *Mater. Res. Bull.*, 1997, **32**, 1617-1624.
- H. Y. Chen, T. Yu, P. Gao, J. M. Bai, J. Tao, T. A. Tyson, L. Wang and R. Lalancette, *Inorg. Chem.*, 2013, **52**, 9692-9697.
- C. I. Thomas, M. R. Suchomel, G. V. Duong, A. M. Fogg, J. B. Claridge and M. J. Rosseinsky, *Phil. Trans. R. Soc. A*, 2014, **372**, 20130012.

- A. S. Viskov, E. V. Zubova, K. P. Burdina and Yu. N. Venevtsev, *Sov. Phys. Crystallogr.*, 1971, 15, 932-934. (*Kristallografiya*, 1970, 15, 1071-1073 (in Russian)).
- S. J. Kim, G. Demazeau, J. A. Alonso and J. H. Choy, *J. Mater. Chem.*, 2001, 11, 487-492.
- 30. S. J. Kim, M. J. Martinez-Lope, M. T. Fernandez-Diaz, J. A. Alonso, I. Presniakov and G. Demazeau, *Chem. Mater.*, 2002, **14**, 4926-4932.
- W. Yi, Y. Kumagai, N. A. Spaldin, Y. Matsushita, A. Sato, I. A. Presniakov, A. V. Sobolev, Y. S. Glazkova and A. A. Belik, *Inorg. Chem.*, 2014, 53, 9800-9808.
- 32. M. Tanaka, Y. Katsuya and A. Yamamoto, *Rev. Sci. Instrum.*, 2008, **79**, 075106.
- 33. M. Tanaka, Y. Katsuya, Y. Matsushita and O. Sakata, *J. Ceram. Soc. Jpn.*, 2013, **121**, 287.
- 34. F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, 321-324, 198-203.
- 35. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc., 2012, 1489, 178-185.
- 36. N. E. Brese and M. O'Keeffe, Acta Crystallogr., Sec. B 1991, 47, 192-197.
- 37. A. A. Belik, J. Phys. Soc. Jpn., 2014, 83, 074703.
- 38. F. Menil, J. Phys. Chem. Solids, 1985, 46, 763-789.
- 39. R. D. Shannon and R. X. Fischer, Phys. Rev. B, 2006, 73, 235111.
- 40. B. V. Laar and J. B. A. A. Elemans, J. Phys., 1971, **32**, 301-304.
- 41. B. Tiwari, M. K. Surendra and M. S. R. R. Rao, *J. Phys.: Condens. Matter*, 2013, **25**, 216004.
- 42. K. Ramesha, A. Llobet, Th. Proffen, S. R. Serrao and C. N. R. Rao, J. Phys.: Condens. Matter, 2007, 19, 102202.
- 43. E. F. Bertaut and J. Mareschal, Solid State Commun., 1967, 5, 93-97.
- 44. J. Prado-Gonjal, R. Schmidt, D. Avila, U. Amador and E. Moran, *J. Europ. Ceram. Soc.*, 2012, **32**, 611-618.
- 45. K. Yoshii, Mater. Res. Bull., 2012, 47, 3243-3248.
- 46. E. F. Bertaut and J. Mareschal, J. Phys., 1968, 29, 67-73.
- H. J. Zhao, W. Ren, X. M. Chen and L. Bellaiche, *J. Phys.: Condens. Matter*, 2013, 25, 385604.
- 48. J.-S. Zhou, J. A. Alonso, V. Pomjakushin, J. B. Goodenough, Y. Ren, J.-Q. Yan and J.-G. Cheng, *Phys. Rev. B*, 2010, **81**, 214115.
- A. S. Moskvin, N. S. Ovanesyan and V. A. Trukhtanov, *Hyperfine Interact.*, 1975, 1, 265-281.
- 50. A. Sawatzky and F. Van Der Woude, J. Phys., 1974, 35, 6-47.

Site	WP	x	у	Z.	$B(\text{\AA}^2)$
Tl	4 <i>c</i>	0.04617(3)	0.25	0.98732(5)	0.390(4)
Cr	4 <i>b</i>	0	0	0.5	0.416(12)
01	4 <i>c</i>	0.4504(7)	0.25	0.1050(5)	0.28(5)
O2	8 <i>d</i>	0.3009(5)	0.0558(3)	0.6969(4)	0.33(5)

