Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Artificial Synthetic Mn^{IV}Ca-oxido Complexes Mimic the Oxygen-Evolving Complex in Photosystem II

Changhui Chen^[a,b], Chunxi Zhang^{*[a]}, Hongxing Dong^{*[b]}, Jingquan Zhao^[a]

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel family of heteronuclear Mn^{IV}Ca-oxido complexes containing Mn^{IV}Ca-oxido cuboidal moieties and reactive water molecules on Ca²⁺ have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) ¹⁰ of photosystem II (PSII) in nature.

The oxygen-evolving complex (OEC) within photosystem II (PSII) of plants, algae and cyanobacteria is a unique catalyst for water oxidation in nature, which serves as a blueprint for the development of artificial catalysts for water splitting to generate

- ¹⁵ hydrogen fuel as renewable energy source¹⁻⁶. The structure of the OEC and the mechanism of water-splitting reaction have abstracted extensively attentions in the last two decades. Recently, the structure of the OEC has been revealed by the X-ray crystal structure of PSII ^{7, 8}. In the core of the OEC, one Ca²⁺
- $_{20}$ ion is incorporated into the Mn₄-cluster through two μ_3 -O²⁻ and one μ_4 -O²⁻ oxido moieties to form a unique [Mn₄CaO₅] catalytic site as shown in **Figure 1**. The peripheral ligands of the OEC are mainly consisted of carboxylate groups of amino acids from D₁ and CP₄₃ proteins^{7, 8}. Four water molecules were found to
- ²⁵ coordinate to OEC with two (W1, W2) associated to Mn4 and the other two (W3, W4) on Ca²⁺⁸. The turnover of the OEC for water-splitting involves five different S-states (S_n, $n = 0 \sim 4$). Due to the involvment of a large protein matrix and the structural complexity and uncertainty of the OEC in higher S-states⁹⁻¹⁵, the
- ³⁰ mechanism of O–O bond formation¹⁶⁻²¹ and functional roles of Ca²⁺²²⁻²⁵ remains under debate. To deepen understanding the structure of the OEC and the mechanism of water-splitting reaction in nature, it is highly desirable to synthesize structurally well defined small-molecule models to mimic the OEC in ³⁵ laboratory.

To data, although many Mn complexes^{3, 6, 26-28} and MnCa complexes²⁹⁻³⁸ have been reported in literatures, it is of a great challenge for chemists to synthesize a structural model with similar MnCa-oxido core structure, peripheral carboxylate ⁴⁰ ligands and the ligation of four water molecules as observed in

the OEC of PSII at the same time.

We herein report the synthesis and characterization of a novel family of heteronuclear Mn^{IV}Ca-oxido complexes containing MnCaO cuboidal moieties and reactive water molecules on Ca²⁺ 45 to mimic the OEC in PSII.

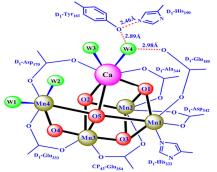
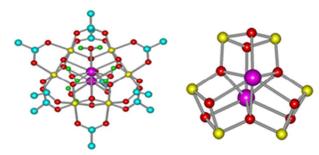



Figure 1 Scheme for the structure of the OEC in PSII

Complex A was synthesized in a reaction of Buⁿ₄NMnO₄, ⁵⁰ Mn(ClO₄)₂•(H₂O)₆ and Ca(CH₃CO₂)₂ with a molar ratio of 4 : 1 : 1 in boiling acetonitrile with the presence of an excess of pivalic acid, which was similar to the method developed recently for the synthesis of the [Mn₃SrO₄]₂O complex²⁸. The crystal of A, [Mn^{IV}₆Ca₂O₉(Bu^tCO₂)₁₀(H₂O)₄]•(Bu^tCO₂H)₅, as obtained as dark-brown crystals formed after mixing of 10 % hexane (v/v). Complex B, [Mn^{IV}₆Ca₂O₉(Bu^tCO₂)₁₀(H₂O)₃(CH₃CO₂C₂H₅)]• (Bu^tCO₂H)₃•(CH₃CO₂C₂H₅), was obtained from the solution of A in ethyl acetate. Complex C, [Mn^{IV}₆Ca₂O₉(Bu^tCO₂)₁₁]• [Mn^{III}₃O(Bu^tCO₂)₆(py)₃]•(CH₃CN)₃, was formed as dark-brown ⁶⁰ crystal isolated from the acetonitrile solution of A in the presence of ~2 % pyridine. For details of preparations, see Supporting Information.

