Dalton Transactions

1,2,3-Triazolylidene Ruthenium(II)-Cyclometalated Complexes and Olefin Selective Hydrogenation Catalysis

Journal:	Dalton Transactions
Manuscript ID:	DT-ART-10-2014-003156.R1
Article Type:	Paper
Date Submitted by the Author:	05-Nov-2014
Complete List of Authors:	Bagh, Bidraha; University of Toronto, Chemistry McKinty, Adam; University of Toronto, Chemistry Lough, Alan; University of Toronto, Chemistry Stephan, Douglas; University of Toronto, Department of Chemistry

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

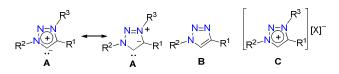
www.rsc.org/xxxxx

ARTICLE TYPE

i1,2,3-Triazolylidene Ruthenium(II)-Cyclometalated Complexes and Olefin Selective Hydrogenation Catalysis

Bidraha Bagh, Adam M. McKinty, Alan J. Lough and Douglas W. Stephan*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x


ABSTRACT: Silver(I) 1,2,3-triazol-5-ylidenes $[(RCH_2C_2N_2(NMe)Ph)_2Ag][AgCl_2]$ (R = Ph **3a**, C₆H₂*i*Pr₃ **3b**, $C_6H_2Me_3$ **3c**) and $[(PhCH_2C_2N_2(NMe)R)_2Ag][AgCl_2]$ (R = C_6H_4Me **3d**, $C_6H_4CF_3$ **3e**) were synthesized and subsequently treated with $RuHCl(PPh_3)_3$ and $RuHCl(H_2)(PCy_3)_2$. The reaction of **3a** with $RuHCl(PPh_3)_3$ gave $RuHCl(PPh_3)_2(PhCH_2C_2N_2(NMe)Ph)$ (4a₁) as the minor product and the 10 cyclometalated complex $RuCl(PPh_3)_2(PhCH_2C_2N_2(NMe)C_6H_4)$ (4a₂) as the major product. However, similar reaction with 3b selectively formed the cyclometalated complex $RuCl(PPh_3)_2((C_6H_2iPr_3)CH_2C_2N_2(NMe)C_6H_4)$ (4b₂). Similarly the silver(I) triazolylidenes 3a and 3b reacted with $RuHCl(H_2)(PCy_3)_2;$ RuHCl(PCy₃)₂(PhCH₂C₂N₂(NMe)Ph) were gave $(5a_1)$, $RuCl(PCy_3)_2(PhCH_2C_2N_2(NMe)C_6H_4)$ (5a) and $RuCl(PCy_3)_2((C_6H_2iPr_3)CH_2C_2N_2(NMe)C_6H_4)$ (5b), 15 respectively. Species 3c, 3d and 3e resulted in the cyclometalated complexes ($5c_2$, $5d_2$ and $5e_2$) as the major products as well as the ruthenium-hydride complexes $(5c_1, 5d_1 \text{ and } 5e_1)$ as the minor products. The cyclometalated species are derived from the ruthenium-hydride complexes via C(sp²)-H activation. These Ru-complexes were shown to act as hydrogenation catalyst precursors for olefinic substrates including those containing a variety of functional groups.

20 INTRODUCTION

The most common chemical transformation used in chemical industry is hydrogenation. Indeed, this reaction is essential for the preparation of a vast array of materials, polymers, pharmaceuticals, agrochemicals, fine chemicals and foodstuffs.¹

- ²⁵ Among homogeneous catalysts used for hydrogenations, those derived from rhodium² and iridium³ complexes are common. While such precious metal systems are employed because of their activity, the expense and toxic nature of these metals has prompted effort to employ alternatives.⁴ Ruthenium compounds
- ³⁰ of the type RuHCl(CO)(NHC)(PPh₃) are effective catalysts for the hydrogenation of olefins.⁵ Albrecht et al. showed that ruthenium complexes of chelating NHCs acted as a very robust catalysts.⁶ In our own efforts we have recently communicated that a *cis-bis*-NHC ruthenium hydride complex exhibited remarkably
- ³⁵ selective catalyst for olefin hydrogenation.⁷ Noting that these catalysts do indeed contain electron rich Ru-centers, we considered the possibility of using of alternative donors.
- 1,3,4-trisubstituted-1,2,3-triazol-5-ylidenes (Figure 1 A) are a recent addition to the family of mesoionic N-heterocyclic ⁴⁰ carbenes (NHCs) that have attracted considerable attention in last five years.⁸ Precursors to these ligands namely 1,2,3-triazole (Figure 1 B) are readily synthesized by the Cu(I)-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes. This so-called 'click' reaction⁹ is highly modular and useful as it proceeds
- ⁴⁵ under mild reaction conditions, with high tolerance of functional groups and excellent yields. In 2008 the first transition metal complex of 1.2,3-triazolydene was reported by Albrecht *et al.*

using the 1,2,3-triazolium salt (Figure 1 C) as precursor.¹⁰ While Bertrand et al. synthesized free 1,3,4-trisubstituted-1,2,3-triazol-50 5-ylidenes by the deprotonation of the 1,2,3-triazolium salt with KN(SiMe₃)₂ or KOtBu,¹¹ these species are conveniently stabilized by complexation with Ag(I). These latter species can be exploited for transmetallation reactions and have been further exploited as ligands for novel metal catalysts in reactions such as 55 oxidation of amines,¹² and water, ¹³ alcohols,¹² oxidative coupling,12 Suzuki coupling,14 and ring-opening and ring-closing metathesis.^{11a} In addition, in a recent report we have described three half-sandwich Ru(II) hydride complexes with 1,2,3triazolylidene ligands which proved to be good hydrogenation 60 catalysts for olefins.¹⁵ In this manuscript, we demonstrate that Ru-phosphine complexes of 1,2,3-triazolylidenes are readily accessible and highly effective and selective catalyst precursors for hydrogenation of functionalized olefins.

 $_{5}$ R¹ and R² = alkyl, benzyl or aryl; R³ = alkyl or benzyl; X = Br, I, OTf, PF₆, BF₄ Fig. 1 1,2,3-Triazole species.

EXPERIMENTAL SECTION

General Procedure. Syntheses of 1a-e were performed in air

with ordinary solvents. All other manipulations were carried out under an atmosphere of dry, oxygen free nitrogen atmosphere employing an Innovative Technology glove box and a Schlenk vacuum-line. Solvents (pentane, hexanes, toluene, CH₂Cl₂) were

- ⁵ purified with a Grubbs-type column system manufactured by Innovative Technology and dispensed into thick-walled Schlenk glass flasks equipped with Teflon-valve stopcocks and stored over molecular sieves. CH₃CN was stored over CaH₂, distilled and degassed before use. Dry benzene was purchased from
- ¹⁰ Aldrich and degassed before use. Deuterated solvents (C_6D_6 , $CDCl_3$ and CD_2Cl_2) were dried over the appropriate agents, vacuum-transferred into storage flasks with Teflon stopcocks, and degassed accordingly. ¹H, ¹³C and ³¹P NMR spectra were recorded at 25 °C on a Bruker 400 MHz spectrometer. Chemical
- ¹⁵ shifts are given relative to SiMe₃ and referenced to the residual solvent signal (¹H and ¹³C) or relative to an external standard (³¹P, 85% H₃PO₄). Chemical shifts are reported in ppm. Mass spectra were measured on a AB Sciex QStar and were reported in the form m/z (%) [M^+] where "m/z" is the mass observed, the
- ²⁰ intensities of the most intense peaks are reported, and "*M*⁺" is the molecular ion peak. Combustion analyses were performed in house, employing a Perkin-Elmer CHN Analyzer. All reagents were purchased from Aldrich and were used as received. **1a**, **1b**, **1c**, **1d**, **1e**, **2a**, **2b**, **2c**, **3a**, **3b** and **3c** were synthesized according
- ²⁵ to literature procedure.¹⁶ RuHCl(PPh₃)₃ and RuHCl(H₂)(PCy₃)₂ was prepared following a modified literature procedure.¹⁷ As repeated elemental analysis of **3d** and **3e** failed to produce acceptable results, HRMS was performed as a further characterization.
- Synthesis of [PhCH₂C₂HN₂(NMe)R][OTf] ($\mathbf{R} = C_6H_4Me$ 2d, $C_6H_4CF_3$ 2e). Identical synthetic procedures were followed for the preparation of 2d and 2e. MeOTf (11.00 mmol) was added dropwise to a solution of 1,2,3-triazole (10.00 mmol) in CH₂Cl₂
- ³⁵ (20 mL) at r.t. The reaction mixture was stirred for 40 h resulting in a colorless solution. All volatiles were removed under high vacuum resulting in a colorless oil which solidified on standing. The solid was washed with hexane (3 x 20 mL) and dried under vacuum to give pure product.
- ⁴⁰ **2d**: **1d** (2.495 g, 10.00 mmol) and MeOTf (1.805 g, 11.00 mmol) yielded **2d** (3.747 g, 91%). ¹H NMR (CD₂Cl₂): δ 2.42 (s, 3H, CH₃), 4.23 (s, 3H, N-CH₃), 5.80 (s, 2H, CH₂), 7.33-7.63 (m, 9H, C₆H₅ and C₆H₄), 8.68 (s, 1H, triazolium-H). ¹³C NMR (CD₂Cl₂): δ 21.58 (CH₃), 39.03 (N-CH₃), 57.91 (CH₂), 119.20, 128.57,
- $_{45}$ 129.43, 129.74, 129.97, 180.27, 130.68, 131.80, 143.19, 144.13 (C₆H₅, C₆H₄ and trizolium-C). Anal. Calcd for C₁₈H₁₈F₃N₃O₃S (413.41): C, 52.29; H, 4.39; N, 10.16. Found: C, 52.32; H, 4.34; N, 10.11.
- **2e**: **1e** (3.035 g, 10.00 mmol) and MeOTf (1.805 g, 11.00 mmol) ⁵⁰ yielded **2e** (4.229 g, 90%). ¹H NMR (CD₂Cl₂): δ 4.26 (s, 3H, N-
- ⁵⁰ yielded **2e** (4.229 g, 90%). H NMR (CD₂Cl₂): 6 4.26 (s, 3H, N-CH₃), 5.82 (s, 2H, CH₂), 7.40-7.87 (m, 9H, C₆H₅ and C₆H₄), 8.78 (s, 1H, triazolium-H). ¹³C NMR (CDCl₃): δ 39.27 (N-CH₃), 58.14 (CH₂), 126.00, 126.91, 129.45, 129.80, 130.03, 130.39, 130.60, 131.49, 142.57 (C₆H₅, C₆H₄ and trizolium-C). Anal. Calcd for ⁵⁵ C₁₈H₁₅F₆N₃O₃S (467.39): C, 46.26; H, 3.23; N, 8.99. Found: C, 46.21; H, 3.25; N, 9.02.