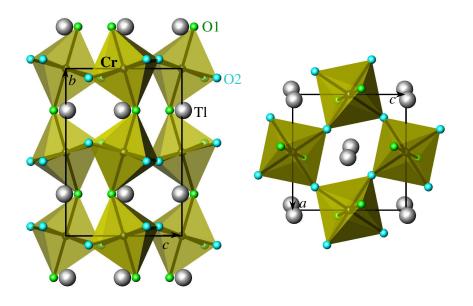
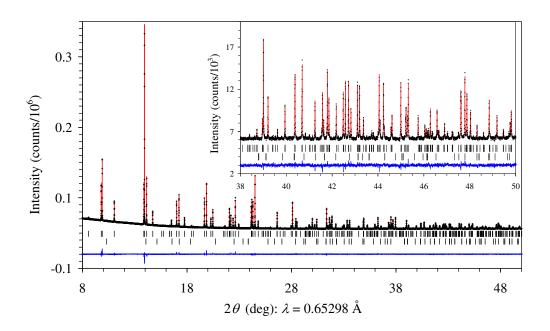
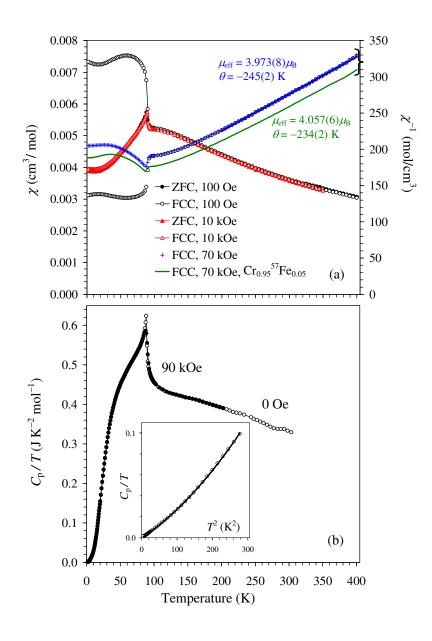
Table 1. Structure Parameters of TlCrO₃ at Room Temperature.

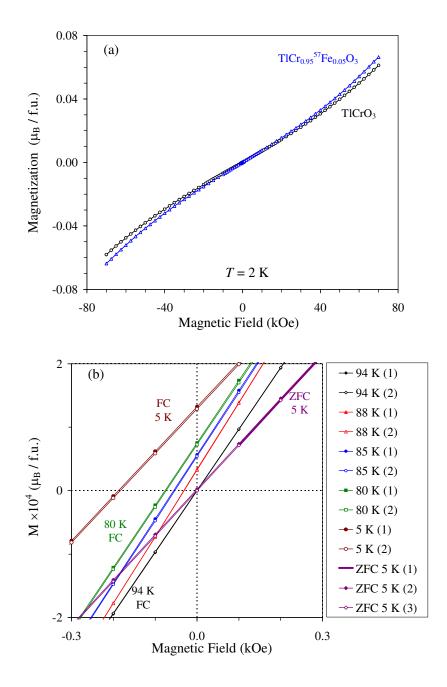
WP: Wyckoff position. The occupation factor of all sites is unity. Space group *Pnma* (No 62); Z = 4; a = 5.40318(1) Å, b = 7.64699(1) Å, c = 5.30196(1) Å, and V = 219.0668(3) Å³; $\rho_{cal} = 9.229$ g/cm³. $R_{wp} = 1.61 \%$ (S = 1.51), $R_p = 1.22 \%$, $R_B = 3.50 \%$, and $R_F = 2.73 \%$. The weight fraction of Cr₂O₃ is 0.8 %.

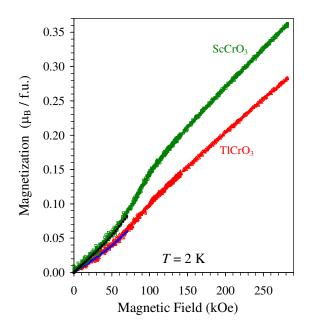
Table 2. Selected Bond Lengths (l (Å) < 3.1 Å), Bond Angles (deg), Bond Valence Sums, BVS, and Distortion Parameters of CrO₆, Δ , in TlCrO₃^a

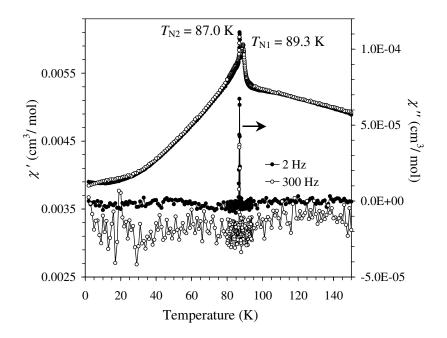
Tl-O2	2.217(2) ×2	Cr–O2	1.979(3) ×2
Tl-O1	2.222(3)	Cr–O2	1.980(3) ×2
Tl-O1	2.272(3)	Cr01	2.009(1) ×2
Tl-O2	2.544(2) ×2	$BVS(Cr^{3+})$	2.93
Tl–O2	2.718(2) ×2	Δ (Cr–O)	0.49×10^{-4}
$BVS(Tl^{3+})$	2.91	Cr–O1–Cr	144.18(5)
		Cr–O2–Cr	145.91(5) ×2

