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Abstract An iron-based mixed-polyanion compound, Li9Fe3(P2O7)3(PO4)2, is introduced as a possible cathode material for Li-ion 
batteries. Phase-pure Li9Fe3(P2O7)3(PO4)2 is successfully prepared by a sol-gel method, and its physicochemical properties are 
investigated in detail. Special attention is paid on making clear the variation of the phase composition with the annealing temperature and 10 

the effect of carbon coating on the electrochemical performance. Apparently phase-pure Li9Fe3(P2O7)3(PO4)2 can only be obtained in a 
narrow temperature range, either higher or lower annealing temperature outside this temperature range always leads to impurity phase. 
The pristine Li9Fe3(P2O7)3(PO4)2 is suffering from its low electronic conductivity (10-9 S cm-1) and theoretical capacity (85 mAh·g-1), it 
has a first discharge capacity of only 36 mAh·g-1. Carbon coating is employed to improve the electrochemical performance. When the 
carbon content is 10 wt.%, the discharge capacity of Li9Fe3(P2O7)3(PO4)2/C reaches the maximum value of 60 mAh·g-1. The electronic 15 

conductivity of the composite, the exact discharge capacity of Li9Fe3(P2O7)3(PO4)2 in the composite and the capacity retention of the 
composite after 30 cycles vary in the same fashion with an increase in carbon content, i.e. first quickly increase and then stabilize. 

Keyword: mixed-polyanion; monodiphosphate; lithium intercalation; carbon coating 

 

1 Introduction 20 

The expanding demand of high-power and high-energy 
batteries for large-scale applications has motivated the continuous 
research on materials for lithium ion batteries (LIBs)1-3. 
Polyanion materials are considered promising cathode materials 
for large-scale LIBs because of its low cost and high safety. 25 

Especially, the polyanion materials using earth-abundant iron as 
the redox center have attracted more and more attention. Iron-
based polyanion materials such as Li2FeSiO4

4-8, Li2FeP2O7
9-12, 

LiFeBO3
13, LiFePO4

14-16, Li3Fe2(PO4)3
17-19, LiFeP2O7

17,21-20, etc. 
have been studied as cathode materials for lithium batteries. 30 

Olivine LiFePO4 is considered as one of the most promising 
cathode materials for large-scale lithium ion batteries. 

Mixed-polyanion compounds such as LiFe2(SO4)2(PO4)22, 
AxM(YO3)(XO4) (A=Na, Li; X=Si, As, P; Y=C, B; M=a redox 
active metal; and x=0~3)23,24, Li9M3(P2O7)3(PO4)2 (M=V, Fe, 35 

Mo)25-27 and LixNa4-xFe3(PO4)2(P2O7) (x=0~3)28 have two kinds 
of polyanion. Some of them show fascinating physicochemical 
characteristics as cathode materials for lithium batteries. 
Li9V3(P2O7)3(PO4)2 

26 has an electronic conductivity of 1.43×10-8 

S·cm-1, its phosphorus and oxygen deficient form, i.e. Li9V3P8-40 

δO29-δ′ 
29, has a discharge capacity as high as 250 mAh∙g-1. The 

LixNa4-xFe3(PO4)2(P2O7) compounds are revealed by first 
principle calculations as fast ionic conductors, and they can 
reversibly exchange one electron per Fe atom in both Li and Na 
cells28. Recently, we reported a series of mixed-polyanion 45 

materials, i.e. Li2+xFe1-xPxSi1-xO4/C30, Li1-xFe1+xP1-xSixO4/C31 and 
Li2+xMn1-xPxSi1-xO4/C32. Some of them show desirable 
electrochemical performance. The rich chemistry of the mixed-
polyanion compounds will enable us to develop a growing 
number of new cathode materials for lithium batteries in the 50 

future. 

Two kinds of polyanion, i.e. (PO4)3- and (P2O7)4-, coexist in 
Li9Fe3(P2O7)3(PO4)2 which employs earth-abundant iron as the 
redox center. Its crystal structure was first described by Poisson 
et al. in 199825, and it was not until 2010 that it found its 55 

application as a photocatalyst working under visible light33. Until 
now, there is no report on its application as a cathode material for 
lithium battery. In this study, we prepared Li9Fe3(P2O7)3(PO4)2 by 
a sol-gel method and subsequently characterized its 
physicochemical behavior. Special attention is focused on the 60 

synthetic optimization, structural analysis, lithium intercalation 
and carbon coating. The results will not only provide a possible 
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view on designing new materials for lithium ion batteries, but 
also enrich the knowledge on mixed-polyanion materials. 

2 Experimental 

2.1 Synthesis.  

Li9Fe3(P2O7)3(PO4)2 was prepared by a sol-gel method. 5 

Stoichiometric amount of analytical reagents, lithium acetate, 
ammonium dihydrogen phosphate, ferric nitrate and citric acid 
were used as starting materials. All the reagents were dissolved in 
distilled water, and then the solution was kept at 80 oC under 
magnetic stirring until a wet gel was formed. The resulting wet 10 

gel was dried at 100 oC over night to form a dry gel. The dry gel 
was ground and then calcined at a selected temperature for 12 h 
in air. The selected calcination temperatures are 550, 600, 650, 
700, 750, 800 and 850 oC, respectively. The 
Li9Fe3(P2O7)3(PO4)2/C composites were prepared by ball-milling 15 

the pristine Li9Fe3(P2O7)3(PO4)2 with different amount of carbon 
for 10 hours. 

2.2 Materials characterization 

Powder X-ray diffraction (XRD, Bruker D8/Germany) using 
Cu Kα radiation was employed to identify the crystalline phase of 20 

the material. The experiment was performed by using step mode 
with a fixed time of 3 s and a step size of 0.02o. The morphology 
was observed with a scanning electron microscope (SEM, 
HITACHI S-4700) and a transmission electron microscope (TEM, 
JEOS-2010 PHILIPS), and the chemical composition was 25 

determined by an energy dispersive X-ray detector (EDX) 
coupled with the SEM. The weight loss and the heat flow upon 
temperature ramping were monitored by thermogravimetry and 
differential scanning calorimetry (TG/DSC, NETZSCH STA 
449C), respectively. A vibrating sample magnetometer (VSM) 30 

was used to identify the magnetic behavior of the material. The 
electronic conductivity was measured by the four-probe 
technique. The powder was pressed into a disk with a diameter of 
20 mm and a thickness of about 0.9 mm at a pressure of 10 MPa, 
and the disk was annealed at 750 oC for 2 hour in air. Gold was 35 

painted on both sides of the disk to ensure electrical contact. The 
57Fe Mössbauer spectrum was recorded in transmission mode at 
room temperature on an MS-500 constant accelerator 
spectrometer using a 57Co/Pd source. The isomer shift was given 
relative to the center of α-Fe. The experimental spectrum was 40 

fitted to Lorentzian lines by using a least-squares-based method. 

2.3 Electrochemical measurements 

The coin cells were prepared as described in Ref.34. The 
composite electrode was made from a mixture of the prepared 
sample, acetylene black, and Polyvinylidene Fluoride in a weight 45 

ratio of 80:10:10. A disk of fresh lithium foil was used as counter 
electrode. The 1 mol∙L-1 LiPF6 dissolved in a mixture of ethylene 
carbonate (EC) and diethyl carbonate (DEC) was used as the 
electrolyte. Galvanostatic charge-discharge measurements were 
performed in a potential range of 1.5~4.8 V vs. Li/Li+ at ambient 50 
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           Figure 1 TG (a) and DSC (b) curves of the gel precursor. 

 

temperature on a Land battery testing system (Wuhan, China). In 
the galvanostatic intermittent titration technique (GITT), a 
constant current of 1/30 C was applied for 10 min and then it was 65 

interrupted to achieve open circuit condition for 40 min. This 
process was repeated until the electrode potential reached the cut-
off voltage. 

3 Results and Discussion 

3.1 Variation of phase composition with annealing temperature 70 

In this study, a simple sol-gel method was used to prepare 
Li9Fe3(P2O7)3(PO4)2, and the dry gel was finally annealed to get 
the final product. In order to select a suitable annealing 
temperature, TG and DSC curves were recorded to monitor the 
weight loss and the heat flow of the dry gel, and the results are 75 

shown in Figure 1 (a) and (b), respectively. The TG curve can be 
divided into four regions. Weight losses of 6%, 39%, 20% and 3% 
are observed in the temperature ranges of 33~138 oC, 138~218 oC, 
218~518 oC and 518~1000 oC, respectively. Weakly bonded 
water was evaporated in the first region. The exothermic peak in 80 

the second region can be attributed to the evaporation of strongly 
bonded water and the pyrolysis of organic species. The broad 
exothermic peak in the third region can be ascribed to the 
combustion of residual organic species. Finally, different phases 
were crystallized in the fourth region. Therefore, the annealing 85 

temperatures should be selected in the fourth region. However, as 
shown in the inset of Figure 1(b), there is an endothermic peak at 
842 oC with a minor satellite at 797 oC, which suggests the 
formation of other phases. In order to clarify how the phase 
composition varies with the annealing temperature, a series of 90 

temperatures ranging from 550 to 850 oC with an interval of 50 
oC was selected. 
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The XRD patterns of the samples annealed at25 

temperatures are shown in Figure 
LiFeP2O
Li9Fe3(P
which has a light pink color. 
diminish with increasing annealing temperature until 750 30 

the color of the sample changes accordingly. 
temperature is 
in the phase
Therefore, the three impurities can react with each other to form 
Li9Fe3(P35 

However, 
XRD pattern when the annealing temperature was further 40 

increased to 800 
Li3Fe2(PO
temperature is 
decomposes along the opposite direction of Equation 1 (Equation 
2). Additional45 

can be ascribed to Fe(PO
barely observed in the XRD pattern of the purplish sample 
annealed at 850
the extensive decomposition products at 850 
with the minor endothermic peak at 79750 

endothermic peak at 842 

40 3Li Fe (P O ) (PO ) 2Li Fe (PO ) +4Li P O +5LiFeP O

3 2 4 3 4 2 7 2 7 9 3 2 7 3 4 22Li Fe (PO ) + 4Li P O +5LiFeP O 3Li Fe (P O ) (PO )

Figure 2 XRD patterns of the samples 
temperature.
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Figure 7 GITT evaluation of Li9Fe3(P2O7)3(PO4)2: GITT charge 
(a) and discharge (b) curve with emphasis on QOCPs; (c) and (d) 
differential capacity vs. voltage (dQ/dV) curve on the basis of 10 

QOCP curve are displayed as inert. 

 

attributed to its low electronic conductivity. Therefore, Carbon 
coating can significantly improve the electronic conductivity and 
the electrochemical property, which is detailed in section 3.4. 15 

       The large potential difference between charge and discharge 
is an indication of high electrode polarization which can be 
attributed to the large particle size and the low electronic 
conductivity of Li9Fe3(P2O7)3(PO4)2. In order to clarify the nature 
of lithium de/intercalation, GITT was employed to obtain the 20 

quasi open-circuit potential (QOCP) upon charge and discharge 
(Figure 7a and b). The QOCP charge/discharge curve is flatter 
than the galvanostatic charge/discharge curve, and the potential 
difference between charge and discharge for the QOCP curves is 
much lower than that for the galvanostatic curves. The lack of 25 

fixed-voltage region in the QOCP curves indicates that the 
lithium de/intercalation reaction might proceed without the 
coexistence of two phases according to the Gibbs phase rule12. 
Therefore, the de/lithiation reaction might occur via a solid-
solution mechanism, which is similar to Li2FeP2O7

12. 30 

The QOCP charge/discharge curves are differentiated to 
obtained the equilibrium redox potential of the Fe3+/Fe2+ redox 
couple in Li9Fe3(P2O7)3(PO4)2 (Figure 7c and d). The equilibrium 
redox potential is 2.754 V. It is well known that the redox 
potential of Fe3+/Fe2+ in the iron-based polyanion compounds is 35 

related to the strength of Fe-O bonds which is affected by the 
inductive effect of the polyanion. Stronger Fe-O bond is shorter, 
which leads to lower redox potential. Therefore, the inductive 
effect of the polyanion has effect on the redox potential of 
Fe3+/Fe2+. The redox potentials of the Fe3+/Fe2+ redox couples in 40 

Li3Fe2(PO4)3 and LiFeP2O7 are already reported11,17. Table 1 lists 
the redox potential of Fe3+/Fe2+ and the average length of the Fe-
O bond in Li9Fe3(P2O7)3(PO4)2 together with those in 
Li3Fe2(PO4)3 and LiFeP2O7. The redox potential of Fe3+/Fe2+ in 
Li9Fe3(P2O7)3(PO4)2 is lower than those in LiFeP2O7 and 45 

Li3Fe2(PO4)3. Although the P/Fe ratio (8:3) in 
Li9Fe3(P2O7)3(PO4)2 is the highest, its redox potential of Fe3+/Fe2+  

 

 

 50 

 

 

 

 

 55 

Figure 8 (a) E vs. t curve of a single titration in GITT. (b) Linear 
relationship between E and τ1/2. (c,d) Variation of the Li+ 
diffusion coefficient with the electrode voltage upon (c) charge 
and (d) discharge. 