Synthesis of $[(PhCH_2C_2N_2(NMe)R)_2Ag][AgCl_2]$ (R = C₆H₄Me 3d, C₆H₄CF₃ 3e). Identical synthetic procedures were followed

for the preparation of **3d** and **3e**. A mixture of triazolium salt 60 (5.00 mmol), Ag₂O (2.75 mmol) and NMe₄Cl (5.50 mmol) in a 1:1 mixture of CH₂Cl₂ (10 mL) and CH₃CN (10 mL) was stirred at r.t. for 24 h under dark resulting in yellow solution with grey precipitate. All volatiles were removed under vacuum to give a grey solid which was extracted with CH₂Cl₂ (20 mL). The

- 65 solution was concentrated to approximately one fourth to its original volume and filtered through a plug of Celite to get a clear solution. The solution was added dropwise to well-stirred hexanes (20 mL). This yielded a sticky precipitate with pale yellow solution. The solid was dried under vacuum resulted in a form which the solid was dried under vacuum resulted in a
- ⁷⁰ foamy solid. The solid was dissolved in minimum amount of CH_2Cl_2 (ca. 4-5 mL) and the solution was added dropwise to well-stirred hexanes (20 mL) to give an off-white solid with colorless solution. The liquid was syringed off and the solid was dried under high vacuum to give pure product.
- ⁷⁵ **3d**: **2d** (2.068 g, 5.00 mmol), Ag₂O (0.637 g, 2.75 mmol) and NMe₄Cl (0.603 g, 5.50 mmol) yielded **3d** (1.811 g, 89%). ¹H NMR (CD₂Cl₂): δ 2.41 (s, 3H, CH₃), 4.10 (s, 3H, N-CH₃), 5.54 (s, 2H, CH₂), 7.21-7.47 (m, 9H, C₆H₅ and C₆H₄). ¹³C NMR (CD₂Cl₂): δ 21.43 (CH₃), 37.71 (N-CH₃), 59.82 (CH₂), 124.79,
- 80 128.69, 129.22, 129.28, 129.55, 130.06, 134.81, 140.87, 149.60 (C₆H₅, C₆H₄ and trizolium-C). MS (70 eV, ESI): m/z (rel intens) 633 (100) [C₃₄H₃₄N₆Ag⁺]. HRMS (ESI; m/z): calcd for C₃₄H₃₄N₆Ag, 633.1890; found, 633.1885.
- **3e**: **2e** (2.338 g, 5.00 mmol), Ag₂O (0.637 g, 2.75 mmol) and ⁸⁵ NMe₄Cl (0.603 g, 5.50 mmol) yielded **3e** (1.934 g, 84%). ¹H NMR (CD₂Cl₂): δ 4.15 (s, 3H, N-CH₃), 5.61 (s, 2H, CH₂), 7.25-7.75 (m, 9H, C₆H₅ and C₆H₄). ¹³C NMR (CD₂Cl₂): δ 38.03 (N-CH₃), 59.86 (CH₂), 125.19, 126.27, 128.72, 129.30, 130.35, 131.58, 131.88, 132.14, 134.70, 148.09 (C₆H₅, C₆H₄ and ⁹⁰ trizolium-C). MS (70 eV, ESI): m/z (rel intens) 741 (100) [C₃₄H₂₈N₆F₆Ag⁺]. HRMS (ESI; m/z): calcd for C₃₄H₂₈N₆F₆Ag, 741.1327; found, 741.1325.
- Synthesis of RuHCl(PPh₃)₂(PhCH₂C₂N₂(NMe)Ph) (4a₁) and ⁹⁵ RuCl(PPh₃)₂(PhCH₂C₂N₂(NMe)C₆H₄) (4a₂). Toluene (30 mL) was added to a mixture of **3a** (0.395 g, 0.50 mmol) and RuHCl(PPh₃)₃ (0.926 g, 1.00 mmol). The reaction mixture was stirred at 25 °C for 48 h resulting in a dark red solution with brown precipitate. The precipitate was filtered off and the ¹⁰⁰ solution was concentrated to ca. one fourth to its original volume. The concentrated solution was added dropwise to well stirred hexanes (30 mL) resulting in a red precipitate with pale red solution. The liquid was syringed off and the solid was washed with hexanes (3 x 10 mL). The red solid was dried to give crude ¹⁰⁵ product **4a**₂ which was dissolved in appropriate solvent and crystallization gave dark red crystals as pure product **4a**₂. Dark red crystals were deposited from the pale red solution on
- red crystals were deposited from the pale red solution on standing, which were found to be a mixture of $4a_1$ and $4a_2$ in the ratio of 8.5:1.5.
- ¹¹⁰ **4a**₂: **3a** (0.395 g, 0.50 mmol) and RuHCl(PPh₃)₃ (0.926 g, 1.00 mmol) yielded a red solid (0.482 g) as crude product. The crude product was dissolved in benzene (20 mL). Slow diffusion of hexanes into the benzene solution resulted in dark red crystals. Crystals were dried under high vacuum to give pure **4a**₂ (0.191 g,
- ¹¹⁵ 21%). ¹H NMR (CDCl₃): δ 3.34 (s, 3H, N-CH₃), 4.86 (s, 2H, CH₂), 6.29-6.36 (m, 1H, Ar-H), 6.41-6.49 (m, 2H, Ar-H), 6.80 (d,

 ${}^{3}J_{\rm HH} = 8$ Hz, 2H, Ar-H), 6.95-7.03 (m, 3H, Ar-H), 7.09-7.45 (m, 30H, Ar-H), 8.08 (d, ${}^{3}J_{\rm HH} = 8$ Hz, 1H, Ar-H). 13 C NMR (CDCl₃): δ 36.59 (N-CH₃), 55.99 (CH₂), 118.83, 120.08, 122.96, 127.73, 128.70, 129.35, 134.48, 134.79, 135.09, 136.01, 139.77, 141.09, δ 153.53 (Ar-C), 173.39, 180.64 (Ru-C(C₆H₄) and Ru-

C(triazolylidene)). ³¹P NMR (CDCl₃): δ 37.70 (PPh₃). Anal. Calcd for C₅₂H₄₄ClN₃P₂Ru (909.40): C, 68.68; H, 4.88; N, 4.62. Found: C, 68.73; H, 4.85; N, 4.60.

4a₁: **4a₁** could not be isolated as a pure compound. The crude ¹⁰ product (0.122 g) contained a mixture of **4a₁** and **4a₂** (8.5:1.5). Further crystallization from the mixture increased the amount of **4a₂**. ¹H NMR (CDCl₃): δ -27.49 (t, ²*J*_{PH} = 24 Hz, 1H, RuH), 3.25 (s, 3H, Me), 4.77 (s, 2H, CH₂), 6.45-7.35 (m, 40H, Ar-H). ³¹P NMR (CDCl₃): δ 46.33 (PPh₃).

15

Synthesis of RuCl(PPh₃)₂((C₆H₂*i***Pr₃)CH₂C₂N₂(NMe)C₆H₄) (4b₂). Toluene (30 mL) was added to a mixture of 3b** (0.520 g, 0.50 mmol) and RuHCl(PPh₃)₃ (0.926 g, 1.00 mmol). The reaction mixture was stirred at r.t. for 48 h resulting in a dark red ²⁰ solution with brown precipitate. The precipitate was filtered off and the solution was concentrated to ca. one fourth to its original volume. The concentrated solution was added dropwise to well stirred hexanes (30 mL) resulting in a red precipitate with pale red solution. The liquid was syringed off and the solid was

