This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A novel electron rich, tetrathiafulvalene fused zinc porphyrin, \((\text{TTF})_4\text{PZn}\), has been newly synthesized and characterized using spectral and electrochemical methods. In spite of the presence of the eight \(\alpha\)-butyl groups, \((\text{TTF})_4\text{PZn}\) exhibited appreciable aggregation in solution. Scanning electron microscopic (SEM) imaging of the aggregates revealed spherical particulate morphology. Attenuation of intermolecular aggregation was possible by metal-ligand coordination of a nitrogenous ligand. Further, using this strategy, donor-acceptor hybrid was formed by coordinating imidazole functionalized fullerene as an electron acceptor. Occurrence of intramolecular ultrafast photoinduced charge separation has been established from fluorescence and transient absorption spectroscopic techniques. The determined rate of charge separation, \(k_{CS}\) and rate of charge recombination, \(k_{CR}\) were found to be \(1.4 \times 10^{11} \text{ s}^{-1}\) and \(2.5 \times 10^6 \text{ s}^{-1}\), respectively. The lower \(k_{CR}\) value indicate charge stabilization in the assembled donor-acceptor conjugate via an electron transfer – hole transfer mechanism.

1. Introduction

Aggregation of natural pigments such as chlorophylls and their synthetic analogues, porphyrins and phthalocyanines is a very well-known phenomenon. Molecular structures of the pigments often control the aggregation phenomenon either by \(\pi-\pi\) interactions, metal ion-\(\pi\) interactions, axial-ligand promoted interactions or macrocycle side chain binding with other units. Aggregates due to \(\pi-\pi\) interactions can be categorised into H- or J-type, which respectively exhibit either blue- or red-shifted absorption bands accompanied by spectral broadening. There is widespread interest in studying molecular aggregation due to their spectral properties, and possible technological applications of these materials whose properties vary from those of the respective molecules and their crystalline forms. However, aggregation often results in reduced fluorescence quantum yields and lifetimes of photosensitizers, a disadvantage that restricts their applications in the study of photoinduced energy and electron transfer relevant to light energy harvesting and solar fuel production.

Over the past decade, significant attempts have been made to prepare \(\pi\)-extended or annulated oligopyrrolic compounds analogous to porphyrins that would possess better electron donor properties. In one case, this was done by annulations of tetrathiafulvalenes (TTFs) at the \(\beta\)-positions of porphyrin making the resulting molecules extraordinarily electron rich. Hybrid TTF-annulated porphyrins are particularly attractive because they contain both redox active sites and a chromophoric unit contained within a single molecular framework.

In the present study, we report the synthesis of a novel \(\pi\)-extended zinc porphyrin bearing four TTF substituents at its \(\beta\)-positions with 3,5-di-\(\alpha\)-butyl-4-hydroxyphenyl groups at meso-positions (Fig. 1). Due to the combination of these peripheral substituents, the porphyrin macrocycle is expected to reveal greater intrinsic electron donor character. This molecule, in spite of having eight \(\alpha\)-butyl groups on the meso-aryl substituents, exhibited considerable aggregation in solution that compromised the fluorescence emission. As demonstrated here, such aggregation could easily be attenuated by axial coordination of a nitrogenous ligand to recover the fluorescence. Furthermore, this strategy has been exploited to build a donor-acceptor hybrid by coordinating the well-known electron acceptor, fullerene (functionalized with a phenylimidazole ligand). Using femtosecond and nanosecond transient spectroscopic techniques, charge separation in the donor-acceptor hybrid was successfully demonstrated.

Fig. 1. Chemical structure of TTF fused ZnP, \((\text{TTF})_4\text{PZn}\), phenyl imidazole, PhIm, and the imidazole ligand bearing fullerene derivative C\(_{60}\)Im used in the present study.

2. Experimental

2.2.1 Chemicals

3,5-Di-\(\alpha\)-butyl-4-hydroxybenzaldehyde and propionic acid were purchased from Tokyo Kasei Chemical Co. and used as received without further purification. All other chemicals and
solvents used for synthesis were obtained from Tokyo Kasei Chemical Co., Wako Chemical Co., Fischer Chemical Co. or Aldrich Chemical Co. in reagent grade purity and used without further purification unless otherwise noted. TTF-pyrrrole was prepared according to previously published procedures.\textsuperscript{24-25} Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 pre-coated on aluminium plates. Column chromatography was carried out using silica gel 60 (200 mesh, Merck). Preparative HPLC (GPC) analyses were performed on a JAI LC-908 instrument using a JAIJEL-1H and -2H columns. Tetra-n-butylammonium perchlorate, (n-Bu4N)ClO4 used in electrochemical studies was from Fluka Chemicals. C60Im was synthesized according to our published method.\textsuperscript{26}

### 2.2.2 Analyses

\textsuperscript{1}H-NMR (300 MHz) and \textsuperscript{13}C-NMR (75 MHz) spectra were recorded on a JEOL JNM-AL300 spectrometer. Chemical shifts (\delta-scale) are reported in ppm relative to residual solvent and internal standard signals (CDCl\textsubscript{3}: 7.29 ppm). MALDI-TOF mass spectra were recorded on a Kratos Axima-CFR-plus spectrometer using a DCTB, (trans-2-[3-(4-tert-butyl-phenyl)-2-methyl-2-propenylidene)malonitrile) as a matrix. UV-vis-NIR spectra were recorded on a Shimadzu UV-3600 spectrophotometer in dry CH\textsubscript{2}Cl\textsubscript{2} and 1,2-dichlorobenzene (DCB) solvents at 298 K. Other UV-visible spectral measurements were carried out either on a Shimadzu Model 2550 double monochromator UV-visible spectrophotometer or a Jobin Yvon Nanolog UV-visible-NIR spectrophotometer equipped with a PMT (for UV-visible) and InGaAs (for NIR) detectors. A right angle detection method was used for emission measurements. Differential pulse voltammograms were recorded on an EG&G 263A potentiostat/galvanostat using a three electrode system. A platinum button electrode was used as the working electrode. A platinum wire was used as the counter electrode and an Ag/AgCl electrode was used as the reference electrode. All solutions were purged using dry argon gas prior to electrochemical and spectral measurements. Scanning electron microscopy was carried out using a Hitachi S-4800 FE-SEM at an accelerating voltage of 5 kV on samples cast onto silicon substrates. Prior to observation, samples were coated with platinum (5 nm approx.) using a Hitachi S-1050 vacuum coater.

### 2.2.3 Laser flash photolysis

Samples were excited using a Panther OPO pumped by Nd:YAG laser (Continuum, SLII-10, 4-6 ns fwhm) with the powers of 1.5 or 3.0 mJ per pulse. Transient absorption measurements were performed using a continuous xenon lamp (150 W) and an InGaAs-PIN photodiode (Hamamatsu 2949) as probe light and detector, respectively. The output from the photodiodes and a photomultiplier tube was recorded with a digitizing oscilloscope (Tektronix, TDS3032, 300 MHz).

Femtosecond transient absorption spectroscopy experiments were conducted using an ultrafast source: Integra-C (Quantunix Corp.), an optical parametric amplifier: TOPAS (Light Conversion Ltd.) and a commercially available optical detection system: Helios provided by Ultrafast Systems LLC. The source for the pump and probe pulses were derived from the fundamental output of Integra-C (780 nm, 2 \mu J/pulse and fwhm = 130 fs) at a repetition rate of 1 kHz. 75% of the fundamental output of the laser was introduced into TOPAS which has optical frequency mixers resulting in tunable range from 285 nm to 1660 nm, while the rest of the output was used for white light generation. Typically, 2500 excitation pulses were averaged for 5 seconds to obtain the transient spectrum at a set delay time. Kinetic traces at appropriate wavelengths were assembled from the time-resolved spectral data. All measurements were conducted at 295 K.

### 2.2.4 DFT Calculations

Quantum mechanical calculations were performed using the Gaussian 09 program suite.\textsuperscript{27} All calculations were carried out using the density functional theory (DFT) method with Becke’s three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP).\textsuperscript{28-29} A basis set of 3-21G* was employed for all atoms. Peripheral propyl groups were replaced with methyl groups to reduce the computational cost.

### 2.2 Synthesis

The target compound, (TTF)\textsubscript{2}PZn was synthesized according to Adler et al.\textsuperscript{30} by condensation of TTF-fused pyrrole with 3,5-di-t-butyl-4-hydroxybenzaldehyde with subsequent insertion of Zn\textsuperscript{2+} by using the acetate method. As outlined in Scheme 1, the \beta-annulated TTF-porphyrin, (TTF)\textsubscript{2}PH\textsubscript{2} and its corresponding Zn(II)-complex was synthesized from the known TTF-annulated porphyrin, (PrS-TTF-pyrrole) and 3,5-di-t-butyl-4-hydroxy benzaldehyde following Adler’s method by a conventional pyrrole-aldehyde condensation reaction in refluxing propionic acid. The crude porphyrin was then subjected to several rounds of silica gel chromatographic separation. The products, isolated as different fractions were further subjected to recycling preparative HPLC-GPC (gel-permeation chromatography) to effect final purification.

The Zn(II)-complex of the isolated free-base TTF-porphyrin, (TTF)\textsubscript{2}PZn was then obtained by treating the free base form with ZnOAc\textsubscript{2}•2H\textsubscript{2}O in CHCl\textsubscript{3}/MeOH (10:1, v/v) and heating at reflux for 1 hour. Column chromatography over silica gel, followed by final GPC separation, gave the purified metallo-porphyrin in good yields. All the compounds were well characterized by NMR, MALDI-TOF and HPLC-GPC. Freshly prepared and recrystallized samples were used for the photophysical and electrochemical studies.

![Insert Scheme 1 here (expand to two columns please)](Scheme 1: Synthetic route for the TTF-porphyrins)

### 2.2.1 Synthesis of (TTF)\textsubscript{2}PH\textsubscript{2}

Typically, in a 250 mL two-necked RB flask, PrS-TTF-pyrrrole (0.392 g, 1 mmol) and 3,5-di-t-butyl-4-hydroxybenzaldehyde (0.234 g, 1 mmol) were dried overnight under reduced pressure. Propionic acid (30 mL) was added and the resulting mixture was refluxed for 3 hours. Propionic acid was evaporated under reduced pressure and the resulting solid mass was washed with dry methanol yielding a dark solid which was then dissolved in dichloromethane and passed through a short alumina column to remove polymeric and other polar impurities. The target porphyrin was isolated through column chromatography on silica gel eluting with 1:1 dichloromethane/hexane mixture. Further purification was by gel permeation chromatography (GPC) using JAI LC-908 with CHCl\textsubscript{3} as eluent. Finally, the product was recrystallized from CHCl\textsubscript{3} and hexane and used for...
Complexation with Zn(II) was achieved by subjecting the free base (TTF)PZnH (0.06 gm, 0.025 mmol) to treatment with Zn(OAc)2.2H2O (0.055 gm, 0.25 mmol) in CHCl3:MeOH (10:1) at reflux for 1 hour under Ar. After partitioning of the reaction mixture between chloroform and water, the chloroform layer was dried over anhydrous MgSO4. After filtration and evaporation of solvents, purification was by gel permeation chromatography (GPC) using JAI LC-908 with CHCl3 as eluent (typically involving three purification cycles). The product was isolated in nearly quantitative yield. The final product was recrystallized from CHCl3-hexane mixture. 1H NMR (300 MHz, CDCl3, 298 K, TMS): \( \delta = 1.00 \) (t, \( J = 7.2 \) Hz, 16H), 1.61-1.68 (m, 88H), 2.76 (t, \( J = 7.2 \) Hz, 16H), 5.76 (s, 4H), 7.71 (s, 8H); 13C NMR spectrum (75 MHz, CDCl3, 298 K, TMS): \( \delta = 13.2, 23.1, 30.3, 34.8, 38.3, 118.3, 127.4, 129.4, 129.8, 136.7, 145.6, 154.6, 156.0; \) MALDI-TOF-MS: \( m/z \) calecd for \( \text{C}_{116}\text{H}_{140}\text{N}_{4}\text{O}_{4}\text{S}_{24} \text{Zn} \) = 2490.77; found: 2490.77; elemental analysis calculated for \( \text{C}_{116}\text{H}_{140}\text{N}_{4}\text{O}_{4}\text{S}_{24} \text{Zn} \): C 57.43, H 5.90, N 2.31, S 30.85.

### 2.2.2 Synthesis of (TTF)4PZn

Complexation with Zn(II) was achieved by subjecting the free base (TTF)PZnH (0.06 gm, 0.025 mmol) to treatment with Zn(OAc)2.2H2O (0.055 gm, 0.25 mmol) in CHCl3:MeOH (10:1) at reflux for 1 hour under Ar. After partitioning of the reaction mixture between chloroform and water, the chloroform layer was dried over anhydrous MgSO4. After filtration and evaporation of solvents, purification was by gel permeation chromatography (GPC) using JAI LC-908 with CHCl3 as eluent (typically involving three purification cycles). The product was isolated in nearly quantitative yield. The final product was recrystallized from CHCl3-hexane mixture. 1H NMR (300 MHz, CDCl3, 298 K, TMS): \( \delta = 1.00 \) (t, \( J = 7.2 \) Hz, 16H), 1.61-1.68 (m, 88H), 2.76 (t, \( J = 7.2 \) Hz, 16H), 5.76 (s, 4H), 7.71 (s, 8H); 13C NMR spectrum (75 MHz, CDCl3, 298 K, TMS): \( \delta = 13.2, 23.1, 30.3, 34.8, 38.3, 118.3, 127.4, 129.4, 129.8, 136.7, 145.6, 154.6, 156.0; \) MALDI-TOF-MS: \( m/z \) calecd for \( \text{C}_{116}\text{H}_{140}\text{N}_{4}\text{O}_{4}\text{S}_{24} \text{Zn} \) = 2490.77; found: 2490.77; elemental analysis calculated for \( \text{C}_{116}\text{H}_{140}\text{N}_{4}\text{O}_{4}\text{S}_{24} \text{Zn} \): C 57.43, H 5.90, N 2.31, S 30.85.

### 3. Results and discussion

#### 3.1 Absorption and fluorescence studies

Fig. 2 shows the absorption spectrum of (TTF)4PZn at different concentrations in \( \sigma \)-dichlorobenzene (DCB). The Soret band located at 448 nm has a shoulder at 464 nm, while the Q-35 band located at 448 nm has a shoulder at 464 nm, while the Q-system of (TTF)4PZn and charge transfer type interactions between the PZn and fused TTF entities. 40

#### 55

As mentioned earlier, aggregation generally diminishes fluorescence intensity of organic sensitizers. 13 This seems to be also the case with the present (TTF)4PZn compound wherein both aggregation and intramolecular charge transfer between porphyrin π-system with TTF units diminish fluorescence. As shown in Fig. 4b, the fluorescence spectrum of (TTF)4PZn revealed two bands located at 610 and 668 nm. These bands are slightly red-shifted compared to pristine ZnP as a consequence of extended π-conjugation as a consequence of four TTF entities. Addition of Phlm increased the fluorescence and at the saturation point, this increase was about 43%. However, the final fluorescence intensity of (TTF)4PZn:Phlm was weaker than that of pristine ZnP which was about two orders of magnitude greater than that reported for the same ligand binding to PZn.26

#### Insert Fig. 4 here

In our study, we found that aggregation processes and uncertainties due to the resulting structures could be largely eliminated by coordinating a nitrogenous base at the zinc(II) centre. For this, (TTF)4PZn:Phlm was treated with phenylmethylazado, Phlm in a noncoordinating solvent such as DCB. As shown in Fig. 4a, addition of Phlm resulted in a spectrum that resembled that of a monomeric zinc porphyrin. That is, the broad shoulder band to the Soret band located in the 495 nm range and the broad band located in the 715 nm range diminished in intensity with concomitant increase of zinc porphyrin Soret at 454 nm and a visible band at 575 nm. Isosbestic points at 420 and 594 nm were observed indicating existence of a single equilibrium. The final spectrum resembles that of the monomeric zinc porphyrin in dilute chloroform.26 This suggests that formation of (TTF)4PZn:Phlm complex disperses aggregates of (TTF)4PZn ostensibly by obstructing intramolecular stacking interactions. Furthermore, the binding constant, \( K \) for the complex formation process was calculated by constructing a Benesi-Hildebrand plot33 as shown in Fig. 4a inset. The \( K \) value for this process was found to be 1.3 \( \pm 0.13 \times 10^8 \) M\(^{-1}\) which was about two orders of magnitude greater than that reported for the same ligand binding to PZn.26

