Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Kinetics and Mechanism of Photo-Assistant Ag(I)-Catalysed Water Oxidation with $S_2O_8^{2-}$

Lihong Yu, Jidan Wang, Dan Guo, Wansheng You,* Meiying Liu, Lancui Zhang, and Can Li*

The kinetics of photo-assistant Ag(I)-catalysed water oxidation into O_2 with $S_2O_8^{2-}$ has been investigated. It is found that the visible light ($\lambda \ge 400$ nm) can improve the evolution of O_2 remarkably. A reasonable mechanism of Ag(I)-catalyzed water oxidation with $S_2O_8^{2-}$ has been proposed, in which the reaction (AgO⁺ + H₂O \rightarrow Ag⁺ + H₂O₂) is considered as the rate-determined step. The increase of the O₂-evolution rate under visible light illumination results from the absorbance of the AgO⁺ species at 375 nm, promoting the rate-determined reaction.

Dalton Transactions

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Kinetics and Mechanism of Photo-Assistant Ag(I)-Catalysed Water Oxidation with $S_2O_8^{2-}$

Lihong Yu,^a Jidan Wang,^a Dan Guo,^a Wansheng You,^{*a} Meiying Liu,^a Lancui Zhang,^a and Can Li^{*b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The kinetics of photo-assistant Ag(I)-catalysed water oxidation into O₂ with S₂O₈²⁻ has been investigated. When the concentration of Ag⁺ is less than 7.06 × 10⁻³ mol L⁻¹, the O₂-evolution rate under visible light illumination ($\lambda \ge 400$ nm) is a first-order law with the concentrations of Ag⁺ and S₂O₈²⁻, respectively. The rate law is expressed as: $-dc(S_2O_8^{2-})/dt = 2dc(O_2)/dt = k_Lc(S_2O_8^{2-}) c(Ag^+)$, where k_L is 12.4±1 mol⁻¹ L h⁻¹ at 24.5 °C and the activity energy is 3.7 × 10⁴ J mol⁻¹. It is found that the visible light can improve the evolution of

¹⁰ O₂ remarkably. Compared with those without illumination, the rate constants under visible light are increased by *ca.* 3.8 mol⁻¹ L h⁻¹ at 4.5, 11.5, 17.5 and 24.5 °C, which are hardly effected by the reaction temperature. Employing MS/MS, ESR, XRD and UV-visible spectroscopy, the intermediate species of $\{AgS_2O_8\}^-$, Ag^{2+} , OH⁻, Ag_2O_3 and AgO^+ in the process of water oxidation have been detected. Based on the experimental evidences, the mechanism of Ag(I)-catalysed water oxidation with $S_2O_8^{2-}$ has been developed, in which the reaction ($AgO^+ + H_2O \rightarrow Ag^+ + H_2O_2$) is considered as the rate-determined step. The increase of the O₂-evolution rate under visible light ¹⁵ illumination results from the absorbance of the AgO^+ species at 375 nm, promoting the rate-determined reaction.

Introduction

Efficient water oxidation into O₂ is a bottleneck in the production of H₂ fuel from water splitting and in the reduction of CO₂ by electrolysis, photocatalysis, photoelectrocatalysis, and other ²⁰ approaches. Therefore, much more attention has been paid to

- developing viable water oxidation catalysts (WOCs) ¹⁻⁴. Since the Meyer and co-workers' report of the 'blue dimer' *cis,cis*- $[(bpy)_2(H_2O)Ru^{III}ORu^{III}(H_2O)(bpy)_2]^{4+,5}$ a range of homogeneous metal-organic complex WOCs containing the transition metals
- $_{25}$ (Ru, Ir, Co, Mn, etc.) have been reported sequentially $^{6-16}$. Much great progress has been made in the activity and stability of WOCs, as well as understanding their catalytic mechanisms. Recently, Sun et al. 17 have reported a mononuclear ruthenium complex [Ru(bda)(isoq)_2] with catalytic activity (TOF > 300 s⁻¹)
- ³⁰ and chemical stability (TON = $8,360 \pm 91$) for water oxidation, which is moderately comparable with the reaction rate of the oxygen-evolving complex of photosystem II in *vivo*. A series of carbon-free polyoxometalate WOCs, possessing the higher stability towards oxidative degradation, have also been reported.