- ²⁵ washed with hexanes (3 x 10 mL). The red solid (0.69 g) was dried to give crude product **4b**₂ which was dissolved in CH_2Cl_2 (12 mL). Slow diffusion of Et₂O into the solution resulted in dark red crystals. Dark red crystals were also deposited from the pale red solution on standing. Crystals were combined and dried under
- ³⁰ high vacuum to give pure **4b**₂ (0.383 g, 37%). ¹H NMR (CD₂Cl₂): δ 0.93 (d, ³*J*_{HH} = 7 Hz, 12H, CH₃ of *i*Pr), 1.26 (d, ³*J*_{HH} = 7 Hz, 6H, CH₃ of *i*Pr), 2.28 (sept, ³*J*_{HH} = 7 Hz, 1H, CH of *i*Pr), 2.89 (sept, ³*J*_{HH} = 7 Hz, 2H, CH of *i*Pr), 3.30 (s, 3H, N-CH₃), 5.22 (s, 2H, CH₂), 6.17 (d, ³*J*_{HH} = 8 Hz, 1H, Ar-H), 6.40-6.45 (m, 2H, Ar-
- ³⁵ H), 7.01 (s, 2H, Ar-H), 7.05-7.42 (m, 30H, PPh₃), 7.91 (d, ${}^{3}J_{HH} =$ 8 Hz, 1H, Ar-H). ¹³C NMR (CD₂Cl₂): δ 24.04 (CH₃ of *i*Pr), 24.98 (CH of *i*Pr), 30.30 (CH₃ of *i*Pr), 34.60 (CH of *i*Pr), 36.49 (N-CH₃), 48.98 (CH₂), 118.75, 120.46, 121.85, 122.94, 124.38, 127.66, 128.70, 140.07, 149.56, 149.91, 154.64 (Ar-C), 174.27, 175.65 (28.70, 140.07, 149.56, 149.91, 154.64 (Ar-C), 174.27,
- $_{40}$ 175.45 (Ru-C(C₆H₄) and Ru-C(triazolylidene)). ^{31}P NMR (CD₂Cl₂): δ 39.95 (PPh₃). Anal. Calcd for C₆₁H₆₂ClN₃P₂Ru (1035.64): C, 70.74; H, 6.03; N, 4.06. Found: C, 71.01; H, 5.99; N, 4.09.
- ⁴⁵ Synthesis of RuHCl(PCy₃)₂(PhCH₂C₂N₂(NMe)Ph) (5a₁) and RuCl(PCy₃)₂(PhCH₂C₂N₂(NMe)C₆H₄) (5a₂). Benzene (10 mL) was added to a mixture of **3a** (0.197 g, 0.25 mmol) and RuHCl(H₂)(PCy₃)₂ (0.350 g, 0.50 mmol). The reaction mixture was stirred at room temperature for 48 hours resulting in a red
- ⁵⁰ solution with brown precipitate. The brown solid was filtered off. The red solution was concentrated to ca. 2-3 mL and added dropwise to hexanes (15 mL) while stirring vigorously. This resulted in a red solution with orange precipitate. The solid was filtered off and dried under high vacuum to give $5a_2$ (0.291 g, ca.
- ss 60%) [it contains $5a_1$ as impurity (9%) and could not be isolated in pure form.]. The red solution was allowed to rest 18 hours at room temperature resulting in an orange semicrystaline precipitate and red solution. The semicrystaline precipitate, which

was a mixture of $5a_1$ and $5a_2$, was discarded. The red solution ⁶⁰ was left at -35°C for 48 hours resulting in red crystals. The crystals were dried to give pure $5a_1$ (0.038 g, 8%).

5a₁: ¹H NMR (CD₂Cl₂): δ -26.40 (t, ²J_{PH} = 24 Hz, 1H, Ru-H), 0.81-2.05 (m, 66H, PCy₃), 4.15 (s, 3H, N-CH₃), 5.70 (s, 2H, CH₂), 6.57 (d, ³J_{HH} = 8 Hz, 2H, Ar-H), 7.33-7.40 (m, 6H, Ar-H),

- ⁶⁵ 7.51 (t, ${}^{3}J_{HH} = 8$ Hz, 2H, Ar-H). ${}^{13}C$ NMR (CD₂Cl₂): δ 27.55, 28.52, 28.67, 30.01, 30.85, 36.53 (PCy₃), 38.75 (N-CH₃), 56.22 (CH₂), 124.33, 127.93, 128.04, 128.56, 128.80, 130.92, 131.59, 136.15, 144.87 (Ar-C). ${}^{31}P$ NMR (CD₂Cl₂): δ 41.08 (PCy₃). Anal. Calcd for C₅₂H₈₂ClN₃P₂Ru (947.70): C, 65.90; H, 8.72; N, 4.43. ⁷⁰ Found: C, 66.00; H, 8.68; N, 4.44.
- **5a**₂: ¹H NMR (CD₂Cl₂): δ 0.75-2.11 (m, 66H, PCy₃), 4.24 (s, 3H, N-CH₃), 6.04 (s, 2H, CH₂), 7.28-7.74 (m, 9H, Ar-H). ³¹P NMR (CD₂Cl₂): δ 24.28 (PCy₃).
- 75 Synthesis of RuCl(PCy₃)₂((C₆H₂*i*Pr₃)CH₂C₂N₂(NMe)C₆H₄) (5b₂). Benzene (10 mL) was added to a mixture of 3b (0.261 g, 0.25 mmol) and RuHCl(H₂)(PCy₃)₂ (0.350 g, 0.50 mmol). The reaction mixture was stirred at room temperature for 48 hours resulting in a red solution with brown precipitate. The brown 80 solid was filtered off. All volatiles were removed from the red solution resulting in a red solid which was washed with hexane (3 x 10 mL). The solid was dried under high vacuum to give $5b_2$ as pure product (0.351 g). The hexane phase was allowed to rest for 48 hours during which time red crystals formed (0.058 g) as pure 85 product 5b₂. The solids were combined and dried thoroughly to give **5b**₂ (0.409 g, 76%). ¹H NMR (CD₂Cl₂): δ 0.92-2.16 (m, 84H, PCy₃ and CH₃ of *i*Pr), 2.97 (sept, ${}^{3}J_{HH} = 7$ Hz, 1H, CH of *i*Pr), 3.07 (sept, ${}^{3}J_{\text{HH}} = 7$ Hz, 2H, CH of *i*Pr), 4.11 (s, 3H, N-CH₃), 5.58 (s, 2H, CH₂), 6.51 (t, ${}^{3}J_{HH} = 8$ Hz, 1H, Ar-H), 6.60 (t, ${}^{3}J_{HH} =$ 90 8 Hz, 1H, Ar-H), 7.08 (d, ${}^{3}J_{HH} = 8$ Hz, 1H, Ar-H), 7.18 (s, 2H, Ar-H), 8.25 (d, ${}^{3}J_{HH} = 8$ Hz, 1H, Ar-H). ${}^{13}C$ NMR (CD₂Cl₂): δ 24.12, 26.99, 28.05, 28.33, 28.59, 30.69, 30.97, 31.53, 34.70, 37.09, 38.20 (PCy₃, CH and CH₃ of *i*Pr), 49.28 (N-CH₃), 66.06 (CH₂), 117.52, 118.91, 122.03, 122.34, 125.50, 139.91, 143.65, 95 149.44, 150.04, 154.62 (Ar-C), 181.59, 182.66 (Ru-C(C₆H₄) and Ru-C(triazolylidene)). ³¹P NMR (CD₂Cl₂): δ 24.49. Anal. Calcd for C₆₁H₉₈ClN₃P₂Ru (1071.92): C, 68.35; H, 9.22; N, 3.92. Found: C, 68.22; H, 9.21; N, 3.87.
- Synthesis of RuHCl(PCy₃)₂((C₆H₂Me₃)CH₂C₂N₂(NMe)Ph) 100 (5c1) and RuCl(PCy3)2((C6H2Me3)CH2C2N2(NMe)C6H4) (5c2). Benzene (10 mL) was added to a mixture of 3c (0.230 g, 0.25 mmol) and RuHCl(H₂)(PCy₃)₂ (0.350 g, 0.50 mmol). The reaction mixture was stirred at room temperature for 48 hours resulting in a red solution with brown precipitate. The brown 105 solid was filtered off. The red solution was concentrated to ca. 2-3 mL and added dropwise to hexanes (15 mL) while stirring vigorously. This resulted in a red solution with orange precipitate. The solid was filtered off and dried under high vacuum to give 5c₂ (0.281 g) as crude product. Crystallization from toluene 110 solution at -35 °C gave pure $5c_2$ (0.202 g, 40%). The red solution was allowed to rest 18 hours at room temperature resulting in an orange semicrystaline precipitate and red solution. The semicrystaline precipitate, which was a mixture of $5c_1$ and $5c_2$, was discarded. The red solution was left at -35°C for 48 hours 115 resulting in red crystals. The crystals were dried to give pure $5c_1$ (0.044 g, 9%).

100

5c₁: ¹H NMR (CD₂Cl₂): δ -26.49 (t, ²*J*_{PH} = 24 Hz, 1H, Ru-H), 0.83-2.23 (m, 66H, PCy₃), 2.30 (s, 3H, CH₃), 2.31 (s, 6H, CH₃), 4.04 (s, 3H, N-CH₃), 5.28 (s, 2H, CH₂), 6.47 (d, ³*J*_{HH} = 8 Hz, 2H, Ar-H), 6.93 (s, 2H, Ar-H), 7.34 (t, ³*J*_{HH} = 8 Hz, 2H, Ar-H), 7.50 ς (t, ³*J*_{HH} = 8 Hz, 1H, Ar-H). ¹³C NMR (CD₂Cl₂): δ 21.08, 22.43,

- 5 (i, $5_{HH} = 8$ H2, H1, AI-H). C HVHK (CD₂Cl₂), 6 21.08, 22.43, 23.07, 25.65, 27.01, 27.49, 28.06, 28.59, 30.77, 31.55, 32.00, 35.03, 38.78 (PCy₃ and CH₃), 52.38 (N-CH₃), 68.16 (CH₂), 124.21, 127.60, 129.23, 130.92, 131.84, 138.54, 138.97, 145.26 (Ar-C). ³¹P NMR (CD₂Cl₂): δ 41.71 (PCy₃). Anal. Calcd for ¹⁰ C₅₅H₈₈ClN₃P₂Ru (989.78): C, 66.74; H, 8.96; N, 4.25. Found: C,
- 66.67; H, 8.93; N, 4.20. $5c_2$: ¹H NMR (CD₂Cl₂): δ 1.08-2.23 (m, 66H, PCy₃), 2.30 (s, 3H,
- CH₃), 2.41 (s, 6H, CH₃), 4.23 (s, 3H, N-CH₃), 5.96 (s, 2H, CH₂), 6.98 (m, 1H, Ar-H), 7.52-7.79 (m, 4H, Ar-H), 8.01 (m, 1H, Ar-15 H). 13 C NMR (CD₂Cl₂): δ 20.15, 21.18, 24.35, 27.14, 28.28,
- 29.42, 30.24, 30.64, 32.32, 33.22, 38.19, 39.26 (PCy₃ and CH₃), 49.04 (N-CH₃), 62.86 (CH₂), 122.37, 125.36, 128.64, 129.35, 129.81, 130.04, 132.28, 139.16, 140.65, 143.54 (Ar-C) [Note: Tertiary carbons were not detected]. ³¹P NMR (CD₂Cl₂): δ 23.96
- $_{20}$ (PCy_3). Anal. Calcd for $C_{55}H_{86}ClN_3P_2Ru$ (987.76): C, 66.88; H, 8.78; N, 4.25. Found: C, 66.81; H, 8.91; N, 4.26.