#### Insert Fig. 3 here

Fig. 3. SEM image of aggregates of (TTF)4ZnP revealing their spherical particulate morphology. Scale bars: 2 \( \mu \)m (left); 500 nm (right). The lower image was obtained with the substrate tilted at an angle of 35 degrees from the beam normal axis. A single drop of solution of (TTF)4ZnP (\( \sim 10^{-4} \) M) in chloroform containing \( \sim 5 \% \) methanol was allowed to evaporate on the substrate prior to drying in vacuo and coating with platinum (\( \sim 5 \) nm).

#### Insert Fig. 3 here

We found that aggregation processes and uncertainties due to the resulting structures could be largely eliminated by coordinating a nitrogenous base at the zinc(II) centre. For this, (TTF)4PZn:Phlm was treated with phenylmethylazado, Phlm in a noncoordinating solvent such as DCB. As shown in Fig. 4a, addition of Phlm resulted in a spectrum that resembled that of a monomeric zinc porphyrin. That is, the broad shoulder band to the Soret band located in the 495 nm range and the broad band located in the 715 nm range diminished in intensity with concomitant increase of zinc porphyrin Soret at 454 nm and a visible band at 575 nm. Isosbestic points at 420 and 594 nm were observed indicating existence of a single equilibrium. The final spectrum resembles that of the monomeric zinc porphyrin in dilute chloroform.26 This suggests that formation of (TTF)4PZn:Phlm complex disperses aggregates of (TTF)4PZn ostensibly by obstructing intramolecular stacking interactions. Furthermore, the binding constant, \( K \) for the complex formation process was calculated by constructing a Benesi-Hildebrand plot33 as shown in Fig. 4a inset. The \( K \) value for this process was found to be 1.3 \( \pm 0.13 \times 10^8 \) M\(^{-1}\) which was about two orders of magnitude greater than that reported for the same ligand binding to PZn.26
Binding of C60Im to (TTF)4PZn followed a spectral trend similar to that of ImPh binding (Fig. 5). The broad Soret and visible bands became narrower with a concurrent increase in intensity. The final complex, (TTF)4PZn:C60Im, had the Soret band at 460 nm and visible band at 583 nm (Fig. 5a). Binding constant K determined from the Benesi-Hildebrand plot was found to be 2.1 ± 0.12 x 10^4 M^−1 (Fig. 5a inset), an order of magnitude greater than that reported for C60Im binding to pristine ZnP.26 Interestingly, C60Im binding also causes fluorescence quenching (Fig. 3b) in contrast to that observed for ImPh binding where an increase in fluorescence was observed. This suggests that the coordinated fullerene electron acceptor might be involved in light-induced electron transfer.

3.2 Electrochemistry and computational studies

To determine the redox potentials of (TTF)4PZn and the (TTF)4PZn:C60Im complex, differential pulse voltammetry (DPV) experiments were performed in DCB containing 0.1 M (n-Bu4N)ClO4. On the cathodic side, (TTF)4PZn revealed two one-electron reductions located at −1.67 V and −1.95 V vs. Fc/Fc′ involving the porphyrin macrocycle (Fig. 6a). On the anodic side, peaks corresponding to both TTF and PZn entities were observed.

Insert Fig. 6 here

Four anodic processes at -0.06, 0.03, 0.35 and 0.41 V, each with peak currents twice that of the reduction waves, were observed. By comparing the oxidation potential of these waves to that of pristine TTF, these processes have been ascribed to the formation of TTF^+ and TTF^2+ of the (TTF)4PZn macrocycle. The splitting of the oxidation wave is indicative of interactions between the TTF moieties and the porphyrin π-system. At more positive potentials, two additional one-electron oxidation processes located at 0.97 and 1.38 V vs. Fc/Fc′ were observed. These can be assigned to the formation of Zn4^2+ and Zn4^3+ species, respectively. The anodically shifting of peaks due to these processes compared to pristine ZnP (0.28 and 0.62 V vs. Fc/Fc′) indicates the relatively electron deficient nature of the porphyrin system, against neutral (TTF)4PZn due to the influence of four interacting TTF^+ entities possessing a total of eight positive charges. It is important to note that although there is substantial interaction, the PZn and TTF entities of (TTF)4PZn retain their charges. It is important to note that although there is substantial interaction, the PZn and TTF entities of (TTF)4PZn retain their charges. It is important to note that although there is substantial interaction, the PZn and TTF entities of (TTF)4PZn retain their charges. It is important to note that although there is substantial interaction, the PZn and TTF entities of (TTF)4PZn retain their charges.

Insert Fig. 5 here

By using the redox, optical and computational data, the free-energy change of charge separation, ΔΔGCs was estimated according to Weller’s approach.34 These calculations revealed that charge separation from the (TTF)4PZnP* (E0,0 = 2.03 eV) should be an exothermic process leading to production of the radical ion-pairs (TTF)4PZn^+:C60Im^- (ΔΔGCs = −0.16 eV) or ((TTF)4)2TTF^+PZnP^:C60Im^- (ΔΔGCs = −0.15 eV). These results suggest that hole migration from the initial (TTF)4PZnP*:C60Im^- to produce ((TTF)4)2TTF^+PZnP^:C60Im^- within the complex is a thermodynamically feasible process. This process is expected to generate long-lived charge separated states.44

3.3 Femtosecond and nanosecond transient absorption studies

In order to establish that charge separation occurs in (TTF)4PZnP:C60Im, transient absorption studies were performed. First, (TTF)4PZn was chemically oxidized using nitrosonium hexafluoroborate to locate the absorption bands of [(TTF)4PZn]^+ as shown in Fig. S1 in the electronic supplemental section (ESI), this oxidation procedure revealed new absorption bands at 478, 580 and 641 nm. Singlet-singlet energy transfer from 1PZn* to C60 was ruled out as one of the quenching mechanisms due to the lack of absorbance of C60 in the wavelength region of PZn emission. Fig. S2 in ESI shows the femtosecond transient absorption spectrum of (TTF)4PZnP (excited at 400 nm of 100 fs pulses) at the indicated time intervals. Immediately after excitation (< 1 ps), positive peaks at 512 and 866 nm and negative peaks at 467 and 590 nm were observed. The positive peaks are attributed to formation of the singlet excited state of (TTF)4PZn whereas the negative peaks are the inverse of the ground state absorption bands. New bands at 564, 662 and 727 nm gradually appeared with recovery of the ground state band at 467 nm. These spectral changes can be attributed to intramolecular charge transfer involving TTF and ZnP entities. The transient species decayed in less than 200 ps indicating a rapid charge recombination.

Fig. 8a shows transient absorption spectra for...
(TTF)$_3$PZn:C$_{60}$Im at different time intervals. Features in the initially measured spectra are similar to those observed for (TTF)$_3$PZn. However, over time new transient bands emerged at 1000 nm, corresponding to C$_{60}^-$, and in the 650-700 nm range, corresponding to ZnP$^+$. Another new transient band at 570 nm due to the formation of TTF$^-$ also emerged with concurrent decay of ZnP$^+$ suggesting a competitive hole transfer process. Radical cation and radical anion bands were persistent beyond the corresponding to ZnP$^+$. $k_{CR}$ forms a stable complex with C$_{60}$Im and the structure of the complex at the indicated time intervals s in DCB. (b) Time profile of the C$_{60}^-$ peak monitored at 1000 nm.

In order to obtain a value for the rate of charge recombination, $k_{CR}$, nanosecond transient measurements were performed. Fig. 9a shows the transient absorption spectrum at the indicated time intervals for the (TTF)$_3$PZn:C$_{60}$Im complex in DCB. Transient features in the visible and near-IR region, relevant to (TTF)$_3$TTF$^-$ZnP$^+$C$_{60}$Im$^-$ radical ion-pair were observed. To evaluate $k_{CR}$, the decay of C$_{60}^-$ at 1000 nm was monitored. As shown in Fig. 9b, the decay followed a biexponential process. A faster process with time constant of 0.03 μs and a slower process with time constant of 0.40 μs resulted in $k_{CR}$ values of 3.3 x 10$^7$ s$^{-1}$ and 2.5 x 10$^6$ s$^{-1}$, respectively. These $k_{CR}$ values are lower than those reported for the PZn:C$_{60}$Im complex (2.5 x 10$^7$ s$^{-1}$, respectively). These results support charge stabilization in the investigated supramolecular complex (TTF)$_3$PZn:C$_{60}$Im.