Figure 2 Whole structure (left) and [Mn₆Ca₂O₉] core (right) of **A**. For clarity, all pivalic CH₃ groups are omitted, and all unbinding pivalic acids are omitted as well. Mn, Ca, O, C, and H atoms are shown in yellow, violet, red, cyan and green, respectively.

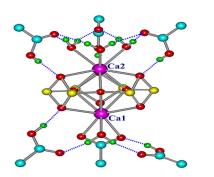
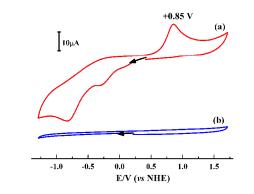


Figure 3 The H-bond network in A. The dashed-lines display the H-bond interactions. Other illustrations are the same as those in Figure 2.


- The core of **A** (**Figure 2**) contains three $[Mn_2Ca_2O_4]$ distorted ⁵ cubanes sharing a trigonal-bipyramidal $[Ca_2O_3]$ unit in the center, which is significantly different from our previous $[Mn^{IV}_6Sr_2O_9]$ complex containing two $[Mn_3SrO_4]$ cubanes linked by one μ_2 -O²⁻ anion²⁸. Two Ca²⁺ ions are connected to Mn ions by three μ_3 -O²⁻ and three μ_4 -O²⁻ anions, and completely coordinated by ¹⁰ carboxylate and H₂O molecules. The coordinated H₂O molecules further interact with five uncoordinated pivalic acid molecules through H-bonds network (**Figure 3**). In the [Mn_2Ca_2O_4] cubane, the distances of Mn...Mn and Mn...Ca are 2.71 Å and 3.46 Å, respectively. The bond lengths of Mn–oxido (1.80–1.86 Å),
- ¹⁵ Ca²⁺-oxido (2.42 ~ 2.64 Å) and Ca²⁺-O_{water} (2.38 ~ 2.44 Å) are similar to those observed in reported multinuclear Mn oxido complexes^{31, 34, 38} and the OEC in PSII⁸. Bond-valence sum (BVS) calculations³⁹ shows that all bridged oxygen atoms are in deprotonated state and all Mn ions are in +4 oxidation
- $_{20}$ state(**Table 1 and Table S1**). The assignment of +4 valences for all six Mn ions are also supported by the values (2.8 ~ 2.9) of the Mulliken atomic spin densities obtained by density functional theory (DFT) calculation (**Table 1**).

Complex A dispalys an irreversible oxidation at + 0.85 V vs.

- ²⁵ NHE as revealed by the cyclic voltammograms measurement (Figure 4), which was almost the same as the value of +0.8 V to +0.9 V vs. NHE observed for the OEC in PSII⁴⁰. We noted that this high redox potential was not observed in previous [Mn^{IV}₃Ca] complexes³⁴ primarily coordinated by dipyridylalkoxide, but it is
- ³⁰ close to the 0.9 V *vs.* NHE observed in the $[Mn^{IV}_{3}SrO_{4}]_{2}O$ complex primarily coordinated by multiple carboxylate groups²⁸ similar as that of **A**. Because the valence of all six Mn ions in **A** is +4, we tentatively assign the oxidation peak at 0.85 V *vs.* NHE (**Figure 4**) to the formation of Mn^V species. Generally, Mn^V
- ³⁵ would be highly reactive, and it is difficult to be trapped^{41, 42}. However, the presence of one Ca²⁺ has been shown to stabilize the high oxidation state of Mn ions in various MnCa-oxido complexes^{34, 38}. Accordingly, the two Ca²⁺ ions in **A** may contribute significantly to stabilize the high reactive species,
- ⁴⁰ Mn^V, as well, similar to that in previous reports^{34, 38}. The Mn^V species was proposed to be involved during the turnover of the OEC in PSII in literatures^{1, 2, 27}. Therefore, the electrochemical properties of the model complex reported here may provide chemical insights into understanding the mechanism of water ⁴⁵ splitting in PSII.