 $_{35}$ $^{18-32}$ In the catalytic process, central metals are oxidized into the high valent species while the aqua ligand is responsible for the proton coupled electron transfer (PCET). The high valent metal ions are responsible for the O–O forming event, and then O₂ is evoluted to bring WOCs into the original state. $^{33-41}$

- ⁴⁰ The peroxydisulfate ion $(S_2O_8^{2-})$ is not only one of frequentlyused sacrificial electron acceptors to evaluate the WOCs' activity and stability, ^{19,21,25,27,28,30,31,42} but also a general oxidizing agent to oxidize inorganic and organic substances.⁴³ The oxidation reactions, involving in $S_2O_8^{2-}$, however, is slow at ordinary
- ⁴⁵ temperature in absence of catalysts. The silver ion is the most powerful catalyst for the reactions, including water oxidation into O₂ evolution. In 1980, Kimura et al. ⁴⁴ have reported the kinetics

of the Ag(I)-catalysed water oxidation with $S_2O_8^{2-}$ without illumination, proposed a mechanism for the reaction. They have ⁵⁰ considered that the rate-determining reaction of the Ag(I)catalysed water oxidation is the same as that of inorganic and organic substances and thought that the reaction ($Ag^+ + S_2O_8^{2-} \rightarrow Ag^{2+} + SO_4^{-+} + SO_4^{2-}$) is the rate-determining reaction. This is obviously different from the modern idea of the catalytic water ⁵⁵ oxidation based transitional metal complex WOCs of Ru, Ir, Co, Mn etc., in which that the rate-determining step is considered as the formation of O-O bonds or the evolution of O_2 . ³³⁻⁴¹ Therefore, it is necessary to re-recognize the true essence of the Ag(I)-catalysed water oxidation.

In our research work on the Ag(I)-catalysed water oxidation, it is found that although neither $Na_2S_2O_8$ nor AgNO₃ absorbs visible light, visible light can accelerate the rate of water oxidation in a solution of $Na_2S_2O_8$ and AgNO₃. This cannot be explained by the mechanism reported by Kimura et al. It should ⁶⁵ be an intermediate species which is responsible for the absorption of visible light, and whose reaction may be the rate-determining reaction of the Ag(I)-catalysed water oxidation. In the paper, therefore, the kinetics of photo-assistant Ag(I)-catalysed water oxidation of $S_2O_8^{2^-}$ is investigated and a novel mechanism of 70 Ag(I)-catalysed water oxidation into O₂ is proposed rationally.

Experimental

Materials and Measurement

All chemicals are of analytical grade and used without further purification. Powder X-ray diffraction measurement is recorded ⁷⁵ on a D8 Advance instrument in the angular range of $2\theta = 10-70^{\circ}$ at 293 K with Cu *Ka* radiation. The ultraviolet-visible spectra are recorded on a Lambda 35 spectrophotometer with the conditions:

scan rate, 100 nm min⁻¹; wavelength, 800 nm-200 nm. ESR signals at 77 K and ESR signals of radicals trapped by dimethyl pyridine N-oxide (DMPO) at ambient temperature are recorded on a Brucker ESR A 200 spectrometer. After bubbling O_2 for 10

- ⁵ minutes, the samples are introduced into a homemade quartz cup inside the microwave cavity and illuminated with a 300 W Xe lamp (CERAMAX LX-300). The settings for the ESR spectrometer are as follows: center field, 3350.00 G; sweep width, 200 G; microwave frequency, 9.41 GHz; modulation
- ¹⁰ frequency, 100 kHz; power, 10.00 mW. Magnetic parameters of the radicals are obtained from direct measurements of magnetic field and microwave frequency. The TOF mass spectra were obtained on an Aglient 6224 TOF LC/MS with the negative ESI conditions: gas temperature, 346 °C; nebulizer, 40 psig; drying ¹⁵ gas flow, 10 L min⁻¹; fragmentor voltage, 150 V; skimmer
- voltage, 65 V; OCT RF Vpp, 750 V.