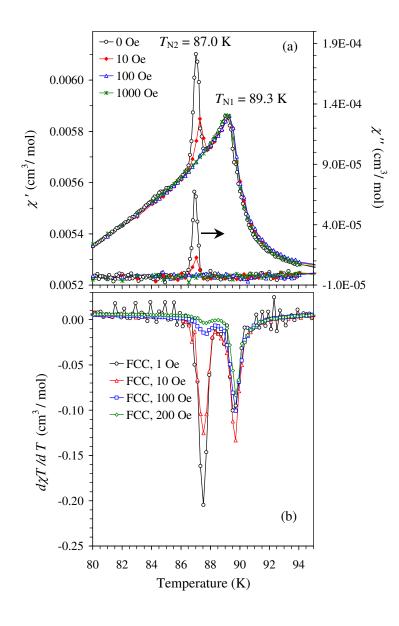
^{*a*} BVS = $\sum_{i=1}^{N} v_i$, $v_i = \exp[(R_0 - l_i)/B]$, *N* is the coordination number, B = 0.37, $R_0(\text{TI}^{3+})$ = 2.003 and $R_0(\text{Cr}^{3+}) = 1.724$.

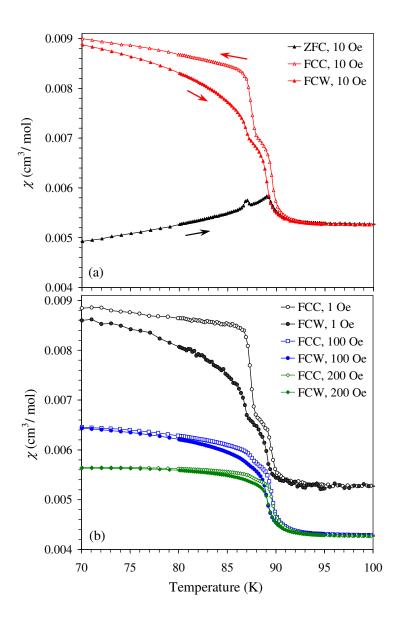




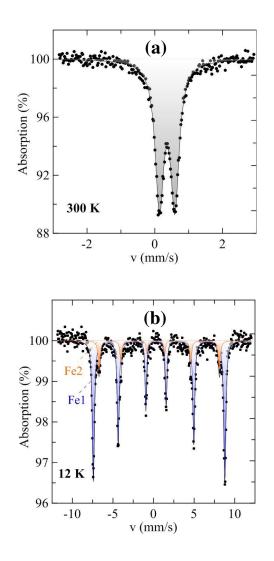

Figure 1. Projections of the crystal structure of TlCrO₃ along different directions.

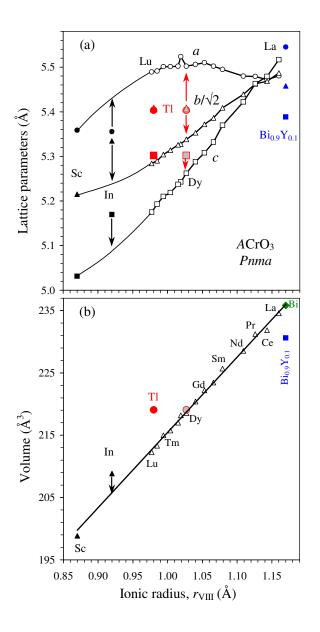

Figure 2. Portions (8-50°) of experimental, calculated and difference synchrotron XRPD diffraction patterns for TlCrO₃. The bars show possible Bragg reflection positions for TlCrO₃ and Cr₂O₃ impurity (0.8 weight %) (from top to bottom). The insert shows an enlarged fragment.

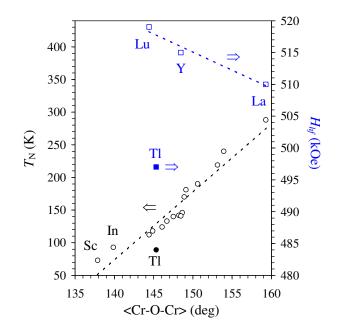

Figure 3. (a: the left-hand axis) ZFC (filled symbols) and FCC (white symbols) dc magnetic susceptibility ($\chi = M/H$) curves of TlCrO₃ at 100 Oe and 10 kOe. (a: the right-hand axis) FCC inverse curves (χ^{-1} vs *T*) of TlCrO₃ at 100 Oe and 70 kOe and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ at 70 kOe. The parameters (μ_{eff} and θ) of the Curie-Weiss fit between 200 and 400 K are given. (b) Specific heat data of TlCrO₃ at a zero magnetic field (white circles) and 90 kOe (black circles) plotted as C_p/T vs *T*. The inset shows the C_p/T vs T^2 curve (symbols) between 2 and 17 K with fitting results (line).

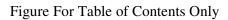

Figure 4. (a) M vs H curves of TlCrO₃ and TlCr_{0.95}⁵⁷Fe_{0.05}O₃ at 2 K. (b) FC M vs H curves of TlCrO₃ at 5, 80, 85, 88 and 94 K and ZFC M vs H curves at 5 K. Details between -0.3 and 0.3 kOe are shown; the M v H curves themselves were measured between -10 and 10 kOe. For FC, (1) is the branch measured from 10 kOe to -10 kOe and (2) is the branch measured from -10 kOe to 10 kOe. For ZFC, (1) is the branch measured from 10 kOe to -10 kOe and (3) is the branch measured from -10 kOe to 10 kOe.


Figure 5. M vs H curves of TlCrO₃ and ScCrO₃ at 2 K measured with the NIMS hybrid magnet from 0 to 280 kOe and from 280 to 0 kOe. The filled symbols show M vs H curves of TlCrO₃ and ScCrO₃ at 2 K measured with an MPMS up to 70 kOe.


Figure 6. Real χ' (the left-hand axes) and imaginary χ'' (the right-hand axes) parts of the ac susceptibility as a function of temperature (2–150 K) for TlCrO₃. Measurements were performed on cooling at a zero static magnetic field using the ac field with the amplitude H_{ac} = 5 Oe and frequencies f = 2 and 300 Hz.


Figure 7. (a) Real χ' (the left-hand axes) and imaginary χ'' (the right-hand axes) parts of the ac susceptibilities of TlCrO₃ (H_{ac} = 5 Oe and *f* = 2 Hz) at static magnetic fields of 0, 10, 100 and 1000 Oe. (b) dc FCC $d\chi T/dT$ vs *T* curves of TlCrO₃ at different magnetic fields with a fine step of 0.2 K.


Figure 8. ZFC, FCC and FCW dc magnetic susceptibility curves of TlCrO₃ at 10 Oe with a fine measurement step of 0.2 K near $T_{\rm N}$. (b) FCC and FCW dc magnetic susceptibility curves of TlCrO₃ at 1, 100 and 200 Oe. The curves at 100 and 200 Oe are shifted by -0.001 cm³/mol for the clarity.


Figure 9. ⁵⁷Fe Mössbauer spectra of $TlCr_{0.95}$ ⁵⁷Fe_{0.05}O₃ at (a) 300 K and (b) 12 K (black circles) with fitting results (lines).

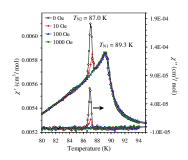


Figure 10. Room-temperature lattice parameters and unit cell volume of $ACrO_3$ compounds ($A^{3+} = Sc$, In, Tl, Y, rare-earths and $Bi_{0.9}Y_{0.1}$)²³ crystallizing in space group *Pnma* as a function of the ionic radius (in the 8-fold coordination).²² The lines through the lattice parameters are the smooth lines drawn for eye; the solid line through the volumes is the least-square linear fit of the data for $RCrO_3$ (R = La-Lu). BiCrO₃ crystallizes in a different space group of C2/c; therefore, only the volume is given. Arrows show expected lattice parameters for InCrO₃ and TlCrO₃ from the monotonic trends in the family. The data for TlCrO₃ are given with two ionic radii, $r_{VIII}(Tl^{3+}) = 0.98$ Å (the Shannon ionic radius)²² and $r_{VIII}(Tl^{3+}) = r_{VIII}(Dy^{3+}) = 1.027$ Å.

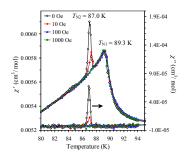


Figure 11. Néel temperatures $(T_N)^{4,20,49}$ and hyperfine magnetic fields $(H_{hf})^{49}$ at the ⁵⁷Fe nuclei in ACrO₃ (A =Sc, In and Lu-La) and TlCrO₃ as a function of the average Cr-O-Cr bond angle (experimental values for A =Sc, In,²⁰ Y⁴¹ and La-Lu⁴⁸).

TlCrO₃ perovskite has many peculiarities in comparison with RCrO₃ (R = rare earths), originating from strong covalency of Tl³⁺-O bonds.

TlCrO₃ perovskite has many peculiarities in comparison with RCrO₃ (R = rare earths), originating from strong covalency of Tl³⁺-O bonds.