Table 1. The oxidation states of all Mn ions in A from BVS calculation and DFT calculation

Atoms	BVS	Mulliken atomic	Assignment
		spin densities	
Mn1	4.080	2.887	Mn ^{IV}
Mn2	4.161	2.817	Mn ^{IV}
Mn3	4.145	2.858	Mn ^{IV}
Mn4	4.124	2.889	Mn ^{IV}
Mn5	4.114	2.881	Mn ^{IV}
Mn6	4.121	2.877	Mn ^{IV}

Figure 4 Cyclic voltammogram (CV) of **A** in 1,2-dichloroethane. (a) With 1mM of **A**; (b) Without **A**. Potentials are referenced to NHE. Scan rate: 100 mV s⁻¹, arrows display the scan direction.

The core fraction and the coordinated H₂O molcules of **A** show striking structural similarities to that of the OEC in PSII (**Figure 5**). To our knowledge, this is the first time to obtain an artificial Mn^{IV}Ca-oxido complex with [Ca(H₂O)n] (n =1 or 3) unit incorporated to the multinuclear Mn^{IV} cluster through the μ_3 -O²⁻ and μ_4 -O²⁻ bridges as observed in the OEC of PSII. Therefore, complex **A** might be a good chemical model to investigate the functional roles of the water molecules on Ca²⁺ in the OEC of PSII.

We have found that the $[Mn^{IV}{}_6Ca_2O_9]$ core structure was stable in various solvents (e.g. ethyl acetate, toluene, and hexane), which is consistent with the finding that the presence of Ca^{2+} ion could significantly stabilize the high oxidation states Mn ions^{34, 38}. On the other hand, the binding water molecules on Ca^{2+} were reactive under various experimental conditions, as demonstrated in the structures of **B** and **C**.

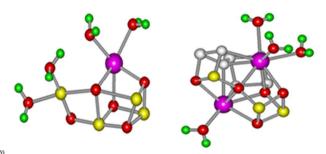


Figure 5 Structure of the core and coordinated water molecules in the OEC (left) and A (right). For clarity, only the $Mn_3Ca_2O_5(H_2O)_4$ fraction of A similar to that of the OEC is shown in color, and the left fraction is shown in light grey. Other illustrations are the same as those in Figure 2.

Page 2 of 6

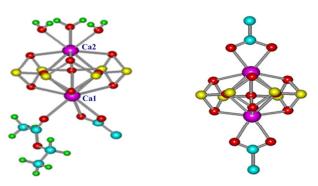


Figure 6 Structures of the [Mn₆Ca₂O₉] core in B (left) and C (right). The two carboxylate groups on Ca²⁺ ions in C are in symmetry-imposed disorder in crystal structural data, and only one pattern was shown for clarity. Other illustrations are the same as those in Figure 2.

Table 2. Selected bond lengths (Å) in A, B and C.

Bond	Α	В	С
Mn–Mn	2.704-2.718	2.702-2.709	2.683
Mn–Ca	3.445-3.522	3.444-3.531	3.434-3.476
μ_3-O^2-Mn	1.811-1.856	1.818-1.856	1.816-1.827
μ_4 -O ²⁻ -Mn	1.799-1.816	1.808-1.818	1.812-1.831
μ_3 -O ²⁻ -Ca	2.576-2.641	2.583-2.654	2.579-2.615
μ_4 -O ²⁻ -Ca	2.433-2.520	2.426-2.507	2.422-2.439
Mn-O _{piv}	1.931-1.980	1.946-1.979	1.956-1.992

Table 2shows the selected bond lengths of the10 [Mn₆Ca₂O₉(Bu^tCO₂)₉] unit in complexes A, B and C. Thedistances of Mn-Mn (~ 2.70 Å), Mn-Ca (3.4 ~ 3.5 Å), μ_3 -O²⁻-Mn (1.81 ~ 1.86 Å), μ_4 -O²⁻-Mn (1.80 ~ 1.83 Å) and Mn-O_{piv}(1.93 ~ 2.00 Å) in three complexes are very similar, clearlyindicating that the basic structure of the [Mn₆Ca₂O₉(Bu^tCO₂)₉]15 unit was undisturbed in these complexes.

