Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxxx

ARTICLE TYPE

Half Sandwich Ruthenium(II) Hydrides: Hydrogenation of Terminal, Internal, Cyclic and Functionalized Olefins

Bidraha Bagh and Douglas W. Stephan*

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

ABSTRACT: *Bis*(1,2,3-triazolylidene) silver(I) complex **1a** was reacted with $[RuCl_2(p-cymene)]_2$ to give the ruthenium complex $[PhCH_2N_2(NMe)C_2(C_6H_4CF_3)]RuCl_2(p-cymene)$ (**2a**) as major product in addition to the minor $C(sp^2)$ -H activated product $[PhCH_2N_2(NMe)C_2(C_6H_3CF_3)]RuCl(p-cymene)$ (**2a**'). Similar ruthenium complexes **2b**, **2c**, **2d** and **2e** with general formula $RuCl_2(p-cymene)(NHC)$ (NHC = $MesCH_2N_2(NMe)C_2Ph$ **2b**, $PhCH_2N_2(NMe)C_2Ph$ **2c**, $TripCH_2N_2(NMe)C_2Ph$ **2d**, IMes **2e**) were also synthesized. Subsequent reaction of Me₃SiOSO₂CF₃ with **2a** and **2b** resulted in cationic ruthenium species $[(PhCH_2N_2(NMe)C_2(C_6H_4CF_3))RuCl(p-cymene)][OSO_2CF_3]$ (**3a**) and $[(MesCH_2N_2(NMe)C_2Ph)RuCl(p-cymene)][OSO_2CF_3]$ (**3b**), respectively. Complexes **3a** and **3b** dissolved in CD₃CN to give $[(PhCH_2N_2(NMe)C_2(C_6H_4CF_3))RuCl(CD_3CN)(p-cymene)][OSO_2CF_3]$ (**4a**) and $I_5 [(MesCH_2N_2(NMe)C_2Ph)RuCl(CD_3CN)(p-cymene)][OSO_2CF_3]$ (**4b**), respectively. Cationic ruthenium species **4a** and **4b** failed to show catalytic activity towards hydrogenation of olefins. Ruthenium(II)

species **4a** and **4b** failed to show catalytic activity towards hydrogenation of olefins. Ruthenium(II) complexes **2b-e** with the general formula $RuCl_2(p$ -cymene)(NHC) were reacted with Et₃SiH to generate a series of ruthenium(II) hydrides **5b-e**. These compounds **5b-e** are effective catalysts for the hydrogenation of terminal, internal and cyclic and functionalized olefins.

20 INTRODUCTION

It was the discovery by Sabatier in the latter part of the nineteenth century that unveiled the utility of heterogeneous catalysis for the hydrogenation of organic unsaturates.¹ In the mid-sixties, Wilkinson et al. discovered the homogeneous hydrogenation ²⁵ catalyst RhCl(PPh₃)₃.² This seminal discovery inspired countless developments and academic and industrial applications.³ Subsequent work by Osborn and Schrock,⁴ Crabtreeand Morris⁵

revealed the cationic hydrogenation precatalysts $[(COD)Rh(Ph_2PCH_2CH_2PPh_2)]^+$ and $[(COD)Ir(py)(PCy_3)]^+$, 30 respectively. While since the 1970s, numerous reports have led to

- the modification of these precious metal systems for asymmetric catalysis,⁶ more recent work in hydrogenation catalysis has focused on earth abundant metal catalysts. For example, Chirik and coworker⁷ and subsequently the groups of Chirik⁸ and ³⁵ Hanson⁹ have reported highly effective Fe-based systems for
- olefin hydrogenation, while Beller has recently reported an ironoxide catalyst for nitroarenes reductions to anilines.¹⁰

Wilkinson and co-workers also reported the Ru species RuHCl(PPh₃)₃ (**A**) as an olefin hydrogenation catalyst,¹¹ however ⁴⁰ its high air-sensitivity has precluded broad use. While Ru-based hydrogenation catalysts for asymmetric hydrogenation of ketones¹² and other polar functional groups have emerged¹³, it was three decades after Wilkinson's original work that a variety of Ru hydrogenation catalysts have emerged. Yi *et al.* described

 $_{45}$ RuHCl(CO)(PCy_3)_2 (**B**) as an effective catalyst for the

Fig. 1 Ruthenium complexes for olefin hydrogenation.

hydrogenation of terminal and cyclic alkenes.¹⁴ Yi, Nolan and Fogg *et al.* also synthesized the complex RuHCl(CO)(NHC)(PR₃) ⁵⁰ (C)¹⁵ while in 2009, Albrecht *et al.* reported a series of cationic

Ru-species with chelating NHC ligands (**D**, **E**) as robust hydrogenation catalysts for styrene,¹⁶ and more recently described the use of Ru-NHC for the transfer hydrogenation of olefins.¹⁷ Recently, we described a famly of *cis-bis*-mixeds carbene Ru-hydride species (**F-J**) which provided catalysts selective for olefin hydrogenations¹⁸ or terminal olefins

- reduction.¹⁹ 1,2,3-triazol-5-ylidenes are a recent addition to the family of
- NHCs, that have attracted considerable attention in recent years.²⁰ ¹⁰ Ru-complexes of 1,2,3-triazol-5-ylidenes have been used as catalysts for ring-opening and ring-closing metathesis, Suzuki coupling, oxidative coupling and oxidation of water, alcohols and amines.¹⁹ Very recently, we have reported the synthesis of Rutriazolylidene complexes and exploited them for alcohols and ¹⁵ amines oxidation.^{20h} In this present report we describe the facile
- synthesis of a Ru-triazolylidene complexes and their use as highly efficient catalysts for hydrogenation of terminal, internal, cyclic and functionalized olefins.

RESULTS AND DISCUSSION

- ²⁰ Synthesis and Characterization: The bis(1,2,3-triazolylidene) silver(I) complex 1a was synthesized in good yield and subsequently treated with [RuCl₂(p-cymene)]₂ resulting in formation of the species [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)]RuCl₂(p-cymene) (2a) as a major product with the minor C(sp²)-H
- ²⁵ activated product [PhCH₂N₂(NMe)C₂(C₆H₃CF₃)]RuCl(*p*-cymene) (2a') (Scheme 1). Complexes 2a and 2a' were isolated from the crude solid by column chromatography using silica gel as stationary phase and a mixture of dichloromethane/acetone (9/1) as eluent. A yellow band which separated quickly was the ³⁰ cvclometalated complex 2a' (4 %), whereas the second red-
- orange band was found to be the expected ruthenium(II) triazolylidene complex 2a (81 %).

Scheme 1 Synthesis of 2a and 2a'.

³⁵ Both complexes **2a** and **2a'** were fully characterized by ¹H, ¹³C, ¹⁹F NMR spectroscopy as well as elemental analysis. The NMR data shows a doublet at 1.11 ppm for CH₃ of *iso*-propyl moiety and a singlet at 6.18 ppm for benzylic-CH₂ suggesting that species **2a** is C_s symmetric. However, the ¹H NMR spectrum of ⁴⁰ the cyclometalated complex **2a'** displayed two doublets for both CH₃ of *iso*-propyl moiety (0.66 and 0.84 ppm) and benzylic-CH₂ (5.83 and 6.05 ppm), consistent with C_1 symmetry. While the ¹H NMR spectra, **2a** displayed two doublets (4.76 and 5.16 ppm) for the aromatic hydrogens of the *p*-cymene moiety, the ⁴⁵ corresponding signals for **2a'** showed four doublets (4.95, 5.28, 5.46 and 5.60 ppm). The Ru-C resonances appeared at 163.57 ppm for **2a** and 178.71 and 181.72 ppm for **2a'** in the respective ¹³C NMR spectra. These data support the view that **2a** and **2a'** are derived from simple coordination of the triazolidene and ⁵⁰ metalation of the pendant arene, respectively. Very recently we reported related reactions of three *bis*(1,2,3-triazolylidene) silver(I) complexes with [RuCl₂(*p*-cymene)]₂ with closely related outcomes.^{20h} Similar cyclometalated triazolylidene complexes of ruthenium, iridium and palladium were also reported by ⁵⁵ Abrecht,²¹ Fukuzawa²² and Sankararaman.²³

Complex **2a** and the related species **2b** derived from MesCH₂N₂(NMe)C₂(C₆H₅) (Mes = C₆H₂Me₃), react with Me₃SiOSO₂CF₃ to form the cationic ruthenium species [(PhCH₂N₂(NMe)C₂(C₆H₄CF₃))RuCl(*p*-cymene)][OSO₂CF₃] (**3a**) ⁶⁰ and [(MesCH₂N₂(NMe)C₂Ph)RuCl(*p*-cymene)][OSO₂CF₃] (**3b**), respectively (Scheme 2). These cationic complexes are insoluble in most of the organic solvents although they are soluble to some extent in warm MeOD. ¹H NMR spectra of **3a** and **3b** displayed a doublet for CH₃ of *iso*-propyl moiety (**3a**: 1.21 ppm, **3b**: 1.30 ⁶⁵ ppm), a singlet for benzylic-CH₂ (**3a**: 5.94 ppm, **3b**: 5.90 ppm) and two doublets for aromatic hydrogens of the *p*-cymene moiety (**3a**: 5.15 and 5.60 ppm, **3b**: 5.65 and 5.87 ppm), suggesting that these species are *C_s* symmetric, similar to the parent compounds **2a** and **2b**. Compounds **3a** and **3b** dissolve in CD₃CN with a ⁷⁰ color change from orange-brown to yellow, inferring

⁷⁰ color charge from orange-brown to yerlow, inferring coordination of solvent yielding $[(PhCH_2N_2(NMe)C_2(C_6H_4CF_3))RuCl(p-cymene)$ $(CD_3CN)][OSO_2CF_3]$ (**4a**) and $[(PhCH_2N_2(NMe)C_2Ph)RuCl(p-cymene)(CD_3CN)][OSO_2CF_3]$ (**4b**), respectively. This view was ⁷⁵ supported by the C_1 symmetric ¹H NMR data for **4a** and **4b**. The ¹³C NMR data showed Ru-C resonances at 158.19 ppm and 154.29 ppm for **4a** and **4b**, respectively. As expected **4a** displayed two signals (-79.30 and -63.41 ppm) and **4b** displayed one signal (-79.30 ppm) in the respective ¹⁹F NMR spectra.

⁸⁰ Coordination of acetonitrile was reversed upon standing under high vacuum for several hours, as **3a** and **3b**, respectively were cleanly regenerated.

Molecular structure analysis by X-ray diffraction revealed that **3a** is a cationic dimer with two chloride bridges between two ruthenium centres (Figure 2). The solid state structure shows an approximate C_2 symmetry with a C_2 axis passing through two ⁹⁰ chlorine atom. Ru-C bond distance of 2.085(3) Å is consistent with other ruthenium-triazolylidene complexes (1.99-2.09 Å). ²⁴ The Ru-Cl bond distances of 2.4316(7) and 2.4493(8) Å, the Cl-Ru-Cl angle of 79.90(3)°] and the Ru-Cl-Ru angle of 100.10(3)° in **3a** are consistent with those seen in other complexes ⁹⁵ containing Ru(μ -Cl)₂Ru fragments, where the Ru-Cl bond distances lie in the range of 2.42-2.48 Å and Cl-Ru-Cl and Ru-Cl-

50

Ru bond angles fall in the range of 78-82° and 96-102°, respectively.²⁴ The cation-anion pair in **3a** show no close contacts.

Fig. 2 Molecular structure of 3a with thermal ellipsoids at the 50% probability level. Hydrogen atoms and anions are omitted for clarity. Ru: orange, C: black, N: blue, Cl: green, F: pink.

We have recently exploited the series of Ru-triazolylidene complexes of the form [RCH₂N₂(NMe)C₂Ph]RuCl₂(p-cymene) $_{10}$ [R = Mes **5b** (Mes = C₆H₂Me₃), Ph **5c**, Trip **5d** (Trip = C₆H₂*i*Pr₃)] (Scheme 3) as moderate catalysts for oxidation of alcohols and benzylamines to aldehyde and imines respectively.^{20h} These compounds reacted quantitatively with Et₃SiH at 25 °C to give the corresponding Ru-hydride complexes

- $_{15}$ [RCH₂N₂(NMe)C₂Ph]RuHCl(*p*-cymene) (R = Mes 5b, Ph 5c, Trip 5d), respectively (Scheme 3). Similarly, the known ruthenium-imidazolylidene complex (IMes)RuCl₂(*p*-cymene) $2e^{19}$ was converted to the hydride analogue (IMes)RuHCl(pcymene) 5e (Scheme 3). NMR data confirmed the formulations
- ²⁰ and the C_1 symmetry. The ¹H NMR spectra of **5b-e** showed four doublets (5b: 4.27, 4.54, 4.65, 5.42 ppm; 5c: 4.20, 4.47, 4.49, 5.29 ppm; 5d: 4.30, 4.52, 4.71, 5.43 ppm; 5e: 3.76, 4.10, 4.34, 5.45 ppm) for the aromatic protons of the *p*-cymene fragment. Similarly, CH₃ protons of the *i*Pr group on the *p*-cymene moiety
- 25 gave rise to two doublets (5b: 0.90, 1.00 ppm; 5c: 0.80, 0.86 ppm; 5d: 0.92, 1.01 ppm; 5e: 1.01, 1.09 ppm). The hydride resonances appeared as singlets (5b: -6.60 ppm; 5c: -6.74 ppm; 5d: -6.59 ppm; 5e: -7.02 ppm) in the up-field range of ¹H NMR spectra as expected. ¹³C resonances for metal-bound carbon of the
- 30 carbene were observed down-field at 171.06, 169.50, 169.41, and 186.10 ppm for 5b-e, respectively. It is noteworthy that the reaction of Ru-halides with silanes has been recently exploited by Chatteriee and Gunanathan to generated Ru(II) and Ru(IV)hydrides.25
- In the case of **5b**, the geometry of the three-legged "pianostool", half-sandwich complex was confirmed by an X-ray diffraction. Ru-C and Ru-Cl bond distances were found to be 2.037(3) and 2.435(1) Å, respectively. Interestingly, the Ru-H bond distance is found to be 1.73(2) Å, which is significantly 40 longer that those previously reported for

 $(C_3Cl_2(N(CH_2)_3OMe)_2RuHCl(PPh_3)_2$ [1.521(5) $(C_3Cl_2(N(CH_2)_3OR)_2RuHCl(PPh_3)_2$ [R = tBu: 1.59(7) Å, tHex: 45 1.41(6) Å, Ph: 1.56(4) Å] and (C₃H₂(N(CH₂)₃OMe)₂RuHCl (PPh₃)(CO) [1.58(3) Å].¹⁹ In **2c**, the C-Ru-H and C-Ru-Cl angles of 87.7(4)° and 88.93(9)°, respectively are similar to each other; while the Cl-Ru-H bond angle was found to be 77.2(1)°.

(C₃H₂(N(CH₂)₃OMe)₂RuHCl(PPh₃)(IMes)

(IMes)RuHCl(CO)(PCy₃)

Fig. 3 Molecular structure of 5c with thermal ellipsoids at the 50% probability level. All hydrogen atoms except the metal-hydride are omitted for clarity. Ru: orange, C: black, H: grey, N: blue, Cl: green.

55 Catalytic Hydrogenation of Olefins: The catalytic activity of the complexes 4a, 4b and 5b-e for the hydrogenation of alkenes was investigated. Hydrogenation of olefins was performed at 50 °C under 4 atm of H₂, with a catalyst loading of 1 and 5 mol % and the reactions were monitored by ¹H NMR spectroscopy over 60 24 h (Table 1). Despite of the structural similarity with E (Figure 1), cationic ruthenium species 4a and 4b did not show any catalytic activity for the hydrogenation of olefins. However, the ruthenium-hydride species 5b-e were active, displaying significant catalytic activity. Quantitative reduction of 1-hexene 65 to hexane was observed in just 3 h with 5 mol % catalyst loading of 5d (Entry 1). ¹H NMR measurements following this hydrogenation of 1-hexene clearly displayed the hydride resonance derived from 5d, indicating that this species is robust. Addition of another equivalent of 1-hexene and replenishment of 70 the H₂ atmosphere resulted in further reduction of 1-hexene to hexane, again being complete in 3 h. This process was repeated twice more with no loss of catalytic activity. Monitoring the

Å],

Å].

Å],

[1.57(2)]

[1.47(2)]

reduction by NMR spectroscopy revealed the transient isomerization of 1-hexene to 2-hexene was concurrent with the

reduction of hexene to hexane.

Table 1 Hydrogenation Catalysis with 5b, 5c, 5d and 5e^a

entry	substrate	product	cat	time/yield	cat	time/yield	cat	time/yield	cat	time/yield
				$(h/\%)^{b}$		$(h/\%)^{b}$		$(h/\%)^{b}$		$(h/\%)^{b}$
1	1-hexene	hexane	5d	3/100	5b	4/100	5c	4/100	5e	8/100
2	1-hexene	hexane	$5d^c$	7/100	5b ^c	8/96 ^d	5c ^c	8/91 ^d	5 e ^c	$8/52^{d}$
3	styrene	ethylbenzene	5d	$8/48^{d}$	5b	8/39 ^d	5c	8/35 ^d	5e	24/83
4	2-hexene	hexane	5d	3/100	5b	4/100	5c	4/100	5e	8/100
5	2-methyl-2-butene	isopentane	5d	24/71	5b	24/63	5c	24/61	5e	24/32
6	stilbene	1,2-diphenylethane	5d	24/38	5b	24/31	5c	24/29	5e	24/12
7	cyclopentene	cyclopentane	5d	$8/64^{d}$	5b	$8/55^{d}$	5c	8/53 ^d	5e	24/98
8	cyclohexene	cyclohexane	5d	$8/61^{d}$	5b	$8/52^{d}$	5c	$8/51^{d}$	5e	24/94
9	cyclooctene	cyclooctane	5d	$8/59^{d}$	5b	$8/49^{d}$	5c	$8/47^{d}$	5e	24/87
10	allyl alcohol	<i>n</i> -propanol	5d	3/100	5b	4/100	5c	4/100	5e	6/100
11	acrylaldehyde	propionaldehyde	5d	2/100	5b	3/100	5c	3/100	5e	4/100
12	3-buten-2-one	2-butanone	5d	4/100	5b	5/100	5c	5/100	5e	7/100
13	methyl 3-butenoate	methyl butyrate	5d	8/100	5b	$8/81^{d}$	5c	8/83 ^d	5e	24/89
14	acrylonitrile	propionitrile	5d	5/100	5b	7/100	5c	7/100	5e	$8/76^{d}$
15	allylamine	propylamine	5d	8/63 ^d	5b	$8/49^{d}$	5c	$8/42^{d}$	5e	24/91
16	2-vinyl pyridine	2-ethyl pyridine	5d	24/45	5b	24/37	5c	24/36	5e	24/18
17	tert-butyl vinyl ether	tert-butyl ethyl ether	5d	24/41	5b	24/29	5c	24/32	5e	24/15
18	phenyl vinyl sulfide	ethyl phenyl sulfide	5d	24/33	5b	24/24	5c	24/22	5e	24/12
19	1-vinylimidazole	1-ethylimidazole	5d	24/38	5b	24/28	5c	24/25	5e	24/13

5 ^aConditions: 0.10 mmol of substrate and 5 mol % of catalyst in CD₂Cl₂ at 50 °C under 4 atm of H₂. ^bYields were determined by ¹H NMR spectroscopy. ^c1 mol % catalyst loading. dQuantitative reduction was observed in 24 h.

After 4 h, 1 mol % 5d, gave rise to 1-hexene, 2-hexene and hexane in a ratio of ca. 15:25:60 (Entry 2). Nonetheless, reduction was complete after 7 h, thus indicating that both 1-10 hexene and 2-hexene are reduced by 5d. This was further confirmed by the independent reduction of 2-hexene as this was reduced using 5 mol% 5d in 3 h.

Species 5d displayed much reduced activity for the reduction of styrene to ethylbenzene (Entry 3); however, quantitative 15 reduction was observed in 24 h. 5d was also utilized for the hydrogenation of the internal olefins, 2-hexene, 2-methyl-2butene, stilbene, cyclpentene, cyclohexene and cyclooctene (Entries 4-9) although these proceeds in a much slower fashion.

- The hydrogenation of olefins in molecules containing 20 functional groups was also investigated. The catalyst 5d was observed to be highly effective in the rapid and selective reduction of olefinic fragments of allyl alcohol, acrylaldehyde, 3buten-2-one, methyl 3-butenoate and acrylonitrile (Entries 10-14). The corresponding hydrogenation of allylamine (Entry 15)
- 25 was slower but was complete reduction after 24 h. 2vinylpyridine, tert-butyl vinyl ether, phenyl vinyl sulphide and 1vinylimidazole (Entries 16-19) are reduced although in much slower reactions with yields of 33-45% after 24 h at 50°C and 4 atm of H₂ pressure.
- Species 5b and 5c displayed similar catalytic selectivity for the reduction of olefinic residues in all substrates (Entries 1-19), although in general these catalysts were slightly slower than 5d. For instant, in the case of the reduction of 1-hexene using 1 mol% catalysts gave 91 %, 96 % and 52% yield of hexane after 8 h
- 35 using 1 mol% of 5b, 5c and 5e, respectively. Similar trends were observed for the other substrates. In general, 5d was found to be the most effective of the 4 catalysts evaluated herein, while the triazolium-based catalysts 5b-d gave higher product yields than imidazolium-based catalyst 5e. This is attributed greater donor

40 ability of the triazolium ligands as well as the altered steric

demands proximate to the metal centre. Presumably both features act in concert to facilitate ring slippage of the arene ligand prompting insertion of the olefin into the Ru-H bond and the subsequent hydrogenolysis of the transient Ru-alkyl intermediate.

⁴⁵ It is noted that no evidence of catalyst degradation was observed by NMR spectroscopy after several cycles of hydrogenation catalysis inferring arene slippage is transient and only partial affording olefin access to the metal center,

EXPERIMENTAL SECTION

- 50 General Procedure: All manipulations were carried out under an atmosphere of dry, oxygen free nitrogen atmosphere employing an Innovative Technology glove box and a Schlenk vacuum-line. Solvents (pentanes, hexanes, CH₃CN and CH₂Cl₂) were purified with a Grubbs-type column system manufactured by Innovative 55 Technology and dispensed into thick-walled Schlenk glass flasks
- equipped with Teflon-valve stopcocks and stored over molecular sieves. Deuterated solvents CD₂Cl₂ and C₆D₅Br were dried over calcium hydride, vacuum-transferred into storage flasks with Teflon stopcocks, and degassed accordingly. CD₃CN and CD₃OD
- ⁶⁰ were degassed and stored over 3 Å molecular sieves. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 25 °C on a Bruker 400 MHz spectrometer. Chemical shifts are given relative to SiMe₄ and referenced to the residual solvent signal. Chemical shifts are reported in ppm. Combustion analyses were performed in house, 65 employing a Perkin-Elmer CHN Analyzer. All reagents were purchased from Aldrich and were used as received. 2b, 2c, 2d and 2e were synthesized as reported in literature.^{16h,19}

Synthesis of [(PhCH₂C₂N₂(NMe)(C₆H₄CF₃))₂Ag][AgCl₂] (1a): ⁷⁰ A mixture of $[(PhCH_2N_2(NMe)C_2(C_6H_4CF_3))][OSO_2CF_3]$ (2.338) g, 5.00 mmol), Ag₂O (0.637 g, 2.75 mmol) and NMe₄Cl (0.603 g, 5.50 mmol) in a mixture of CH₂Cl₂ (10 mL) and CH₃CN (10 mL) was stirred at r.t. for 18 h under dark resulting in yellow solution

with grey precipitate. All volatiles were removed under vacuum to give a grey solid. It was extracted with CH_2Cl_2 (20 mL) and the solution was concentrated to ca. 4-5 mL. It was filtered through a plug of Celite. The solution was added dropwise to

- ⁵ hexanes (20 mL) while stirring vigorously, which yielded a sticky precipitate with pale yellow solution. The solution was discarded and the solid was dried under vacuum resulted in a foamy solid. The solid was dissolved in CH₂Cl₂ (4 mL) and the solution was added dropwise to well-stirred hexanes (20 mL) to give an off-
- ¹⁰ white solid with colorless solution. The liquid was syringed off and the solid was dried under high vacuum to give **1a** (1.934 g, 84%) as pure product. ¹H NMR (CD₂Cl₂): δ 4.15 (s, 6H, N-CH₃), 5.61 (s, 4H, CH₂), 7.25-7.38 (m, 10H, C₆H₅), 7.66-7.76 (m, 8H, C₆H₄). ¹³C NMR (CD₂Cl₂): δ 37.50 (N-CH₃), 59.57 (CH₂),
- ¹⁵ 126.29, 128.72, 129.30, 130.35, 131.58, 131.88, 132.14, 134.69 (Ar-C), 148.09 (Ag-C). ¹⁹F NMR (CD₂Cl₂): δ -63.20. MS (70 eV, ESI): m/z (rel intens) 741 (100) [C₃₄H₂₈N₆F₆Ag⁺]. HRMS (ESI; m/z): calcd for C₃₄H₂₈N₆F₆Ag, 741.1331; found, 741.1326.
- ²⁰ Synthesis of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)]RuCl₂(*p*-cymene) (2a) and [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)]RuCl₂(*p*-cymene) (2a'). A mixture of bis(1,2,3-triazolylidene) silver(I) complex 1a (0.921 g, 1.00 mmol) and [RuCl₂(*p*-cymene)]₂ (0.613 g, 1.00 mmol) in CH₂Cl₂ (15 mL) was stirred at r.t. for 16 h resulting in a
- ²⁵ red solution with white precipitate. The precipitate was filtered off and all volatiles were removed from the red solution to yield red solid (1.275 g) as crude products mixture. Elution on silica gel with a mixture of CH₂Cl₂/acetone (9/1) induced the separation of **2a** as the first yellow band and of **2a** as the second orange-red
- ³⁰ band. Removal of solvents under high vacuum yielded **2a'** (0.047 g, 4%) as a yellow solid and **2a** (1.011 g, 81%) as an orange-red solid.

2a: ¹H NMR (CD₂Cl₂): δ 1.11 (d, J = 7 Hz, 6H, CH₃ of *i*Pr), 1.73 (s, 3H, CH₃), 2.55 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.73 (s, 3H, N-

- ³⁵ CH₃), 4.76 (d, J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.16 (d, J = 6 Hz, 2H, Ar-H of *p*-cymene), 6.18 (s, 2H, CH₂), 7.35-7.45 (m, 5H, C₆H₅), 7.71-7.79 (m, 4H, C₆H₄). ¹³C NMR (CD₂Cl₂): δ 18.63 (CH₃), 22.61 (CH₃), 30.98 (CH), 37.77 (N-CH₃), 57.94 (CH₂), 82.76, 86.16, 97.11, 106.95 (Ar-C of *p*-cymene), 125.07, 128.59,
- ⁴⁰ 128.81, 129.03, 133.00, 136.73, 147.27 (Ar-C), 163.57 (Ru-C). ¹⁹F NMR (CD₂Cl₂): δ -63.08. Anal. Calcd for C₂₇H₂₈Cl₂F₃N₃Ru (623.50): C, 52.01; H, 4.53; N, 6.74. Found: C, 52.06; H, 4.50; N, 6.69.

2a': ¹H NMR (CD₂Cl₂): δ 0.66 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 0.84

- ⁴⁵ (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.97 (s, 3H, CH₃), 2.07 (sept, J = 7 Hz, 1H, CH of *i*Pr), 4.19 (s, 3H, N-CH₃), 4.95 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.28 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.46 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.60 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of *p*-cymene), 5.83 (d, J = 14 Hz, 1H, CH of CH₂), 6.05 (d, J = 6 Hz, 1H, CH of CH₂), 6.05
- ⁵⁰ J = 14 Hz, 1H, CH of CH₂), 7.17 (d, J = 7 Hz, 1H, C₆H₃), 7.38-7.47 (m, 6H, C₆H₃ and C₆H₅), 8.47 (s, 1H, C₆H₃). ¹³C NMR (CD₂Cl₂): δ 18.98 (CH₃), 21.99 (CH₃ of *i*Pr), 22.90 (CH₃ of *i*Pr), 31.42 (CH of *i*Pr), 37.94 (N-CH₃), 56.42 (CH₂), 83.45, 87.40, 89.33, 93.16, 99.48, 104.24 (Ar-C of *p*-cymene), 119.19, 120.38, 127.72 (20.20, 20.20, 20.20, 20.20, 120.141, 151.41, 1
- ⁵⁵ 127.76, 128.76, 129.38, 136.15, 138.10, 141.11, 151.41 (Ar-C), 178.71, 181.72 (Ru-C). ¹⁹F NMR (CD₂Cl₂): δ -61.63. Anal. Calcd for C₂₇H₂₇ClF₃N₃Ru (587.04): C, 55.24; H, 4.64; N, 7.16. Found: C, 55.19; H, 4.61; N, 7.19.

- 60 Synthesis of $[(PhCH_2N_2(NMe)C_2(C_6H_4CF_3))RuCl(p-cymene)][OSO_2CF_3]$ (3a), $[(PhCH_2N_2(NMe)C_2Ph)RuCl(p-cymene)][OSO_2CF_3]$ (3b),
- [(PhCH₂N₂(NMe)C₂(C₆H₄CF₃))RuCl(*p*-cymene)(CD₃CN)] [OSO₂CF₃] (4a) and [(PhCH₂N₂(NMe)C₂Ph)RuCl(*p*-⁶⁵ cymene)(CD₃CN)][OSO₂CF₃] (4b). A general procedure is described for the synthesis of 3a/3b and 4a/4b. A solution of Me₃SiOSO₂CF₃ in CH₂Cl₂ is added dropwise to a solution of 2a/2b in CH₂Cl₂. The reaction mixture is stirred at r.t. for 18 h resulting in a red-brown solution. The solution is left at -35 °C for 70 48 h resulting in red-brown crystals. The crystals were dried
- under vacuum to give pure product. **3a and 4a.** A mixture of **2a** (0.465 g, 0.75 mmol) and Me₃SiOSO₂CF₃ (0.201 g, 0.90 mmol) in CH₂Cl₂ (10 mL) yielded **3a** (0.517 g, 94%) as red-brown crystals. **3a** was dissolved in ⁷⁵ CD₃CN to form **4a. 3a:** ¹H NMR (CD₃OD): δ 1.21 (d, J = 7 Hz,
- 6H, CH₃ of *i*Pr), 1.94 (s, 3H, CH₃), 2.67 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.92 (s, 3H, N-CH₃), 5.15 (d, J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.60 (d, J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.94 (s, 2H, CH₂), 7.36-7.52 (m, 5H, C₆H₅), 7.75 (d, J = 7 Hz, 2H, C₆H₄), 7.92 ⁸⁰ (d, J = 7 Hz, 2H, C₆H₄). [Note: Due to the very poor solubility of **3a**, decent ¹³C NMR spectrum was not obtained.] Anal. Calcd for C₂₈H₂₈ClF₆N₃O₃RuS (737.12): C, 45.62; H, 3.83; N, 5.70. Found:
- C, 45.65; H, 3.81; N, 5.72. **4a:** ¹H NMR (CD₃CN): δ 1.15 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.19 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 2.00 (s, 38 3H, CH₃), 2.66 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.82 (s, 3H, N-CH₃), 5.27 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.31 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.64 (d, J = 6 Hz,
- cymene), 5.66 (d, J = 6 Hz, 1H, Ar H of *p*-cymene), 5.73 (d, J = 14 Hz, 1H, CH of CH₂), 6.13 (d, J = 14 Hz, 1H, CH of CH₂), 6.13 (d, J = 14 Hz, 1H, CH of CH₂), 90 7.33-7.48 (m, 5H, C₆H₅), 7.71 (d, J = 8 Hz, 2H, C₆H₄), 7.93 (d, J = 8 Hz, 2H, C₆H₄), ¹³C NMR (CD₃CN): δ 18.86 (CH₃), 22.38 (CH₃), 22.79 (CH₃), 31.87 (CH), 38.65 (N-CH₃), 58.33 (CH₂), 83.40, 85.86, 88.59, 90.65, 102.36, 111.71 (Ar-C of *p*-cymene), 126.66, 129.28, 129.36, 129.65, 132.90, 133.35, 136.93, 146.06 95 (Ar-C), 159.18 (Ru-C). ¹⁹F NMR (CD₃CN): δ -63.41, -79.30.
- 3b and 4b. A mixture of 2b (0.210 g, 0.35 mmol) and Me₃SiOSO₂CF₃ (0.087 g, 0.39 mmol) in CH₂Cl₂ (3 mL) yielded 3b (0.247 g, 91%) as red-brown crystals. 3b was dissolved in CD₃CN to form **4b**. **3b**: ¹H NMR (CD₃OD): δ 1.30 (d, J = 7 Hz, 100 6H, CH₃ of *i*Pr), 2.20 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.41 (s, 6H, CH₃), 2.78 (sept, J = 7 Hz, 1H, CH of *i*Pr), 4.26 (s, 3H, N-CH₃), 5.65 (d, J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.87 (d, J = 6Hz, 2H, Ar-H of p-cymene), 5.90 (s, 2H, CH₂), 7.01 (s, 2H, C₆H₂), 7.60-7.70 (m, 5H, C₆H₅). ¹³C NMR (CD₃OD): δ 18.91 105 (CH₃), 19.86 (CH₃), 21.13 (CH₃), 22.28 (CH₃), 32.61 (CH), 39.22 (N-CH₃), 53.11 (CH₂), 78.49, 79.28, 79.70, 80.34 (Ar-C of pcymene), 98.44, 102.66, 123.86, 126.37, 129.26, 130.57, 130.71, 132.82, 139.97, 141.38, 144.87 (Ar-C) [Note: Ru-C was not detected]. Anal. Calcd for C₃₁H₃₄ClF₆N₃O₃RuS (779.20): C, ¹¹⁰ 47.78; H, 4.40; N, 5.39. Found: C, 47.74; H, 4.44; N, 5.43. **4b:** ¹H NMR (CD₃CN): δ 1.21 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.24 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 2.12 (s, 3H, CH₃), 2.29 (s, 6H, CH₃ of Mes), 2.31 (s, 3H, CH₃ of Mes), 2.75 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.67 (s, 3H, N-CH₃), 5.36 (d, J = 6 Hz, 1H, Ar-H of *p*-115 cymene), 5.39 (d, J = 14 Hz, 1H, CH og CH₂), 5.55 (d, J = 6 Hz, 1H, Ar-H of p-cymene), 5.74 (d, J = 6 Hz, 1H, Ar-H of p-

cymene), 5.79 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 6.40 (d, J = 14 Hz, 1H, CH of CH₂), 6.98 (s, 2H, C₆H₅), 7.40-7.50 (m, 2H, C₆H₅), 7.54-7.65 (m, 3H, C₆H₅). ¹³C NMR (CD₃CN): δ 19.15 (CH₃), 20.45 (CH₃), 21.11 (CH₃), 22.42 (CH₃), 23.15 (CH₃), s 32.01 (CH), 38.22 (N-CH₃), 54.04 (CH₂), 83.13, 85.45, 88.77, 90.86, 103.01, 110.75 (Ar-C of *p*-cymene), 128.47, 129.44, 129.88, 131.04, 131.77, 139.73, 140.08, 147.50 (Ar-C), 155.61 (Ru-C). ¹⁹F NMR (CD₃CN): δ -79.30.

¹⁰ Synthesis of [MesCH₂N₂(NMe)C₂Ph]RuHCl(*p*-cymene) (5b). A solution of Et₃SiH (0.141 g, 1.20 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a solution of **2b** (0.599 g, 1.00 mmol) in CH₂Cl₂ (10 mL) at r.t. The reaction mixture was stirred at r.t. for 16 h resulting in a yellow-brown solution. All volatiles were ¹⁵ removed from the solution under high vacuum resulting in a ¹⁶ and

yellow-brown solid. The solid was washed with hexanes (3 x 10 mL) and dried under high vacuum to give yellow solid as pure product **5b** (0.552 g, 98 %). ¹H NMR (CD₂Cl₂): δ -6.60 (s, 1H, Ru-H), 0.90 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.00 (d, J = 7 Hz, 3H,

²⁰ CH₃ of *i*Pr), 1.68 (s, 3H, CH₃), 1.91 (sept, J = 7 Hz, 1H, CH of *i*Pr), 2.18 (s, 6H, CH₃), 2.21 (s, 3H, CH₃), 3.63 (s, 3H, N-CH₃), 4.27 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 4.54 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 4.65 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.42 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.86 (broad-s, 2H,

²⁵ CH₂), 6.83 (s, 2H, C₆H₂), 7.43-7.51 (m, 3H, C₆H₅), 7.57-7.66 (m, 2H, C₆H₅). ¹³C NMR (CD₂Cl₂): δ 18.87 (CH₃), 20.34 (CH₃), 21.18 (CH₃), 23.09 (CH₃), 23.82 (CH₃), 32.01 (CH), 37.52 (N-CH₃), 53.65 (CH₂), 79.29, 85.01, 85.69, 88.14, 97.80, 100.91 (Ar-C of *p*-cymene), 128.81, 129.18, 129.48, 129.69, 130.90, 132.18,

 $_{30}$ 138.43, 139.03, 147.67 (Ar-C), 169.50 (Ru-C). Anal. Calcd for $C_{29}H_{36}ClN_3Ru$ (563.14): C, 61.85; H, 6.44; N, 7.46. Found: C, 61.89; H, 6.42; N, 7.45.

Synthesis of [PhCH₂N₂(NMe)C₂Ph]RuHCl(p-cymene) (5c). A

- so solution of Et₃SiH (0.141 g, 1.20 mmol) in CH₂Cl₂ (4 mL) was added dropwise to a solution of **2c** (0.408 g, 0.73 mmol) in CH₂Cl₂ (5 mL) at r.t. The reaction mixture was stirred at 45 °C for 2 h resulting in a yellow-brown solution. All volatiles were removed from the solution under high vacuum resulting in a grey-
- ⁴⁰ yellow solid. The solid was washed with pentane (3 x 10 mL) and dried under high vacuum to give yellow solid as pure product **5b** (0.366 g, 96 %). X-ray quality crystals were grown by slow diffusion of pentane into a solution of **5b** in CH₂Cl₂. ¹H NMR (CD₂Cl₂): δ -6.74 (s, 1H, Ru-H), 0.80 (d, J = 7 Hz, 3H, CH₃ of
- ⁴⁵ *i*Pr), 0.86 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.56 (s, 3H, CH₃), 1.77 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.73 (s, 3H, N-CH₃), 4.20 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 4.47 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 4.49 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 5.29 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 5.81 (d, J = 14 Hz, 1H, CH₂), 6.17
- $_{55}$ 128.40, 129.33, 130.25, 131.74, 136.76, 147.37 (Ar-C), 171.06 (Ru-C). Anal. Calcd for $C_{26}H_{30}ClN_3Ru$ (521.06): C, 59.93; H, 5.80; N, 8.06. Found: C, 60.02; H, 5.87; N, 8.01.

Synthesis of [TripCH₂N₂(NMe)C₂Ph]RuHCl(p-cymene) (5d). 60 5d was synthesized following an identical synthetic procedure as described for the synthesis of 5c. A mixture of Et₃SiH (0.070 g, 0.60 mmol) and 2d (0.341 g, 0.50 mmol) in CH₂Cl₂ (8 mL) vielded **5d** as a vellow solid (0.311 g, 96 %). ¹H NMR (CD₂Cl₂): δ -6.59 (s, 1H, Ru-H), 0.92 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.01 (d, 65 J = 7 Hz, 3H, CH₃ of *i*Pr), 1.09 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.11 $(d, J = 7 Hz, 3H, CH_3 of iPr), 1.20 (d, J = 7 Hz, 3H, CH_3 of iPr),$ 1.92 (sept, J = 7 Hz, 1H, CH of *i*Pr), 2.85 (sept, J = 7 Hz, 1H, CH of *i*Pr), 2.98 (sept, J = 7 Hz, 1H, CH of *i*Pr), 3.64 (s, 3H, N-CH₃), 4.30 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 4.52 (d, J = 7 Hz, 1H, ⁷⁰ Ar-H of *p*-cymene), 4.71 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 5.43 (d, J = 7 Hz, 1H, Ar-H of *p*-cymene), 5.82 (d, J = 14 Hz, 1H, CH₂), 6.06 (d, J = 14 Hz, 1H, CH₂), 7.01 (s, 2H, C₆H₂), 7.43-7.51 (m, 3H, C₆H₅), 7.56-7.64 (m, 2H, C₆H₅). ¹³C NMR (CD₂Cl₂): δ 18.84 (CH₃), 23.13 (CH₃), 23.75 (CH₃), 24.13 (CH₃), 24.33 75 (CH₃), 24.39 (CH₃), 30.21 (CH), 32.05 (CH), 34.71 (CH), 37.45 (N-CH₃), 51.87 (CH₂), 78.97, 85.39, 86.07, 87.59, 98.30, 100.53 (Ar-C of p-cymene), 121.66, 127.03, 128.83, 129.72, 130.84, 132.20, 147.77, 149.43, 149.76 (Ar-C), 169.41 (Ru-C). Anal. Calcd for C₃₅H₄₈ClN₃Ru (647.30): C, 64.94; H, 7.47; N, 6.49.