Synthesis of $RuHCl(PCy_3)_2(PhCH_2C_2N_2(NMe)(C_6H_4Me))$ (5d₁) and $RuCl(PCy_3)_2(PhCH_2C_2N_2(NMe)(C_6H_3Me))$ (5d₂).

- ²⁵ Benzene (10 mL) was added to a mixture of **3c** (0.210 g, 0.25 mmol) and RuHCl(H₂)(PCy₃)₂ (0.350 g, 0.50 mmol). The reaction mixture was stirred at room temperature for 48 hours resulting in a red solution with brown precipitate. The brown solid was filtered off. The red solution was concentrated to ca. 2-
- ³⁰ 3 mL and added dropwise to hexanes (15 mL) while stirring vigorously. This resulted in a red solution with orange precipitate. The solid was filtered off and dried under high vacuum to give 5d₂ (0.295 g) as crude product. Crystallization from toluene soluteon at -35 °C gave pure 5d₂ (0.213 g, 42%). The red solution
- ³⁵ was allowed to rest 48 hours at room temperature resulting in an orange crystalline precipitate, which was a mixture of $5d_1$ and $5d_2$. $5d_1$ could not be isolated in pure form.

5d₂: ¹H NMR (CD₂Cl₂): δ 0.89-2.05 (m, 66H, PCy₃), 2.24 (s, 3H, CH₃), 4.17 (s, 3H, N-CH₃), 5.81 (s, 2H, CH₂), 6.48 (d, ³*J*_{HH} = 8 ⁴⁰ Hz, 1H, Ar-H), 7.06 (d, 1H, Ar-H), 7.31-7.42 (m, 5H, Ar-H), 7.96

- (s, 1H, Ar-H). ¹³C NMR (CD₂Cl₂): δ 21.78, 22.75, 27.08, 28.44, 30.31, 30.44, 30.63, 33.28, 34.54, 36.84, 37.12 (PCy₃, CH₃ and N-CH₃), 56.20 (CH₂), 118.82, 118.94, 127.84, 127.98, 128.69, 132.61, 136.51, 137.11, 143.38, 154.31 (Ar-C) 183.11, 183.96
- ⁴⁵ (Ru-C(C₆H₄) and Ru-C(triazolylidene)). ³¹P NMR (CD₂Cl₂): δ 24.17 (PCy₃). Anal. Calcd for C₅₃H₈₂ClN₃P₂Ru (959.71): C, 66.33; H, 8.61; N, 4.38. Found: C, 66.25; H, 8.56; N, 4.42. **5d**₁: ¹H NMR (CD₂Cl₂): δ -26.30 (t, ²*J*_{PH} = 24 Hz, 1H, Ru-H), 0.84-2.05 (m, 66H, PCy₃), 2.24 (s, 3H, CH₃), 4.17 (s, 3H, N-
- ⁵⁰ CH₃), 5.81 (s, 2H, CH₂), 6.40-6.57 (m, 2H, Ar-H), 7.01-7.11 (m, 1H, Ar-H), 7.29-7.43 (m, 4H, Ar-H) 7.97 (s, 1H, Ar-H). ³¹P NMR (CD₂Cl₂): δ 42.27 (PCy₃).

Synthesis of RuHCl(PCy₃)₂(PhCH₂C₂N₂(NMe)(C₆H₄CF₃)) ⁵⁵ (5e₁) and RuCl(PCy₃)₂(PhCH₂C₂N₂(NMe)(C₆H₃CF₃)) (5e₂). Benzene (10 mL) was added to a mixture of 3c (0.240 g, 0.25 mmol) and RuHCl(H₂)(PCy₃)₂ (0.350 g, 0.50 mmol). The reaction mixture was stirred at room temperature for 48 hours

resulting in a red solution with brown precipitate. The brown solid was filtered off. The red solution was concentrated to ca. 2-3 mL and added dropwise to hexanes (15 mL) while stirring vigorously. This resulted in a red solution with orange precipitate. The solid was filtered off and dried under high vacuum to give $5e_2$ (0.305 g) as crude product. Crystallization from toluene

solution at -35 °C gave pure $5e_2$ (0.193 g, 38%). The red solution was allowed to rest 48 hours at room temperature resulting in an orange crystalline precipitate, which was a mixture of $5e_1$ and $5e_2$. $5e_1$ could not be isolated in pure form.

5e₂: ¹H NMR (CD₂Cl₂): δ 0.83-2.04 (m, 66H, PCy₃), 4.25 (s, 3H, ⁷⁰ N-CH₃), 5.85 (s, 2H, CH₂), 6.91 (d, ³*J*_{HH} = 8 Hz, 1H, Ar-H), 7.23 (d, ³*J*_{HH} = 8 Hz, 1H, Ar-H), 7.31-7.44 (m, 5H, Ar-H), 8.43 (s, 1H, Ar-H). ¹³C NMR (CD₂Cl₂): δ 26.98, 28.28, 28.31, 28.36, 30.48, 30.53, 36.70, 36.76, 36.82, 37.54 (PCy₃ and N-CH₃), 56.37 (CH₂), 114.08, 118.42, 127.95, 128.81, 129.67, 130.34, 136.04, ⁷⁵ 138.53, 143.40, 153.15 (CF₃ and Ar-C) 184.81, 186.88 (Ru-

 $C(C_6H_4)$ and Ru-C(triazolylidene)). ³¹P NMR (CD_2Cl_2): δ 23.58 (PCy₃). Anal. Calcd for $C_{53}H_{79}ClF_3N_3P_2Ru$ (1013.68): C, 62.80; H, 7.86; N, 4.15. Found: C, 62.87; H, 7.83; N, 4.18.

5e₁: ¹H NMR (CD₂Cl₂): δ -25.86 (t, ²*J*_{PH} = 8 Hz, = 24 Hz, 1H, 80 Ru-H), 0.82-2.11 (m, 66H, PCy₃), 4.28 (s, 3H, N-CH₃), 5.94 (s,

- 2H, CH₂), 7.38-7.49 (m, 3H, Ar-H), 7.59-7.71 (m, 2H, Ar-H), 7.76-7.93 (m, 3H, Ar-H) 9.37 (s, 1H, Ar-H). ³¹P NMR (CD₂Cl₂): δ 40.96 (PCy₃).
- Hydrogenation of Olefins in J. Young NMR Tube. In a glove box, a sample of the appropriate metal complex 4a₁ (4.5 mg, 5 μmol, Note: 4a₁ contains 15% of 4a₂ as impurity) or 4a₂ (4.5 mg, 5 μmol) or 4b₂ (5.0 mg, 5 μmol) or 5b₂ (2.2 mg, 2 μmol), deuterated solvent (0.5 mL) (C₆D₆ for 4a₁ and CD₂Cl₂ for 4a₂ and ⁹⁰ 4b₂) and substrate (0.1 mmol) were combined in a vial. The
- mixture was transferred to a J. Young tube and the J. Young tube was sealed. On a Schlenk line, the reaction mixture was degassed four times using the freeze-pump-thaw method. The sample was then frozen once more in liquid nitrogen and 4 atm of H_2 was added. The L Young tube use accled again and warmed to rear
- ⁹⁵ added. The J. Young tube was sealed again and warmed to room temperature and then placed in an oil bath pre-heated to 50 °C. ¹H NMR spectra were measured at appropriate intervals and relative integration of substrate and product peaks were used to determine the composition of the mixture.

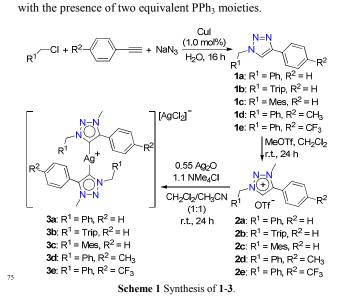
Hydrogenation of Olefins in Parr Reactor. In a glove box, a sample of the appropriate metal complex $5a_1/5b_2/5c_1/5c_2/5d_2/5e_2$ (2 µmol), CD₂Cl₂ (0.5 mL) and substrate (0.1 mmol) were combined in a vial. The vial was placed in the Parr reactor and ¹⁰⁵ was sealed inside the glove box. The Parr reactor was pressurized with 50 atm of H₂ after purging five times with 50 atm of H₂. The hydrogenation was run for 3 h. The pressure was released and ¹H NMR spectra were measured from the reaction mixture. Relative integration of substrate and product peaks was used to determine ¹¹⁰ the composition of the mixture.

X-Ray Data Collection and Reduction Crystals were coated in Paratone-N oil in the glovebox, mounted on a MiTegen Micromount and placed under an N₂ stream, thus maintaining a ¹¹⁵ dry, O₂-free environment for each crystal. The data were collected on a Kappa Bruker Apex II diffractometer. Data collection strategies were determined using Bruker Apex 2 software and optimized to provide >96.6% complete data. In The data were collected at 150(\pm 2) K for all. Data for compound **5e**₂ were collected with Cu radiation while the others were done with 5 Mo radiation. The data integration and absorption corrections

were performed with the Bruker Apex 2 software package.¹⁸

X-Ray Data Solution and Refinement Non-hydrogen atomic scattering factors were taken from the literature tabulations.¹⁹ The ¹⁰ heavy atom positions were determined using direct methods employing the SHELX-2013 direct methods routine. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least squares techniques on F, ¹⁵ minimizing the function ω (F₀-F₀)² where the weight ω is defined

- as $4F_o^2/2\sigma$ (F_o^2) and F_o and F_c are the observed and calculated structure factor amplitudes, respectively. In the final cycles of each refinement, all non-hydrogen atoms were assigned anisotropic temperature factors in the absence of disorder or
- ²⁰ insufficient data. In the latter cases atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the carbon to which they are bonded assuming a C-H bond length of 0.95 Å. H-atom temperature factors were fixed at 1.20 times the isotropic temperature factor of the C-atom to
- ²⁵ which they are bonded. The H-atom contributions were calculated, but not refined. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of no chemical significance. For more information see Supporting ³⁰ Information.


RESULTS AND DISCUSSION

- and **Characterization:** The Synthesis 1,2,3-triazoles $[RCH_2C_2HN_3Ph]$ (R = Ph 1a, $C_6H_2iPr_3$ 1b, $C_6H_2Me_3$ 1c) and $[PhCH_2C_2HN_3R]$ (R = C₆H₄Me 1d, C₆H₄CF₃ 1e) were readily 35 synthesized in excellent yield by treating a mixture of appropriate chloro-derivatives, terminal alkyne and sodium azide in distilled water in presence of catalytic amount of Cu(I) (Scheme 1).¹⁶ The reaction is regioselective and 1,4-disubstituted 1,2,3-triazoles were the only products. Thereafter, 1a, 1b, 1c, 1d and 1e were 40 methylated selectively at N3-possition by reacting them with methyl triflate and thus generating [RCH₂C₂HN₂(NMe)Ph)][OTf] = Ph 2a. $C_6H_2iPr_3$ **2b**, $C_6H_2Me_3$ **2c**) and (R $[PhCH_2C_2HN_2(NMe)R][OTf] (R = C_6H_4Me \ 2d, \ C_6H_4CF_3 \ 2e),$ respectively (Scheme 1). By analogy to previous reports^{10a, 16a}
- ⁴⁵ subsequent reactions with Ag₂O afforded the stable silver(I) triazolylidenes species **3a-e** (Scheme 1). Mass spectrometry analysis were consistent with the formulation of these products with the general formula $[L_2Ag][AgCl_2]^{16a}$ as the major peaks at m/z = 605.16, 857.44, 689.25, 633.19 and 741.13 were observed ⁵⁰ in the mass spectra of **3a-e**, respectively.

The silver(I)-triazolylidene complex 3a was reacted with RuHCl(PPh₃)₃ to yield ruthenium-hydride complex RuHCl(PPh₃)₂(PhCH₂C₂N₂(NMe)Ph) ($4a_1$) as the minor product and the cyclometalated complex

⁵⁵ RuCl(PPh₃)₂(PhCH₂C₂N₂(NMe)C₆H₄) (4a₂) as the major product (Scheme 2). The cyclometalated complex 4a₂ was isolated in pure form and fully characterized, whereas the ruthenium-hydride

complex $4a_1$ was contaminated with $4a_2$ (12-20 %). The presence of triazolylidene moiety was observed in ¹H NMR spectra of **4a**₂ 60 and 4a₁. For 4a₁, a triplet at -27.49 ppm in the ¹H NMR spectrum and a doublet at 46.33 ppm in the ³¹P NMR spectrum were observed, consistent with the presence of a hydride coupled to two phosphine moieties on ruthenium. A singlet at 37.70 ppm was observed in the ³¹P NMR spectrum of $4a_2$. In the ¹³C NMR 65 spectrum of 4a₂, the Ru-C(C₆H₄) and Ru-C(triazolylidene) resonances were observed at 173.39 and 180.64 ppm. The corresponding reaction of **3b** with RuHCl(PPh₃)₃ gave selectively the cyclometalated complex $(4b_2)$, which was isolated as dark red crystals (Scheme 2). ¹H and ¹³C NMR spectra of 4b₂ confirmed 70 the presence of the triazolylidene moiety in the complex while the ¹³C resonances attributable to $Ru-C(C_6H_4)$ and Ru-C(triazolylidene) were observed at 174.27 and 175.45 ppm. A singlet at 39.95 ppm in the ³¹P NMR spectrum was consistent

Scheme 2 Synthesis of $4a_1$, $4a_2$ and $4b_2$.

Complexes **4a**₁, **4a**₂ and **4b**₂ were characterized by X-ray molecular structure analysis. Single-crystal X-ray analysis of **4a**₁ confirmed the formulation and revealed a five-coordinate squarepyramidal Ru-center where the triazolylidene moiety, chloride, and two phosphine ligands form the base of the pyramid and the hydride occupies the apex (Figure 2a). The two phosphine ligands are *trans* to each other with Ru-P bond distances of 2.3171(5) and 2.3253(5) Å. The Ru-H bond distance in **4a**₁ is 1.4809(9) Å, which is consistent with the Ru-H bond distances (1.41-1.59 Å) in previously report ruthenium-imidazolylidene complexes^{5, 7} and in contrast to that seen in a recently published half-sandwich Ru-⁹⁰ triazolylidene complex (1.7310(23) Å).¹⁵ Nonetheless, the Ru-C bond distance (1.9886(6) Å) in **4a**₁ is consistent with other ruthenium-triazolylidene complexes [1.98-2.10 Å]. Ru-Cl bond distance [2.4812 (4) Å] is found to be in the expected range. ^{11a,12,15-16} The *ortho*-H of the phenyl moiety is in close proximity of the metal center; (2.441 Å). The sum of P-Ru-Cl angles ⁵ [90.03(2)° and 87.37(2)°] and P-Ru-C angles [95.09(5)° and 89.20(5)°] is ca. 362°. The benzyl group of the triazolylidene moiety is oriented away from the ruthenium center.

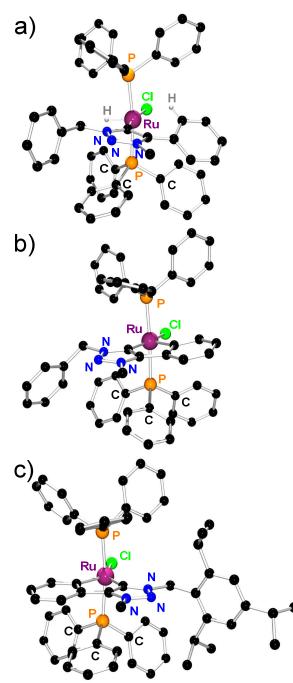


Fig. 2 POV-ray depiction of a) 4a₁, b) 4a₂ and c) 4b₂: C, black; Cl, green;
P, orange; N, blue; Ru, purple; H, gray. All hydrogen atoms except the hydride and the *ortho*-H of the phenyl moiety are omitted for clarity.

Single-crystal X-ray analyses of $4a_2$ and $4b_2$ revealed the fivecoordinate distorted triagonal bipyramidal Ru centers where the two *trans* phosphine ligands occupy the apexes (Figure 2b, 2c). In

- ¹⁵ **4a**₂, the Ru-P distances are 2.3337(6) Å and 2.3412(6) Å and P-Ru-P angle is 175.67(2)°. The Ru-P distances (2.3457(8) Å and 2.3481(9) Å) and P-Ru-P angle (170.91(3)°) in **4b**₂ are consistent with **4a**₂. The Ru-C(triazolylidene) bond distances (**4a**₂: 2.0079(3) Å, **4b**₂: 1.9789(3) Å) are slightly shorter than the Ru-
- ²⁰ C(C₆H₄) bond distances (**4a**₂: 2.0309(3) Å, **4b**₂: 2.0356(3) Å). The Ru-Cl distances in **4a**₂ (2.4582(7) Å) and **4b**₂ (2.4634(8) Å) are comparable. In **4b**₂ the C-Ru-C angle is 76.75(3)° which is much narrower than ideal 120°, whereas Cl-Ru-C angles (Cl-Ru-C(triazolylidene): 139.63(1)°; Cl-Ru-C(C₆H₄): 143.62(1)°) are ²⁵ much wider than that expected for an ideal geometry. While the C-Ru-C angle (77.16(1)°) in **4a**₂ is similar to that in **4b**₂ (76.75(3)°), the Cl-Ru-C angles vary widely (**4a**₂: Cl-Ru-C(triazolylidene): 165.01(8)°; Cl-Ru-C(C₆H₄): 117.38(8)°. **4b**₂: Cl-Ru-C(triazolylidene): 139.63(1)°; Cl-Ru-C(C₆H₄): ³⁰ 143.62(1)°).