Catalytic water oxidation

The catalytic activity is examined in a self-made closed 500 ml Quartz reaction cell containing 100 ml of an aqueous solution of

- ²⁰ Na₂S₂O₈ and AgNO₃. The light source is a 300 W Xe lamp equipped with optical filters ($\lambda \ge 370$, 380, 390, 400 420, 500, 660 nm). A shutter window and a water filter were placed between the Xe lamp and the reaction cell to filter infrared (IR) light illumination. The reaction is carried out under Ar
- ²⁵ atmosphere and the temperature of the reaction system is controlled by ice-water bath. The amount of the produced O_2 is analyzed using gas chromatography (with a thermal conductivity detector and an Ar carrier).

Result and Discussion

$_{\rm 30}$ Kinetics of Ag(I)-catalysed water oxidation into O_2

The Ag(I)-catalysed water oxidation has been carried out in 100 ml of the aqueous solutions with the initial concentration of 8.82 $\times 10^{-2}$ mol L⁻¹ Na₂S₂O₈ and different concentrations of AgNO₃ at 24.5 °C in dark. As shown in Fig. 1, the average rates of O₂ ³⁵ evolution in six hours are 21.0, 47.8, 85.5, 145.0 and 221.6 µmol h⁻¹ for the Ag⁺ concentrations of 5.88 $\times 10^{-4}$, 1.18 $\times 10^{-3}$, 2.35 $\times 10^{-3}$, 4.71 $\times 10^{-3}$ and 7.06 $\times 10^{-3}$ mol L⁻¹, respectively. The plots of ln $c(S_2O_8^{2-})$ vs time shows a linear relationship (Fig. S1). This shows that the reaction is a first-order law with the concentrations 40 of Ag⁺ and S₂O₈²⁻, respectively. The rate equation is expressed as

 $-dc(S_2O_8^{2^-})/dt = 2dc(O_2)/dt = k_0 c(S_2O_8^{2^-}) c(Ag^+)$

where k_0 represents the rate constant. According to the slopes of those lines, the rate constants are obtained (Table 1). The average rate constant at 24.5 ± 0.5 °C is 8.5 ± 1 mol⁻¹ L h⁻¹. The result is ⁴⁵ comparable with that under no illumination reported by Kimura

- et al.⁴⁴ However, when the concentration of Ag^+ exceeds 1.14 × 10⁻² mol L⁻¹, it is found that the rate of O₂ does not rise with the concentration of Ag^+ and simultaneously a amount of black precipitate is formed at once.
- So Kinetic experiments of the Ag(I)-catalysed water oxidation have also been performed with the initial concentrations of 8.82×10^{-2} mol L⁻¹ Na₂S₂O₈ and 1.18×10^{-3} mol L⁻¹ AgNO₃ at 4.5, 11.5, 17.5 and 24.5 °C. As shown in Fig. 2, the average rates of O₂ evolution in six hours are 7.6, 17.0, 31.4 and 47.8 µmol h⁻¹
- ss respectively. The corresponding rate constants (k_0) (see Fig. S4), are listed in Table 2. According to the Arrhenius equation, $\ln k_0 =$

 $\ln A - E_a/RT$, making the plots of $\ln k_0$ vs 1/T(K) (Fig. S3), the activation energy (E_a) is obtained to be 6.5×10^4 J mol⁻¹.

⁶⁰ Fig. 1. