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Two solvated cobalt(II) terpyridine complexes, [Co(MeO-

terpy)2](BF4)2·H2O (1·H2O) and [Co(MeO-

terpy)2](BF4)2·acetone (1·acetone) were prepared. Annealing 

each of these complexes resulted in the formation of two 

desolvated species, 1 and 1´, respectively. 1·H2O and 1 10 

exhibited two-step and gradual SCO. The compound 

1·acetone is high-spin for all temperatures and 1´ undergoes a 

reverse spin transition due to a phase change. 

Designing molecules that could be used for information 
processing and storage is a significant challenge in molecular 15 

materials science. These molecules must have bistability; they 
must be stable in two distinct electronic states over a certain 
range of external perturbation. Typical examples are found in 
spin-crossover (SCO) compounds.1 A variety of dn (n = 4-7) 
transition metal compounds exhibiting SCO have been reported 20 

and the spin transition phenomenon can be induced by a variation 
of temperature, pressure or illumination.2 In general, reversible 
temperature dependent SCO behavior involves a spin transition 
from LS to HS on heating and from HS to LS on cooling. 

Although SCO transitions are due to the electronic structure of 25 

the single molecule they can be observed in solutions or polymer 
matrices.3,4 Gradual or abrupt spin transitions may be observed in 
the solid state, depending on cooperativity arising from 
intermolecular interactions.5-7 The understanding of cooperative 
behavior in SCO is important for the design of materials that are 30 

useful for information technology. For example, flexibility of 
ligands can influence the cooperative interactions both directly 
and indirectly. The former arises from the structural changes of 
the ligands, and the latter from the random packing structure. 
Thus the flexibility of molecular assemblies is also a very 35 

important factor in achieving synergy of various interesting 
physical properties in advanced materials.8,9 

In general, SCO cobalt(II) compounds exhibit a spin change 
between the LS (S = 1/2) and HS (S = 3/2) states accompanying 
∆Sspin = R[ln(2S + 1)HS – ln(2S + 1)LS] = 5.8 J K-1 mol-1 which is 40 

smaller than those of iron(II) (13.4 J K-1 mol-1) or iron(III) (9.1 J 
K-1 mol-1) SCO compounds.2 Therefore, SCO phenomena for 
cobalt(II) compounds can be induced by smaller external stimuli 
than iron complexes. Accordingly, the spin transitions of 
cobalt(II) complexes can be readily influenced by relatively 45 

minor ligand derivatisation. Constable et al. has reported about 

structure, solvent dependence and some other properties for 
[Co(MeO-terpy)2](PF6)2 (2),10,11 and Slattery et al. also reported 
about magnetic behavior for 2 in solution.12 We therefore 
measured magnetic behavior for 2 in solid, and discovered that 2 50 

shows gradual SCO. 
We have recently demonstrated that the inclusion of long alkyl 

chains on cobalt(II) terpyridine compounds, [Co(Cn-
terpy)2](BF4)2 (n = 9 - 16), results in unique spin transitions (HS 
↔ LS) triggered by a structural phase transitions.10-12 We 55 

suggested that cooperativity in these soft materials produces 
novel switching functions, and reported that the long alkylated 
cobalt(II) compound [Co(C16-terpy)2](BF4)2 (C16-terpy is 4'-
hexadecyloxy-2,2':6',2''-terpyridine) exhibits a ‘reverse spin 
transition’ between HS and LS with a thermal hysteresis loop 60 

triggered by a structural phase transition.10 
Here we have focused on a counter anion BF4