⁸⁰ Found: C, 64.89; H, 7.45; N, 6.52.

Synthesis of [IMesCH₂N₂(NMe)C₂Ph]RuHCl(p-cymene) (5e). 5e was synthesized following an identical synthetic procedure as described for the synthesis of 5c. A mixture of Et₃SiH (0.141 g, 85 1.20 mmol) and 2e (0.613 g, 1.00 mmol) in CH₂Cl₂ (15 mL) yielded **5e** as a brown solid (0.550 g, 95 %). ¹H NMR (CD₂Cl₂): δ -7.02 (s, 1H, Ru-H), 1.01 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.09 (d, J = 7 Hz, 3H, CH₃ of *i*Pr), 1.70 (s, 3H, CH₃), 1.80 (sept, J = 7 Hz, 1H, CH of *i*Pr), 2.09 (s, 6H, CH₃), 2.16 (s, 6H, CH₃), 2.42 (s, 6H, $_{90}$ CH₃), 3.76 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 4.10 (d, J = 6 Hz. 1H. Ar-H of p-cymene). 4.34 (d. J = 6 Hz. 1H. Ar-H of pcymene), 5.46 (d, J = 6 Hz, 1H, Ar-H of *p*-cymene), 6.97 (s, 2H, C₂H₂), 7.06 (s, 4H, C₆H₂). ¹³C NMR (CD₂Cl₂): δ 17.63, 18.34, 18.69, 20.85, 21.34, 25.21, 25.58 (CH₃), 32.34 (CH), 72.95, 95 83.89, 88.43, 93.95 (Ar-C of p-cymene), 122.50, 128.79, 128.89, 136.33, 138.42, 138.96 (Ar-C and C₂H₂), 186.12 (Ru-C). Anal. Calcd for C₃₁H₄₀ClN₂Ru (577.19): C, 64.51; H, 6.99; N, 4.85. Found: C, 64.59; H, 7.04; N, 4.82.

- Hydrogenation of olefins by 5b, 5c, 5d and 5e. In a glove box, a sample of the appropriate ruthenium-hydride complex 5b (5.2 mg, 10 μmol) or 5c (5.6 mg, 10 μmol) or 5d (6.5 mg, 10 μmol) or 5e (5.8 mg, 10 μmol), CD₂Cl₂ (0.5 mL) and substrate (0.2 mmol in case of 5 mol% catalyst loading and 1 mmol in case of 1 mol%
 catalyst loading) were combined in a vial. The mixture was transferred to a J. Young tube and the J. Young tube was sealed. On a Schlenk line, the reaction mixture was degassed four times using the freeze-pump-thaw method. The sample was then frozen once more in liquid nitrogen and 4 atm of H₂ was added. The J.
- ¹¹⁰ Young tube was sealed again and warmed to room temperature and then placed in an oil bath pre-heated to 50 °C. ¹H NMR spectra were measured at appropriate intervals and relative integration of substrate and product peaks were used to determine the composition of the mixture.
- 115 X-Ray Data Collection and Reduction Crystals were coated in Paratone-N oil in the glovebox, mounted on a MiTegen

Micromount and placed under an N_2 stream, thus maintaining a dry, O2-free environment for each crystal. The data were collected on a Kappa Bruker Apex II diffractometer. Data collection strategies were determined using Bruker Apex 2 coffuers and ortimized to provide $\geq 00.5\%$ (correlate data to a 20

- s software and optimized to provide >99.5% complete data to a 20 value of at least 55°. The data were collected at 150(\pm 2) K for all. The data integration and absorption corrections were performed with the Bruker Apex 2 software package.²⁶
- X-Ray Data Solution and Refinement Non-hydrogen atomic ¹⁰ scattering factors were taken from the literature tabulations.²⁷ The heavy atom positions were determined using direct methods employing the SHELX-2013 direct methods routine. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were
- ¹⁵ carried out by using full-matrix least squares techniques on F, minimizing the function ω (F_o-F_c)² where the weight ω is defined as 4F_o²/2 σ (F_o²) and F_o and F_c are the observed and calculated structure factor amplitudes, respectively. In the final cycles of each refinement, all non-hydrogen atoms were assigned
- ²⁰ anisotropic temperature factors in the absence of disorder or insufficient data. In the latter cases atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the carbon to which they are bonded assuming a C-H bond length of 0.95 Å. H-atom temperature factors were fixed at
- 25 1.20 times the isotropic temperature factor of the C-atom to which they are bonded. The H-atom contributions were calculated, but not refined. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of
- ³⁰ no chemical significance. For more information see Supporting Information.

SUMMARY AND CONCLUSIONS

- The reaction of silver(I) triazolylidene 1a and [RuCl₂(pcymene)]₂ resulted in ruthenium(II)(η^6 -arene) complex 2a as 35 major product and cyclometalated species 2a' as minor product. RuCl₂(*p*-cymene)(triazolylidene) 2a-b reacted with Me₃SiOSO₂CF₃ to generate cationic species **3a-b**. **3a** was found to be a dimer in the solid state. CD₃CN coordinated to the metal centres in 3a-b to form 4a-b. Ru-complexes of 1,2,3-triazol-5-40 ylidenes 2b-d are readily prepared and converted to the Ruhvdride complexes 5b-d of the form (RCH₂N₂(NMe)C₂Ph]RuHCl(*p*-cymene). Cationic species **4a-b**
- were inactive for the hydrogenation of olefins. Of the triazolium species **5b-d**, complex **5d** (R = Trip) proved to be the most active ⁴⁵ hydrogenation catalyst, although all of these species are effective
- hydrogenation catalyst, antiough an of mess species are effective hydrogenation catalysts for terminal, internal and cyclic and functionalized olefins. These species exhibited higher catalytic activity than the closely related ruthenium-imidazolylidene complex **5e**. We are continuing to examine the impact of the
- ⁵⁰ modification of carbene donors in our continuing efforts to develop new olefin-selective hydrogenation catalysts. The results of these efforts will be reported in due course.

Acknowledgement. The financial support of LANXESS Inc., the 55 NSERC of Canada, and the Ontario Centres of Excellence are gratefully acknowledged. DWS is grateful for the award of a Canada Research Chair.