In summary, tetrathiafulvalene fused zinc porphyrin as a charge stabilizing electron donor has been newly synthesized and characterized. Metal-ligand axial coordination has been effectively used to eliminate molecular aggregation observed in this large conjugated porphyrin $\pi$-system. This strategy is further utilized to form a novel donor-acceptor complex. (TTF)$_3$PZn forms a stable complex with C$_{60}$Im and the structure of the resulting (TTF)$_3$PZn:C$_{60}$Im complex was established using spectral, electrochemical and computational methods. Photoinduced electron transfer from the singlet excited porphyrin was established from transient absorption spectrosopic studies wherein charge stabilization as a result of an electron transfer followed by hole-transfer mechanism was demonstrated, signifying the importance of the present approach and that of donor-acceptor complexes in light energy harvesting applications.

This research was partly supported by the World Premier International Research Center Initiative on Materials Nanoarchitctonics from MEXT, Japan, and by the Core Research for Evolutional Science and Technology (CREST) program of JST, Japan. FD acknowledges support from the NSF (Grant Nos. 1110942 and 1401188).

**Notes and references**

$^{5}$ Supramolecules Group, WPI center for Materials Nanoarchitecnotics, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan.

$^{6}$ Department of Chemistry, University of North Texas, 35070, Denton, Texas 76203-5017, United States.

$^{7}$ E-mail: Francis.DSouza@UNT.edu

$^{8}$ Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395, Japan.

$^{9}$ Fuel Cell Materials Group, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan.

$^{10}$ JST-CREST, Gobancho, Chiyoda-ku, Tokyo 102-0075, Japan.

$^{11}$ Electronic Supplementary Information (ESI) available: HOMO and LUMO of (TTF)$_3$PZn, spectral changes during chemical oxidation of (TTF)$_3$PZn, and femtosecond transient absorption spectra of (TTF)$_3$PZn. See DOI: 10.1039/b000000x/.

---

**Fig. 8.** (a) Femtosecond transient absorption spectra of (TTF)$_3$PZn:C$_{60}$Im complex at the indicated time intervals in DCB. (b) Time profile of the C$_{60}^-$ peak monitored at 1000 nm.

**Fig. 9.** (a) Nanosecond transient absorption spectra of the (TTF)$_3$PZn:C$_{60}$Im complex in N$_2$ saturated DCB at the indicated time intervals ($\lambda_{ex}$ = 355 nm of 6 ns laser pulse). (b) Time profile of the C$_{60}^-$ peak at 1000 nm.

**4. Summary**

In summary, tetrathiafulvalene fused zinc porphyrin as a charge stabilizing electron donor has been newly synthesized and characterized. Metal-ligand axial coordination has been effectively used to eliminate molecular aggregation observed in this large conjugated porphyrin $\pi$-system. This strategy is further utilized to form a novel donor-acceptor complex. (TTF)$_3$PZn forms a stable complex with C$_{60}$Im and the structure of the resulting (TTF)$_3$PZn:C$_{60}$Im complex was established using spectral, electrochemical and computational methods. Photoinduced electron transfer from the singlet excited porphyrin was established from transient absorption spectrosopic studies wherein charge stabilization as a result of an electron transfer followed by hole-transfer mechanism was demonstrated, signifying the importance of the present approach and that of donor-acceptor complexes in light energy harvesting applications.

This research was partly supported by the World Premier International Research Center Initiative on Materials Nanoarchitecnotics from MEXT, Japan, and by the Core Research for Evolutional Science and Technology (CREST) program of JST, Japan. FD acknowledges support from the NSF (Grant Nos. 1110942 and 1401188).
32. G. Scheibe Angew. Chem. 1937, 50, 212.
Table of Contents Graphic

Breaking Aggregation

\[ e^- \]
Fig. 1

Scheme 1
Fig. 2

Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Potential V vs. Fc/Fc⁺

Fig. 7

(a) HOMO
(b) LUMO
(c) HOMO
(d) LUMO
Fig. 8
Fig. 9