- because it can 
generate more disorderliness compared with PF6

-. We report 
variations in magnetic behavior due to different structural phases 
and solvation in the cobalt(II) complex of 4'-methoxy-2,2':6',2´´-65 

terpyridine (MeO-terpy), [Co(MeO-terpy)2](BF4)2, 1. Two 
solvated complexes (1·H2O and 1·acetone) and their 
corresponding desolvated phases (1 and 1´) were prepared and 
investigated. 1·H2O and 1·acetone were obtained by 
recrystallization from MeOH and acetone, respectively, and the 70 

non-solvated compound 1 and 1´ were obtained by annealing 
1·H2O and 1·acetone under vacuum at 400 K, respectively. 
1·H2O exhibited a two-step SCO and after annealing, the 
desolvated compound 1, exhibited gradual SCO behavior. On the 
other hand, 1·acetone was found to be HS for all temperatures, 75 

and after annealing, the desolvated 1´ exhibited a “reverse spin 
transition”, which can be attributed to a structural change. 

A crystal structure of [Co(MeO-terpy)2](BF4)2·MeOH·H2O 
(1·MeOH·H2O) was obtained at 80 K‡§ (microanalysis of the 
dried bulk sample of this complex revealed loss of the methanol 80 

solvate to yield 1·H2O). Figure 1 shows the structure of 
1·MeOH·H2O. In the structure, each of the cobalt(II) atoms are 
octahedrally coordinated by six nitrogen atoms in two MeO-terpy 
ligands, i.e. an N6 donor set. The Co-N distances are of typical for 
LS cobalt(II) compounds.2 One of the tetrafluoroborate anions 85 

and the methanol solvent are disordered over two positions. The 
molecules are tightly packed with a three-dimensional network of 
interactions including a two-dimensional terpyridine-embrace 
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Fig. 1 (a) ORTEP drawing of the compound 1·MeOH·H2O showing 50% 
probability displacement ellipsoids. (b) Projection of the crystal structure 
of 1·MeOH·H2O along the ac plane. H atoms are omitted for clarity. 
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Fig.2 (a) ORTEP drawing of the compound 1·acetone showing 50% 
probability displacement ellipsoids. (b) Projection of the crystal structure 
of 1·acetone along the ab plane. H atoms are omitted for clarity. 45 

aryl-aryl interactions,13-14 classical hydrogen bonding between 
solvents and anions and a range of non-classical Hpyridyl-anion and 
Hpyridyl-oxygen hydrogen bonding interactions. 

Solvated compound [Co(MeO-terpy)2](BF4)2·acetone 
(1·acetone) was also obtained as brown orange single crystals 50 

and single crystal X-ray obtained at 93 K (Figure 2).‡§ Unlike 
1·MeOH·H2O, which crystallized in a triclinic setting, 1·acetone 
crystallized in the monoclinic space group C2/c. The molecular 
structure for 1·acetone is similar to that for 1·MeOH·H2O. There 
is no disorder in the solvent or anions. The Co-N distances are 55 

longer in this structure (between 2.0527(8) and 2.1820(12) Å, 
compared to a range of 1.903(2)-2.142(2) Å for 1·MeOH·H2O) 

and are typical for HS cobalt(II) compounds.2 While in 
1·MeOH·H2O, the two MeO-terpy ligands are arranged almost 
orthogonally, in 1·acetone the two ligands deviate significantly 60 

with an angle of 85.6° between the ligands’ mean planes. The 
N(3)-containing pyridyl ring also deviates from the mean plane of 
the ligand. 

The crystal packing in 1·acetone differs significantly to that in 
1·MeOH·H2O. While there are some offset face-to-face π-π 65 

interactions present, forming a two-dimensional array that 
extends in the crystallographic bc-plane, they are of poor 
orientation resulting in a loose packing arrangement; the presence 
of the acetone solvent essentially disrupts the terpyridine-
embrace motif.15  The anions are located between these layers and 70 

are involved in Hpyridyl-anion interactions.  
No suitable single crystals for the annealed compounds 1 and 

1´ were obtained in the present study. 
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Fig.3 χmT versus T plots for the compounds 1·H2O(○) and 1 (●). 

The temperature dependence of the magnetic susceptibility for 
1·H2O and 1 were measured (Figure 3). 1·H2O undergoes a two-
step SCO with the transitions centred around the temperatures 90 

T1/2(S1) = 163K and T1/2(S2) = 231 K, respectively.16-18 After further 
heating, a depression of theχmT value was observed at around 300 
K, suggesting the solvent water molecule is removed. After 
annealing, the non-solvated compound 1 exhibited gradual SCO 
behavior with the χmT value increasing from 0.45 cm3 K mol-1at 5 95 

K to 2.15 cm3 K mol-1 at 400 K. 
In contrast, 1·acetone was found to exist in the HS state at all 

temperatures, consistent with the X-ray structure. The χmT value 
lies within 1.91 - 2.46 cm3 K mol-1in the temperature range 5 K - 
300 K. After further heating, theχmT value again decreases, 100 

consistent with the loss of the acetone solvent molecule.  
After annealing, however, the desolvated compound 1´ 

displays markedly different behavior. The χmT value gradually 
decreases from 1.75 cm3 K mol-1 at 400 K to 1.07 cm3Kmol-1 at 
270 K, representing normal thermal SCO behavior. Upon further 105 

cooling, however, the χmT value increases abruptly at T1/2↓ = 256 
K to 1.74 cm3 K mol-1 at 220 K. On further cooling, the χmT 
undulates between 1.41 – 1.85 cm3 K mol-1 in the temperature 
range 5 K to 190 K. On further heating, the χmT values abruptly 
dropped (T1/2↑ = 309 K), showing the transition from HS to LS. 110 

Finally, the χmT value gradually increases from 310 K to 400 K. 
The wide thermal hysteresis loop (∆T = 53 K) near room 
temperature is maintained through successive thermal cycles. 
Thus 1´ exhibits a “reverse spin transition” which was further 
confirmed by variable temperature electron spin resonance (ESR) 115 
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spectra (Figure S1). 
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Fig.4 χmT  versus T plots for the compounds 1·acetone(○), and 1´(▲) on 
warming (▼) on cooling. (•) represent calculated curves for the two 
phases of 1´ if no structural transition occurred. 

The ESR experiments are consistent with the magnetic results. 
A variable temperature powder X-ray diffraction (PXRD) study 20 

(Figures S2 and S3) suggests that there is a reversible structural 
change associated with the LS-HS transition in 1´. This “reverse 
spin transition” can thus be rationalized in the following way. As 
prepared, 1´ displays gradual SCO behavior (T1/2 = 250 K) with 
the reduction of temperature (this curve is shown in Fig. 4. as 25 

grey dots) until a phase change occurs (T2↓ = 256 K) and 1´ 
becomes HS. Upon heating the reverse transition occurs at a 
higher temperature (T2↑ = 309 K) resulting in the magnetic 
hysteresis. These structural changes are fully reversible and can 
be cycled through several times. 30 

In conclusion, we have prepared two new cobalt(II) complexes 
of 4'-methoxy-2,2':6',2´´-terpyridine [Co(MeO-
terpy)2](BF4)2·H2O (1·H2O) and [Co(MeO-terpy)2](BF4)2·acetone 
(1·acetone) which show distinct magnetic behavior. 1·H2O 
exhibits gradual SCO while 1·acetone is high-spin for all 35 

temperatures. After annealing each of these complexes two 
desolvated forms 1 and 1´ were produced. Solvated 1·H2O 

exhibits two-step SCO and non-solvated 1 show gradual SCO, 
while 1´ shows a “reverse spin transition” which can be attributed 
to a structural phase transition. Bistable metal complexes of this 40 

type may eventually find application in information storage or 
processing devices. 
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variables.  95 
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Graphic abstract 

 

SCO cobalt(II) compounds with methoxy group have been synthesized, which exhibit 

unique magnetic behaviors, two-step SCO or reverse spin transition caused by structural 

transition. 
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