Notes and references

Department of Chemistry, University of Toronto, 80 St. George St., 60 Toronto, ON M5S3H6, Canada. Tel: 416 946 3294; E-mail: dstephan@chem.utoronto.ca

 \dagger Electronic Supplementary Information (ESI) available: Synthesis and characterization of [PhCH₂N₂(NMe)C₂(C₆H₄CF₃)][OSO₂CF₃]; NMR

- 65 spectra of 1a, 2a, 2a', 3a, 3b, 4a, 4b, 5b, 5c, 5d and 5e. CIF for all structural studies have been deposited. 3a: CCDC 1018320; 5c: CCDC 1007295; See DOI: 10.1039/b000000x/
- 1. P. Sabatier and B. Kubota, Compt. Rend., 1921, 172, 733-736.
- 70 2. J. F. Young, J. A. Osborn, H. Jardine and G. Wilkinson, Chem. Commun., 1965, 131-132.
- 3. H. U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner and M. Studer, *Adv. Synth. Catal.*, 2003, **345**, 103-151.
- (a) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1976, 98,
 2143-2147; (b) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc.,
 1976, 98, 4450-4455; (c) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1976, 98, 2134-2143.
- 5. R. H. Crabtree and G. E. Morris, J. Organomet. Chem., 1977, 135, 395-403.
- 80 6. W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, 1998-2007.
- (a) R. J. Trovitch, E. Lobkovsky, E. Bill and P. J. Chirik, *Organometallics*, 2008, 27, 1470-1478; (b) R. P. Yu, J. M. Darmon, J. M. Hoyt, G. W. Margulieux, Z. R. Turner and P. J. Chirik, *ACS. Catal.*, 2012, 2, 1760-1764.
- 85 8. (a) S. Monfette, Z. R. Turner, S. P. Semproni and P. J. Chirik, J. Am. Chem. Soc., 2012, **134**, 4561-4564; (b) R. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux, S. C. E. Stieber, S. DeBeer and P. J. Chirik, J. Am. Chem. Soc., 2013, **135**, 13168-13184.
- G. Zhang, B. L. Scott and S. K. Hanson, *Angew. Chem. Int. Ed.*, 2012, 51, 12102-12106.
- R. V. Jagadeesh, A. E. Surkus, H. Junge, M. M. Pohl, J. Radnik, J. Rabeah, H. M. Huan, V. Schunemann, A. Bruckner and M. Beller, *Science*, 2013, 342, 1073-1076.
- 11. P. S. Hallman, D. Evans, J. A. Osborn and G. Wilkinson, *Chem. Commun.*, 1967, 305-306.
- (a) S. Akutagawa, *Chirality Ind.*, 1992, 325-339; (b) A. Marinetti and J.-P. Genet, *C.R. Chim.*, 2003, **6**, 507-514; (c) M. Ito and T. Ikariya, *Chem. Commun.*, 2007, **0**, 5134-5142; (d) P. Kluson and L. Cerveny, *Appl. Catal.*, A 1995, **128**, 13-31; (e) U. Matteoli, P.
- Frediani, M. Bianchi, C. Botteghi and S. Gladiali, J. Mol. Catal. A Chem., 1981, 12, 265-319; (f) R. Noyori, Angew. Chem. Int. Ed., 2002, 41, 2008-2022; (g) S. Gladiali, J. Mol. Catal. A Chem., 1981, 12, 265-319; (h) K. Rossen, Angew. Chem. Int. Ed., 2001, 40, 4611-4613.
- 105 13. W. W. Zuo, A. J. Lough, Y. F. Li and R. H. Morris, *Science*, 2013, 342, 1080-1083.
 - 14. C. S. Yi and D. W. Lee, Organometallics, 1999, 18, 5152-5156.
 - U. L. Dharmasena, H. M. Foucault, E. N. dos Santos, D. E. Fogg and S. P. Nolan, *Organometallics*, 2005, 24, 1056-1058.
- 110 16. C. Gandolfi, M. Heckenroth, A. Neels, G. Laurenczy and M. Albrecht, Organometallics 2009, 28, 5112-5121.
 - 17. S. Horn and M. Albrecht, *Chemical communications (Cambridge, England)*, 2011, **47**, 8802-8804.
- 18. C. L. Lund, M. J. Sgro, R. Cariou and D. W. Stephan, 115 Organometallics, 2012, **31**, 802-805.
 - T. E. Wang, C. Pranckevicius, C. L. Lund, M. J. Sgro and D. W. Stephan, *Organometallics*, 2013, **32**, 2168-2177.
- (a) P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc., 2008, 130, 13534-13535; (b) G. Guisado-Barrios, J. Bouffard, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2010, 49, 4759-4762; (c) J. Bouffard, B. K. Keitz, R. Tonner, G. Guisado-Barrios, G. Frenking, R. H. Grubbs and G. Bertrand, Organometallics, 2011, 30, 2617-2627; (d) R. Lalrempuia, N. D. McDaniel, H. Mueller-Bunz, S. Bernhard and M. Albrecht, Angew. Chem. Int. Ed., 2010, 49, 9765-9768; (e) A. Prades, E. Peris and M. Albrecht, Organometallics, 2011, 30, 1162-1167; (f) T. Karthikeyan and S. Sankararaman, Tetrahedron Lett., 2009, 50, 5834-5837; (g) T. Nakamura, K. Ogata and S. i. Fukuzawa, Chem. Lett., 2010, 39, 920-

922; (h) B. Bagh, A. M. McKinty, A. J. Lough and D. W. Stephan, *Dalton Trans.*, 2014, **43**, 12842-12850.

- (a) A. Petronilho, M. Rahman, J. A. Woods, H. Al-Sayyed, H. Müller-Bunz, J. M. D. MacElroy, S. Bernhard and M. Albrecht, *Dalton Trans.*, 2012, 41, 13074-13080; (b) K. F. Donnelly, A. Petronilho and M. Albrecht, *Chem. Commun.*, 2013, 49, 1145-1159
- K. Ogata, S. Inomata and S. Fukuzawa, *Dalton Trans.*, 2013, 42, 2362-2365.
- 23. R. Saravanakumar, V. Ramkumar and S. Sankararaman, 10 *Organometallics*, 2011, **30**, 1689-1694.
- (a) T. G. Southern, P. H. Dixneuf, Y. L. Marouille and D. Grandjean, Inorg. Chem., 1979, 18, 2987-2991; (b) P. Teulon and J. J. Roziere, Organometallic Chemistry, 1981, 214, 391-397; (c) B. Deschamps, F. Mathey, J. Fischer and J. H. Nelson, Inorg. Chem., 1984, 23, 3455-
- 20 605-608; (g) S. L. Dabb, B. A. Messerle, M. K. Smith and A. C. Willis, *Inorg. Chem.*, 2008, **47**, 3034-3044.
- 25. B. Chatterjee and C. Gunanathan, Chem. Commun., 2014, 50, 888-890.
- 26. Bruker Inc., 2013.
- 25 27. D. T. Cromer and J. T. Waber, Int. Tables X-Ray Crystallogr., 1974, 4, 71-147.

TOC graphic