 60 

is the lowest because its average Fe-O bond length is the 
shortest21. Shorter F-O bond is stronger, which leads to lower 
redox potential of Fe3+/Fe2+. 

Furthermore, the Li+ diffusion coefficients (DLi) were 
estimated by GITT [38]. According to the Fick’s second law of 65 

diffusion, DLi can be calculated on the basis of the following 
equation:  

2 24 ( ) ( )
( )

B m S
Li

B

m V ED dEM A
d

τπ τ
τ

∆
=      (τ<<L2/DLi)              (5) 

Where DLi (cm2s-1) is the Li+ diffusion coefficient; mB, MB and 
Vm are the mass, molecular weight, molar volume of the electrode 70 

material, respectively; A is the interfacial area between electrode 
and electrolyte; τ is the duration of the current pulse. If the 
relationship between E and τ 1/2 is linear, Equation 5 can be 
simplified as following [39]: 

2 24 ( ) ( )B m S
Li

B

m V ED
M A Eτπτ

∆
=

∆
                      (6) 75 

In this study, the linear relationship between E and τ 1/2 
demonstrates the validity of Equation (6) (Figure 8(a),(b)). Figure 
8(c) and (d) show the variation of DLi as a function of voltage in 
the charge and discharge process, respectively. It is shown that 
the value of DLi varies between 10-18 and 10-15 cm2s-1, which is 80 

very low. The low Li+ diffusion coefficients are consistent with 
the poor electrochemical performance of Li9Fe3(P2O7)3(PO4)2. 

3.4 Effect of carbon coating on the properties of 
Li9Fe3(P2O7)3(PO4)2 

 85 
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inset of Figure 11(b) summarizes the capacity retention after 
thirty cycles which also varies in the same fashion as the 
electronic conductivity. A reasonable capacity retention can be 
obtained when the carbon content is higher than 10 wt.%. In 
summary, the way in which the electrochemical performance of 5 

Li9Fe3(P2O7)3(PO4)2/C varies with the carbon content is a 
compromise between the electronic conductivity and the 
excessive carbon. Therefore, the optimal carbon content is 10 
wt.%. 

4 Conclusions 10 

In this study, the lithium iron monodiphosphate, i.e. 
Li9Fe3(P2O7)3(PO4)2, was introduced as a possible cathode 
material for lithium batteries. Special attention is focused on the 
synthetic optimization, structural analysis, lithium intercalation 
and carbon coating. Both DSC and XRD results confirm the 15 

formation of phase-pure Li9Fe3(P2O7)3(PO4)2 in a narrow 
annealing-temperature range. However, the discharge capacity of 
Li9Fe3(P2O7)3(PO4)2 is only 36 mAh·g-1 because of its poor 
electronic conductivity (10-9 S cm-1) and low theoretical capacity 
(85 mAh·g-1). Carbon coating with different carbon content is 20 

employed to improve the electrochemical performance of 
Li9Fe3(P2O7)3(PO4)2. The electronic conductivity of the 
composite, the exact discharge capacity of Li9Fe3(P2O7)3(PO4)2 in 
the composite and the capacity retention of the composite after 30 
cycles vary in the same fashion with an increase in carbon 25 

content, i.e. first quickly increase and then stabilize. Considering 
the Li9Fe3(P2O7)3(PO4)2/C composite as a whole, the sample with 
10 wt.% carbon has the best electrochemical performance, its 
discharge capacity and capacity retention after thirty cycles are 52 
mAh·g-1 and 86%, respectively. 30 
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Li9Fe3(P2O7)3(PO4)2 with mixed-polyanion groups is introduced as a novel cathode 

material for Li-ion batteries. 
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