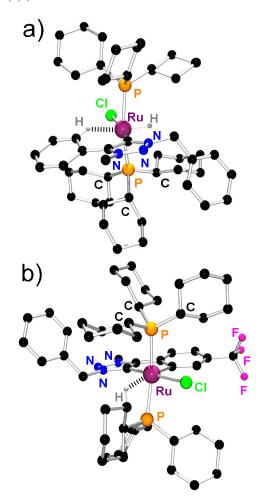
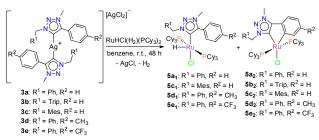



Fig. 3 POV-ray depiction of a) 5a₁ and b) 5e₂: C, black; Cl, green; P, orange; N, blue; F, pink; Ru, purple; H, gray. All hydrogen atoms except the ruthenium bound hydrogens omitted for clarity.

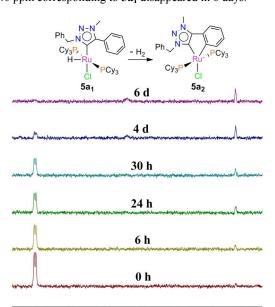
³⁵ The silver(I)-triazolylidene complexes 3a-e were also reacted with RuHCl(H₂)(PCy₃)₂ resulting in the formation of Ru-H complexes (5a₁, 5c₁, 5d₁ and 5e₁) as the minor products and the cyclometalated complexes (5a₂, 5c₂, 5d₂ and 5e₂) as the major products (Scheme 3). In the case of 3b, reaction with ⁴⁰ RuHCl(H₂)(PCy₃)₂ gave exclusively the cyclometalated complex 5b₂ (Scheme 3). The complexes 5a₁, 5b₂, 5c₁, 5c₂, 5d₂ and 5e₂

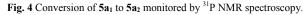
were isolated as pure compounds and fully characterized (¹H, ¹³C and ³¹P NMR spectroscopy). However, isolation of pure **5a**₂, **5d**₁ and **5e**₁ proved problematic and thus were characterized by ¹H and ³¹P NMR spectroscopy alone. Similar to the PPh₃-analogues,

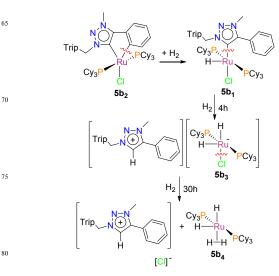
- ⁵ the present Ru-H complexes $5a_1$, $5c_1$, $5d_1$ and $5e_1$ displayed a triplet in the range of -25 to -27 ppm ($5a_1$: -26.40, $5c_1$: -26.49, $5d_1$: -26.30, $5e_1$: -25.86) in the respective ¹H NMR spectra and a doublet was observed in the range of 40 to 43 ppm ($5a_1$: 41.08, $5c_1$: 41.71, $5d_1$: 42.27, $5e_1$: 40.96) in the respective ³¹P NMR
- ¹⁰ spectra. A singlet in the range of 23 to 25 ppm (**5a**₂: 24.28, **5b**₂: 24.49, **5c**₂: 23.96, **5d**₂: 24.17, **5e**₂: 23.58) was observed in the ³¹P NMR spectra of cyclometalated complexes **5a**₂-**e**₂. In the ¹³C NMR spectra of the isolated cyclometalated species, the Ru-C(triazolylidene) and Ru-C(C₆H₄)/Ru-C(C₆H₃) resonances were ¹⁵ observed in the range of 180 to 190 ppm (**5b**₂: 181.59 and 182.66,
- $5d_2$: 183.11 and 183.96, $5e_2$: 184.81, 186.88).

Scheme 3 Synthesis of 5a₁, 5a₂, 5b₂, 5c₁, 5c₂, 5d₁, 5d₂, 5e₁ and 5e₂.

Formulation of complexes $5a_1$ was further confirmed by X-ray ²⁰ crystallography revealing six-coordinate distorted octahedral geometries about Ru if one considers the agostic interaction with the *ortho*-hydrogen of the pendant phenyl ring ($5a_1$ Ru-H_{ortho} :2.058 Å; $4a_1$: 2.441 Å) (Figure 3a). The Ru-H(hydride) bond distance in $5a_1$ (1.545(4) Å) is slightly longer than that found in


- ²⁵ **4a**₁ (1.4809(9) Å) while the *trans* phosphine give rise to Ru-P bond distances of 2.3700(6) and 2.3743(5) Å. The Ru-C and Ru-Cl bond distances are found to be 1.987(2) and 2.4896(6) Å, respectively. The Ru-P, Ru-C and Ru-Cl bond distances in both **4a**₁ and **5a**₁ are similar while the C-Ru-P bond angles are **4a**₁:
- ³⁰ 93.92(6)° and **5a**₁: 94.48(6)°, and the Cl-Ru-P bond angles are 86.34(2)° and 87.00(2)°. Similar to **4a**₁, the benzyl group of the triazolylidene moiety in **5a**₁ is oriented away from the ruthenium center.


Compound $5e_2$ is a pseudo six-coordinate octahedral species ³⁵ (Figure 3b), in contrast to $4a_2$ and $4b_2$ as it includes an agostic interaction between the Ru and a H on one of the PCy₃ ligands. However, this Ru-H(C₆H₁₁) distance (2.2442 Å) is slightly longer than the Ru-H(C₆H₅) distance (2.058 Å) seen in in $5a_1$. The bond distances and angles about Ru in $5e_2$ are similar to those seen in ⁴⁰ species $4a_1$, $4a_2$ and $5a_1$.


It is interesting to note that reaction of $[RuCl_2(p-cymene)]_2$ with silver(I) triazolylidenes **3a**, **3b** and **3c**, gave cyclometalated species as minor products (2-5 %) with the (pcymene)RuCl_2(triazolylidene) as major product (80-90 %).^{16a}

⁴⁵ Herein, use of RuHCl(PPh₃)₃ as the synthon is shown to reverse this pattern. Precedent for such intramolecular C-H activation of iridium and ruthium-triazolylidene complexes have been reported recently by the groups of Albrecht^{13, 20} and Fukuzawa.²¹ In addition, a cyclometalated Pd-triazolylidene complex has also ⁵⁰ been described.²² Conceptually these species are similar to metallated NHC complexes.²³

In the formation of 4 and 5, it is reasonable to suggest that the Ru-H species is formed initially followed by intramolecular $C(sp^2)$ -H bond activation resulting in cyclomatalation with ⁵⁵ liberation of H₂ being the driving force. To confirm this, 5a₁ was dissolved in CD₂Cl₂ and the solution was monitored by ³¹P NMR spectroscopy. A doublet at 41.1 ppm arising from 5a₁ slowly decreased while a singlet at 24.3 ppm corresponding to 5a₂ grew in (Figure 4). After 6 days complete conversion to 5a₂ was ⁶⁰ observed. Similarly in the ¹H NMR spectra, the hydride triplet at -26.40 ppm corresponding to 5a₁ disappeared in 6 days.

Scheme 4 Generation of 5b₁, 5b₃ and 5b₄.

Addition of hydrogen (4 atm) to a solution of the s⁵ cyclometalated species **5b**₂ in a sealed J. Young NMR tube and monitoring by ¹H and ³¹P NMR spectroscopy revealed a fast reaction in which **5b**₂ reacted with one equivalent of H₂ yielding

the hydride complex $5b_1$ (Scheme 4) with the characteristic ¹H NMR hydride resonance at -26.13 ppm and the doublet (41.05 ppm) in ³¹P NMR spectrum. After 4 h under H₂ 5b₁ reacted further, generating the triazolium cation $[(C_6H_2iPr_3)CH_2C_2HN_2(NMe)Ph]^+$ and anionic rutheniumdihydride complex **5b**₃ as evidenced by the ¹H NMR resonances

- at 10.51 ppm and -8.37 ppm respectively and the ³¹P resonance at 75.79 ppm. The latter species 5b₃ slowly degraded after 30 h affording a new species 5b4 which exhibited a broad hydride ¹⁰ resonance at -12.25 ppm and ³¹P resonance at 53.53 ppm. The
- ratio of the triazolium-hydrogen peak and the broad hydride peak was 1:4, suggested the formulation of $5b_4$ as $RuH_2(H_2)(PCy_3)_2$ (Scheme 4). Although this species could not be isolated, the broad ¹H NMR signal is consistent with facile interchange of the
- 15 hydrides and η^2 -H₂ sites. Interestingly the closely related species $Ru_2H_4(H_2)(PCy_3)_4$ displays a similarly broad peak at -12.5 ppm²⁴ while the ³¹P NMR resonance from $5b_4$ (53.53 ppm) is similar to those seen for RuHI(H₂)(PCy₃)₂ (56 ppm) and RuHCl(H₂)(PCy₃)₂ (54 ppm).²⁵
- 20 Hydrogenation Catalysis: The catalytic activity of 4a1, 4a2, 4b2 and $5b_2$ for hydrogenation of alkenes and alkyne was investigated (Table 1). At 50 °C under 4 atm of H₂, with catalyst precursor loadings of 2 or 5 mol %, hydrogenation of olefins was performed and monitored by ¹H NMR spectroscopy. In the
- 25 presence of $4a_1$ or $4a_2$, quantitative reduction of 1-hexene to hexane was observed in 6 h. Similarly complete hydrogenation of 1-hexene was observed in 5 h for species $4b_2$. In contrast, $5b_2$ led to complete hydrogenation of 1-hexene in just 2 h while the reduction of 2-hexene to hexane was observed in 4 h. Species
- 30 $4a_1$, $4a_2$ and $4b_2$ displayed much slower activity for the hydrogenation of 2-hexene (4a1: 100 % in 12 h, 4a2: 100 % in 12

h, 4b₂: 100 % in 10 h). Similarly the conversion of styrene to ethylbenzene by 5b₂ (100 % in 8 h) was much faster than 4a₁ (16 h), 4a₂ (14 h) and 4b₂ (12 h). Similarly 5b₂ hydrogenated 35 phenylacetylene to styrene and styrene to ethylbenezene simultaneously. Thus the reaction mixture yielded phenylacetylene: styrene: ethylbenzene in a ratio of 30: 50: 20 after 6 h, whereas the phenylacetylene was fully consumed in 10 h affording a styrene: ethylbenzene of 40: 60 and complete 40 conversion to ethylbenzene in 14 h. The related hydrogenation of phenylacetylene was achieved using $4a_1$, $4a_2$ or $4b_2$ as a catalyst precursor although these were much slower, yielding styrene: ethylbenzene ratios of 4: 96 for 4b₂, 16: 84 for 4a₂ and 23: 77 for 4a₁ after 24 h.

- ⁴⁵ The ability of the derived catalysts to tolerate functional groups was also investigated. Using similar reaction conditions allylalcohol, acrylaldehyde, 3-buten-2-one, methyl-3-buteneoate, allylamine, acrylonitrile, 1-vinylimidazole, tert-butyl vinyl ether and phenyl vinyl sulfide were used as substrates for catalytic 50 hydrogenations. In the presence of 5b₂, fast and complete reduction of the olefinic residues in allylalcohol (3 h), acrylaldehyde (3 h), 3-buten-2-one (6 h) and methyl-3-buteneoate (4 h) was observed. In contrast, the hydrogenation of olefins with donor groups such as allylamine (8 h), acrylonitrile (14 h), 1-55 vinylimidazole (10 h), tert-butyl vinyl ether (65 % in 24 h) and phenyl vinyl sulfide (78 % in 24 h) were much slower. Catalysts derived from 4a₁, 4a₂ and 4b₂ displayed lower reactivity for most of these functionalized substrates, although quantitative reduction
- was observed for allylalcohol, acrylaldehyde, 3-buten-2-one, 60 methyl-3-buteneoate and allylamine after 24 h. Nonetheless, it should be noted that

Table 1 Hydrogenation catalysis with 4a₁, 4a₂, 4b₂ and 5b₂.^a

entry	substrate	product	cat	t /conversion (h /%) ^b	cat	t / conversion (h /%) ^b	Cat	t / conversion (h /%) ^b	cat	t / conversion (h $/\%)^b$
1	H ₃ C	H ₃ C ^{CH} 3	4a ₁	6 /100	4a ₂	6 /100	4b ₂	5 /100	$5b_2$	2 /100
2	H ₃ C ^{CH} 3	H ₃ C ^{CH} 3	4a1	12 /100	4a2	12 /100	4b ₂	10 /100	$5b_2$	4 /100
3	Ph CH ₂	Ph CH ₃	4a1	16/100	4a ₂	14 /100	$4b_2$	12 /100	$\mathbf{5b}_{2}$	8 /100
4	Ph	Ph CH ₃	4a1	24 /84 ^c	4a ₂	24 /84 ^c	4b ₂	24 /96 ^c	$5b_2$	14 /100
5	HO CH2	HO CH3	4a ₁	12 /100	4a ₂	12 /100	4b ₂	10 /100	$5b_2$	3 /100
6	OHC CH2	OHC CH3	4a1	12 /100	4a ₂	10 /100	$4b_2$	8 /100	$\mathbf{5b}_{2}$	3 /100
7	H ₃ C CH ₂	H ₃ C CH ₃	4a ₁	20 /100	4a2	18 /100	4b ₂	16 /100	5b ₂	6 /100
8		О Н3СО СН3	4a ₁	14 /100	4a2	14 /100	4b ₂	12 /100	5b ₂	4 /100
9	H ₂ N CH ₂	H ₂ N CH ₃	4a1	20 /100	4a2	20 /100	$4b_2$	16 /100	$5b_2$	8 /100
10			4a ₁	24 /89	4a ₂	24 /92	$4b_2$	24 /100	$5b_2$	14 /100
11			4a1	24 /77	4a2	24 /86	4b ₂	24 /100	5b ₂	10 /100
12	tBuO ← CH ₂	tBuO ← CH ₃	4a 1	24 /19	4a ₂	24 /22	4b ₂	24 /31	5b ₂	24 /65
13	PhS CH ₂	PhS ^{CH3}	4a1	24 /25	4a ₂	24 /32	$4b_2$	24 /38	$5b_2$	24 /78

^a Conditions: 0.20 mmol of substrate and 5 mol % (4a₁, 4a₂, 4b₂) and 2 mol % (5b₂) of catalyst precursor in CD₂Cl₂ at 50 °C under 4 atm of H₂. Conversions were determined by ¹H NMR spectroscopy.^c Rest of the product was observed to be styrene

⁶⁵

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Table 2 Hydrogenation catalysis with $5a_1$, $5b_2$, $5c_1$, $5c_2$, $5d_2$ and $5e_2$.^{*a*}

entry	substrate	product	cat	conversion (%) ^b	¹ cat	conversio (%) ^b	n cat	conversion (%) ^b	¹ cat ⁶	$(\%)^b$	cat	conversion (%) ^b	cat	$\frac{\text{conversion}}{(\%)^b}$
1	H ₃ C ^{CH} 2	H ₃ C ^{CH} 3	5a1	100	$\mathbf{5b}_{2}$	100	5c1	100	$5c_2$	100	$5d_2$	100	5e ₂	100
2	H ₃ C ^{CH} 3	H ₃ C ^{CH} 3	5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
3		\bigcirc	5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
4	\bigcirc	\bigcirc	5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
5			5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
6	HO CH2	HO CH3	5a1	100	$\mathbf{5b}_{2}$	100	5c1	100	$5c_2$	100	$5d_2$	100	5e ₂	100
7		OHC∕CH₃	5a1	100	$5b_2$	100	5c1	100	$5c_2$	100	$5d_2$	100	5e ₂	100
8	H ₃ C CH ₂	H ₃ C OCH ₃	5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
9		H ₃ CO CH ₃	5a1	100	5b ₂	100	5c1	100	5c ₂	100	5d ₂	100	5e ₂	100
10	H ₂ N CH ₂	H ₂ N CH ₃	5a1	86	$5b_2$	97	5c1	90	5c ₂	92	5d ₂	92	5e ₂	83
11		NC CH3	5a1	43	$5b_2$	51	5c1	46	5c ₂	48	$5d_2$	46	5e ₂	40
12		N CH ₃	5a1	69	5b ₂	80	5c1	70	5c ₂	74	5d ₂	74	5e ₂	67
13	tBuO ← CH ₂	tBuO∕∕CH ₃	5a1	90	$5b_2$	100	5c1	94	$5c_2$	94	$5d_2$	93	5e ₂	88
14	PhS CH ₂	PhS CH ₃	5a1	93	$5b_2$	100	5c1	95	5c ₂	97	$5d_2$	97	5e ₂	91

^{*a*} Conditions: 0.20 mmol of substrate and 2 mol% of catalyst in CD₂Cl₂ at r.t. under 50 atm of H₂ for 3 h. ^{*b*} Conversions were determined by ¹H NMR spectroscopy.

⁵ in all cases the functional groups remained unaltered, leading only to exclusive hydrogenation of the olefinic residues. It is interesting to note that complexes with general formula RuHCl(*p*cymene)(triazolylidene) has been reported to be an olefin selective hydrogenation catalyst¹⁵ with activity similar to that of ¹⁰ **4a**₁, **4a**₂ and **4b**₂.

Given the previous success with previously reported Ru-NHCcarbene complexes,⁷ 2 mol% $5a_1$, $5b_2$, $5c_1$, $5c_2$, $5d_2$ or $5e_2$ were tested under similar conditions. Thus hydrogenations of a series of linear and cyclic olefins were examined at 25 °C under high

¹⁵ pressure (50 atm) of H₂ in a Parr reactor (Table 2). Of the species tested, **5b**₂ was found to be most effective, Nonetheless all complexes effected quantitative reduction of 1-hexene, 2-hexene, cyclopentene, cyclohexene, cyclooctene, allylalcohol, acrylaldehyde, 3-buten-2-one and methyl-3-buteneoate.
²⁰ Reduction of allylamine, *tert*-butyl vinyl ether and phenyl vinyl sulfide was either complete or close, but showed moderatreactivity for acrylonitrile and 1-vinylimidazole.

The mechanism of the hydrogenation catalysis is thought to begin with the rapid conversion of the cyclometallated species to 25 **5b**₁. Dissociation of PCy₃ from **5b**₁ is then thought to provide the

catalytically active species allowing for a cycle of reactivity involving coordination of olefin, insertion into the Ru-H and reaction with H₂ to regenerate the catalyst. The conversion of $5b_1$ to $5b_3$ and $5b_4$ observed on prolonged exposure to H₂ were slow ³⁰ and these species are is thought not to impact on the catalytic cycle. Nonetheless, mechanistic studies are continuing.

Conclusions

A series of 1,2,3-triazolylidene complexes of Ru have been prepared and characterized. While ruthenium-hydride complexes ³⁵ are seen as minor by-products, the major products are ones in which the ligand is cyclometalated. The cyclometalated species are generated via C(sp²)-H activation by the ruthenium-hydride with liberation of H₂. Ruthenium-triphenylphosphine complexes (**4a**₁, **4a**₂ and **4b**₂) were effective catalyst precursors for ⁴⁰ hydrogenation of olefins. Interestingly the C-H activated catalyst precursor **4b**₂ showed better activity presumable a result of the additional steric protection of the metal centre by the *tris*isopropylphenyl substituent. Analogous ruthenium-PCy₃ complexes **5a**₁, **5b**₂, **5c**₁, **5c**₂, **5d**₂ and **5e**₂ displayed enhanced ⁴⁵ reactivity. This is thought to result from the greater electron 90

95

23.

donating ability of PCy₃ compared to PPh₃. In addition, these species were olefin-selective, tolerating a variety of functional groups. The preparation of new, modified carbene-complexes are the subject of continuing study in our efforts to develop new ⁵ olefin-selective hydrogenation catalysts. The results of these

efforts will be reported in due course.