In complex **B** (Figure 6 left), one H_2O on Ca1 was replaced by an ethyl acetate molecule; while the binding of the three H_2O on Ca2 were undisturbed. It is likely that the ligation of the three H_2O molecules on Ca2 was stabilized by a crown-shaped H-bond

²⁰ network with peripheral pivalic acid molecules (see Figure 3). In contrary, all four H₂O molecules on both Ca²⁺ ions were replaced by carboxylate groups in C (Figure 6 right). It is likely that the strength of those H-bonds in A and B (Figure 3 and Figure S2) could be significantly disturbed in the polar solvent⁴³ (*e.g.* 25 acetonitrile), resulting in the replacement of all H₂O molecules in

С.

Obviously, the $\rm H_2O$ molecules on $\rm Ca^{2+}$ ions are exchangeable, and can be replaced by the oxygen atom of carbonyl or carboxylate groups under various conditions, depending on the

- ³⁰ H-bond interactions with peripheral environments. The presence of the well-ordered H-bonds could significantly contribute to stabilize the binding of water molecules on Ca^{2+} . These results provide important clues into understanding the reactivity of two H₂O molecules on Ca^{2+} in the OEC of PSII.
- ³⁵ One key issue to understand the mechanism of the O–O bond formation in PSII is whether these H₂O molecules (W3, W4) on Ca²⁺ revealed by X-ray structure could play a role as substrate ⁵, ^{22-24, 44-46}. According to our observations in complexes **A**, **B** and **C**, one could expect that the binding affinity of W4 water ⁴⁰ molecule might be higher than that of W3, due to the presence of
- a well-ordered H-bond interactions between the former and D1-

 Tyr_{161} and D_1 -Glu_{189} (Figure 1), but not the latter. In addition, the nearby residue of D_1 -Glu₁₈₉ may be able to coordinate to the Ca²⁺ and replace the W3 water molecule through its free carboxylate 45 oxygen atom (Figure 1 and Figure 7), similar to the carboxylate or carbonyl groups on the Ca^{2+} in **B** and **C**. If this is the case, one would expect that the W4 water molecule should not be a substrate, instead, the W3 might be able to be involved more directly to the formation of O-O bond at the higher S-state of the 50 OEC. Consequently, with the participating of the nearby D1-Glu₁₈₉, one possible mechanism for the O-O bond formation could occur between the W2 and W3 water molcules on the OEC (shown in Figure 7). This proposal is consistent with previous suggestions^{8, 16, 22-24}. However, we should point out that there are 55 other possiblities for the formation of O-O bond without involving the W4 water molecule as substrate 16-18, 21, 46. For example, based on theoretical calculation¹⁷ and high filed electron parapmagnatic resonance (HFEPR) study²¹ on the S₃ state OEC, it has been suggested that the O5 atom could sever as 60 a source of oxygen atoms for the formation of O-O bond in the higher S-states (e.g. S_3 , S_4) of the OEC^{17, 21}.

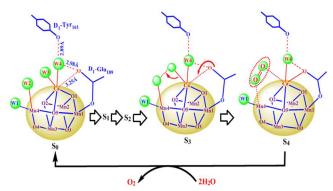


Figure 7 One possible mechanism for the O—O bond formation during water oxidation in PSII. Dashed lines display H-bond or weak interactions.

- ⁶⁵ In summary, three heteronuclear Mn^{IV}Ca-oxido complexes have been synthesized and characterized, which display remarkable structural similarities to the OEC in PSII, in respects of the peripheral ligands, the Mn₂Ca₂O₄ cuboidal moiety, especially, the coordination of reactive water molecules on Ca²⁺. The water ⁷⁰ molecules on Ca²⁺ ions in these artificial complexes can be replaced by carbonyl or carboxylate groups, depending on the Hbond interactions with peripheral environments. These results provide new insight into the understanding of the structural and functional roles of the Ca²⁺ in the OEC of PSII in nature.
- ⁷⁵ This work was supported by the National Natural Science Foundation of China (No. 31070216, 91427303), the Chinese Academy of Sciences (KJCX2-YW-W25) and the Fundamental Research Funds for the Central Universities of China (No. HEUCFT1009, HEUCF201403008).

80 Notes and references

^a Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Fax: 86-10-82617315; Tel: 86-10-82617053; E-mail: chunxizhang@iccas.ac.cn

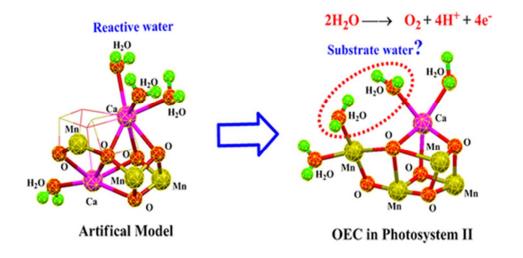
^b Polymer Materials Research Center, Key Laboratory of Superlight ss Materials & Surface Technology of Ministry of Education, College of

Materials & Surface Technology of Ministry of Education, Conege of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China, Tel: 86-451-82568191; E-mail: dhongxing@hrbeu.edu.cn

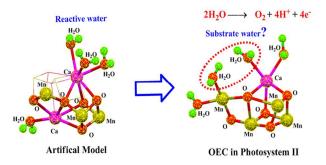
- † Electronic Supplementary Information (ESI) available: [Experimental section, BVS calculation, computational details, X-ray structure
- s information, UV-vis absorption spectrum]. See DOI: 10.1039/b000000x/ ‡Elemental analysis (%) calcd. for **A** ($C_{81}H_{162}Ca_2Mn_6O_{43}$): C, 43.55; H, 7.31; found: C, 43.30; H, 7.35.Crystal structure data for complex **A** [$Mn_6Ca_2O_9(Bu'CO_2)_{10}(H_2O)_4$]•(Bu'CO_2H)5: $C_{75}H_{148}Ca_2Mn_6O_{43}$, M =2147.73 g/mol, black lump crystal, triclinic, *P*-1, *a* = 14.878(3) Å, *b* =
- ¹⁰ 15.831(3) Å, c = 26.221(5) Å, $\alpha = 93.680(2)$ °, $\beta = 97.730(3)$ °, $\gamma = 112.599(3)$ °, V = 5604(2) Å³, 42124 reflections collected; 1210 parameters were refined in the final cycle of refinement using 19641 reflections ($I > 2\sigma(I)$); R1 = 0.1148, wR2 = 0.2570 (based on F^2 and all data).
- ¹⁵ Elemental analysis (%) calcd. for **B** (C₆₉H₁₃₄Ca₂Mn₆O₄₀): C, 41.16, H, 6.71 %. found: C, 40.97, H, 6.70. Crystal structure data for complex **B** [Mn^{IV}₆Ca₂O₉(Bu'CO₂)₁₀(H₂O)₃(CH₃CO₂C₂H₅)]•(Bu'CO₂H)₃•(CH₃CO₂C₂H 5): C₇₃H₁₄₂Ca₂Mn₆O₄₂, M = 2101.66 g/mol, black lump crystal, monoclinic, *12/a*, a = 26.486(5) Å, b = 30.822(6) Å, c = 26.925(4) Å, $\alpha =$
- noncentile, I2id, a = 20.480(3) R, b = 50.322(6) R, c = 20.25(4) R, $a = 20.900^\circ$, $\beta = 109.39(2)^\circ$, $\gamma = 90.0^\circ$, V = 20734(7) Å³, 70319 reflections collected; 1183 parameters were refined in the final cycle of refinement using 23662 reflections ($I > 2\sigma(I)$); R1 = 0.1297, wR2 = 0.1914 (based on F^2 and all data).

Elemental analysis (%) calcd. for C (C₁₀₀H₁₆₈Ca₂Mn₉N₃O₄₄): C, 44.63; H,

- 25 6.29; N, 1.56. found: C, 44.60; H, 6.42; N, 1.83. Crystal structure data for complex C [Mn₆Ca₂O₉(Bu^tCO₂)₁₁Mn₃O(Bu^tCO₂)₆(py)₃]•(CH₃CN)₃: C₁₀₆H₁₇₇Ca₂Mn₉N₆O₄₄, M = 2814.14 g/mol, black triquetrous crystal, cubic, *P*2₁3, *a* = 24.4452(4) Å, *b* = 24.4452(4) Å, *c* = 24.4452(4) Å, *α* = 90.0°, β = 90.0°, γ = 90.0°, V = 14607.7(7) Å³, 18874 reflections
- so collected; 544 parameters were refined in the final cycle of refinement using 10502 reflections ($I > 2\sigma(I)$); R1 = 0.1187, wR2 = 0.2423 (based on F^2 and all data).


All crystallographic data were stored in the Cambridge Crystallographic Data Centre with CCDC codes, 1039345, 1039346 and 1039344 for ³⁵ complex **A**, **B** and **C**, respectively.

- 1. J. P. McEvoy and G. W. Brudvig, Chem. Rev., 2006, 106, 4455-4483.
- J. Barber, *Chem. Soc. Rev.*, 2009, 38, 185-196.
- G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J.
- E. Sheats, L. Spiccia and G. F. Swiegers, Acc. Chem. Res., 2009, 42, 1935-1943.
- 4. H. Dau, I. Zaharieva and M. Haumann, Cur. Opin. Chem. Biol., 2012, 16, 3-10.
- 5. J. Yano and V. Yachandra, *Chem. Rev.*, 2014, **114**, 4175-4205.
- 45 6. M. D. Kärkäs, E. V. Johnston, O. Verho and B. Åkermark, Acc. Chem. Res., 2014, 47, 100-111.
- K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, *Science*, 2004, **303**, 1831-1838.
- 8. Y. Umena, K. Kawakami, J. R. Shen and N. Kamiya, *Nature*, 2011, 120 **473**, 55-60.
- J. Yano, J. Kern, K. D. Irrgang, M. J. Latimer, U. Bergmann, P. Glatzel, Y. Pushkar, J. Biesiadka, B. Loll, K. Sauer, J. Messinger, A. Zouni and V. K. Yachandra, *Proc. Natl. Acad. Sci. USA*, 2005, 102, 12047-12052.
- 55 10. M. Grabolle, M. Haumann, C. Müller, P. Liebisch and H. Dau, J. Biol. Chem., 2006, 281, 4580-4588.
- S. Luber, I. Rivalta, Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, G. W. Brudvig and V. S. Batista, *Biochemistry*, 2011, 50, 6308-6311.
- 60 12. A. Galstyan, A. Robertazzi and E. W. Knapp, J. Am. Chem. Soc., 2012, 134, 7442-7449.
 - A. Grundmeier and H. Dau, *Biochim. Biophys. Acta*, 2012, 1817, 88-105.
 - C. Glöckner, J. Kern, M. Broser, A. Zouni, V. Yachandra and J. Yano, J. Biol. Chem., 2013, 288, 22607-22620.
 - Y. Wang, C. Zhang, L. Wang and J. Zhao, *Chin. Sci. Bull.*, 2013, 58, 3213-3216.
- H. Isobe, M. Shoji, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J. R. Shen and K. Yamaguchi, *Dalton Trans.*, 2012, 41, 13727-13740.
- 17. P. E. M. Siegbahn, Biochim. Biophys. Acta, 2013, 1827, 1003-1019.


- 18. M. Kusunoki, J. Photochem. Photobiol. B, 2011, 104, 100-110.
- 19. D. A. Pantazis, W. Ames, N. Cox, W. Lubitz and F. Neese, *Angew. Chem. Int. Ed.*, 2012, **51**, 9935-9940.
- 75 20. N. Cox, D. A. Pantazis, F. Neese and W. Lubitz, Acc. Chem. Res., 2013, 46, 1588-1596.
 - N. Cox, M. Retegan, F. Neese, D. A. Pantazis, A. Boussac and W. Lubitz, *Science*, 2014, 345, 804-808.
- 22. V. L. Pecoraro, M. J. Baldwin, M. T. Caudle, W. Y. Hsieh and N. A. Law, *Pure Appl. Chem.*, 1998, **70**, 925-929.
 - 23. J. P. McEvoy and G. W. Brudvig, *Phys. Chem. Chem. Phys.*, 2004, 6, 4754-4763.
 - 24. M. Lundberg and P. E. M. Siegbahn, Phys. Chem. Chem. Phys., 2004, 6, 4772-4780.
- 85 25. C. F. Yocum, Coord. Chem. Rev., 2008, 252, 296-305.
- S. Mukhopadhyay, S. K. Mandal, S. Bhaduri and W. H. Armstrong, *Chem. Rev.*, 2004, **104**, 3981-4026.
- 27. C. S. Mullins and V. L. Pecoraro, Coord. Chem. Rev., 2008, 252, 416-443.
- 90 28. C. Chen, C. Zhang, H. Dong and J. Zhao, *Chem. Commun.*, 2014, 50, 9263-9265.
 - 29. A. Mishra, W. Wernsdorfer, K. A. Abboud and G. Christou, *Chem. Commun.*, 2005, 54-56.
- 30. I. J. Hewitt, J. K. Tang, N. T. Madhu, R. Clerac, G. Buth, C. E. Anson and A. K. Powell, *Chem. Commun.*, 2006, 2650-2652.
 - A. Mishra, J. Yano, Y. Pushkar, V. K. Yachandra, K. A. Abboud and G. Christou, *Chem. Commun.*, 2007, 1538-1540.
 - 32. L. B. Jerzykiewicz, J. Utko, M. Duczmal and P. Sobota, *Dalton Trans.*, 2007, 825-826.
- 100 33. E. S. Koumousi, S. Mukherjee, C. M. Beavers, S. J. Teat, G. Christou and T. C. Stamatatos, *Chem. Commun.*, 2011, 47, 11128-11130.
 - 34. J. S. Kanady, E. Y. Tsui, M. W. Day and T. Agapie, Science, 2011, 333, 733-736.
- 35. S. Nayak, H. P. Nayek, S. Dehnen, A. K. Powell and J. Reedijk, *Dalton Trans.*, 2011, **40**, 2699-2702.
 - Y. J. Park, J. W. Ziller and A. S. Borovik, J. Am. Chem. Soc., 2011, 133, 9258-9261.
- S. Mukherjee, J. A. Stull, J. Yano, T. C. Stamatatos, K. Pringouri, T. A. Stich, K. A. Abboud, R. D. Britt, V. K. Yachandra and G. Christou, *Proc. Natl. Acad. Sci. USA*, 2012, **109**, 2257-2262.
 - 38. E. Y. Tsui, R. Tran, J. Yano and T. Agapie, Nat. Chem., 2013, 5, 293-299.
 - 39. W. Liu and H. H. Thorp, Inorg. Chem., 1993, 32, 4102-4105.
 - 40. H. Dau and I. Zaharieva, Acc. Chem. Res., 2009, 42, 1861-1870.
- 115 41. Y. Gao, T. Åkermark, J. Liu, L. Sun and B. Åkermark, J. Am. Chem. Soc., 2009, 131, 8726-8727.
 - 42. Y. Shimazaki, T. Nagano, H. Takesue, B. H. Ye, F. Tani and Y. Naruta, *Angew Chem., Int. Ed. Engl*, 2004, 43, 98-100.
 - 43. P. Gilli, L. Pretto, V. Bertolasi and G. Gilli, *Acc. Chem. Res*, 2009, **42**, 33-44.
 - 44. C. W. Hoganson and G. T. Babcock, *Science*, 1997, **277**, 1953-1956.
 - 45. C. Zhang, Biochim. Biophys. Acta, 2007, 1767, 493-499.

125

46. N. Cox and J. Messinger, *Biochim. Biophys. Acta*, 2013, **1827**, 1020-1030.

39x19mm (300 x 300 DPI)

Highlight: Artificial synthetic Mn^{IV}Ca-oxido complexes containing reactive water molecules have been synthesized to mimic the oxygen-evolving center in photosystem II.