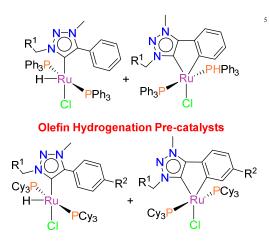
Acknowledgement. The financial support of LANXESS Inc., the

NSERC of Canada, and the Ontario Centres of Excellence are ¹⁰ gratefully acknowledged. DWS is grateful for the award of a Canada Research Chair.

Notes and references

Department of Chemistry, University of Toronto, 80 St George St, Toronto, Ontario, Canada, M5S3H6; Tel: 01-416-946-3294; E-mail: 15 dstephan@chem.utoronto.ca

- † Electronic Supplementary Information (ESI) available: CIF for all structural studies have been deposited CCDC 1028679-1028683 See DOI: 10.1039/b000000x/
- H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner and M. Studer, *Adv. Synth. Catal.*, 2003, 345, 103-151.
- (a) J. F. Young, J. A. Osborn, H. Jardine and G. Wilkinson, *Chem. Commun.*, 1965, 131-132; (b) R. R. Schrock and J. A. Osborn, *J. Am. Chem. Soc.*, 1976, **98**, 2143-2147; (c) R. R. Schrock and J. A. Osborn, *J. Am. Chem. Soc.*, 1976, **98**, 4450-4455
- R. H. Crabtree and G. E. Morris, J. Organomet. Chem., 1977, ¹⁰⁰ 135, 395-403.
- (a) Z. Strassberger, M. Mooijman, E. Ruijter, A. H. Alberts,
 C. d. Graaff, R. V. A. Orru and G. Rothenberga, *Appl.* Organomet. Chem., 2010, 24, 142-146; (b) Z. Strassberger,
 M. Mooijman, E. Ruijter, A. H. Alberts, A. G. Maldonado, R.
 V. A. Orru and G. Rothenberg, *Adv. Synth. Catal.*, 2010, 352, 2201-2210.
- (a) H. M. Lee, D. C. Smith, Z. He, E. D. Stevens, C. S. Yi and S. P. Nolan, *Organometallics* 2001, 20, 794-797; (b) U. L. Dharmasena, H. M. Foucault, E. N. dos Santos, D. E. Fogg and S. P. Nolan, *Organometallics*, 2005, 24, 1056-1058.
- 6. C. Gandolfi, M. Heckenroth, A. Neels, G. Laurenczy and M. Albrecht, *Organometallics* 2009, **28**, 5112-5121.
- (a) C. L. Lund, M. J. Sgro, R. Cariou and D. W. Stephan, Organometallics, 2012, 31, 802-805; (b) T. E. Wang, C. Pranckevicius, C. L. Lund, M. J. Sgro and D. W. Stephan, Organometallics, 2013, 32, 2168-2177.
- 45 8. (a) R. H. Crabtree, *Coord. Chem. Rev.*, 2013, 257, 755-766;
 (b) M. Melaimi, M. Soleilhavoup and G. Bertrand, *Angew. Chem. Int. Ed.*, 2010, 49, 8810-8849; (c) A. Krüger and M. Albrecht, *Aust. J. Chem.*, 2011, 64, 1113-1117; (d) M. Albrecht, *Chimia* 2009, 63, 105-110; (e) P. L. Arnold and S. Pearson, *Coord. Chem. Rev.*, 2007, 51, 596-609.
- (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, *Angew. Chem. Int. Ed.*, 2002, 41, 2596-2599; (b)
 C. W. Tornøe, C. Christensen and M. Meldal, *J. Org. Chem.*, 2002, 67, 3057-3064; (c) H. C. Kolb, M. G. Finn and K. B.
- Sharpless, Angew. Chem. Int. Ed., 2001, 40, 2004; (d) J. E.
 Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302-1315;
 (e) L. Liang and D. Astruc, Chem. Soc. Rev., 2011, 255, 2933-2945.
- (a) P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc.,
 2008, 130, 13534-13535; (b) J. D. Crowley, A.-L. Lee and K. J. Kilpin, Aust. J. Chem., 2011, 64, 1118-1132; (c) K. F. Donnelly, A. Petronilho and M. Albrecht, Chem. Commun., 2013, 49, 1145-1159
- (a) J. Bouffard, B. K. Keitz, R. Tonner, G. Guisado-Barrios,
 G. Frenking, R. H. Grubbs and G. Bertrand, *Organometallics*, 2011, **30**, 2617-2627; (b) G. Guisado-Barrios, J. Bouffard, B. Donnadieu and G. Bertrand, *Angew. Chem. Int. Ed.*, 2010, **49**, 4759-4762.


- A. Prades, E. Peris and M. Albrecht, *Organometallics*, 2011, 30, 1162-1167.
- R. Lalrempuia, N. D. McDaniel, H. Mueller-Bunz, S. Bernhard and M. Albrecht, *Angew. Chem. Int. Ed.*, 2010, 49, 9765-9768.
- (a) T. Karthikeyan and S. Sankararaman, *Tetrahedron Lett.*, 2009, **50**, 5834-5837; (b) T. Nakamura, K. Ogata and S. i. Fukuzawa, *Chem. Lett.*, 2010, **39**, 920-922.
- B. Bagh and D. W. Stephan, *Dalton Trans.*, 2014, 43, 15638-15645.
- (a) B. Bagh, A. M. McKinty, A. J. Lough and D. W. Stephan, Dalton Trans., 2014, 43, 12842-12850; (b) H. Hikori, K. Ogata and S.-i. Fukuzawa, Synlett., 2013, 24, 843-846.
- M. Viciano, M. Feliz, R. Corberan, J. A. Mata, E. Clot and E. Peris, *Organometallics*, 2007, 26, 5304-5314.
 Bruker Inc., 2013.
- D. T. Cromer and J. T. Waber, *Int. Tables X-Ray Crystallogr.*, 1974, 4, 71-147.
 - (a) A. Petronilho, M. Rahman, J. A. Woods, H. Al-Sayyed, H. Müller-Bunz, J. M. D. MacElroy, S. Bernhard and M. Albrecht, *Dalton Trans.*, 2012, 41, 13074-13080; (b) K. F. Donnelly, R. Lalrempuia, H. Müller-Bunz and M. Albrecht, *Organometallics*, 2012, 31, 8414-8419.
 - K. Ogata, S. Inomata and S. Fukuzawa, *Dalton Trans.*, 2013, 42, 2362-2365.
 R. Saravanakumar, V. Ramkumar and S. Sankararaman,
 - R. Saravanakumar, V. Ramkumar and S. Sankararaman, *Organometallics*, 2011, **30**, 1689-1694.
 - (a) Y. Ohki, T. Hatanaka and K. Tatsumi, J. Am. Chem. Soc., 2008, 130, 17174-17186; (b) J. M. S. Cardoso and B. Royo, Chem. Commun., 2012, 48, 4944-4946; (c) M. J. Chilvers, R. F. R. Jazzar, M. F. Mahon and M. K. Whittlesey, Adv. Synth. Catal., 2003, 345, 1111-1114; (d) S. Burling, M. F. Mahon, B. M. Paine, M. K. Whittlesey and J. M. J. Williams, Organometallics, 2004, 23, 4537-4539; (e) S. Burling, E. Mas-Marza, J. E. V. Valpuesta, M. F. Mahon and M. K. Whittlesey, Organometallics, 2009, 28, 6676-6686; (f) C. Zhang, Y. Zhao, B. Li, H. Song, S. Xu and B. Wang, Dalton Trans., 2009, 5182-5189; (g) C. Zhang, B. Li, H. Song, S. Xu and B. Wang, Organometallics, 2011, 30, 3029-3036; (h) A. A. Danopoulos and P. Braunstein, Dalton Trans., 2013, 42, 7276-7280; (i) A. Labande, N. Debono, A. Sournia-Saquet, J.-C. Daran and R. Poli, Dalton Trans., 2013, 42, 6531-6537; (j) C. Y. Tang, N. Phillips, M. J. Kelly and S. Aldridge, Chem. Commun., 2012, 48, 11999-12001; (k) X. Liu and P. Braunstein, Inorg. Chem., 2013, 52, 7367-7379; (I) A. M. Oertel, J. Freudenreich, V. R. J. Gein, L. F. Veiros and M. J. Chetcuti, Organometallics, 2011, 30; (m) J. H. Lee, K. S. Yoo, C. P. Park, J. M. Olsen, S. Sakaguchi, G. K. S. Prakash, T. Mathew and K. W. Jung, Adv. Synth. Catal., 2009, 351, 563-568; (n) O. Rivada-Wheelaghan, B. Donnadieu, C. Maya and S. Conejero, Chem. Eur. J., 2010, 16, 10323-10326; (o) O. Rivada-Wheelaghan, M. A. Ortuño, J. Díez, A. Lledó and S. Conejero, Angew. Chem. Int. Ed., 2012, 51, 3936-3939.
 - T. Arliguie, B. Chaudret, R. H. Morris and A. Sella, *Inorg. Chem.*, 1988, **27**, 598-599.
 - B. Chaudret, G. Chug, O. Eisenstein, S. A. Jackson, F. J. Lahoz and J. A. Lopez, *J. Am. Chem. Soc.*, 1991, **113**, 2314-2316.

25.

24

120

TOC Graphic

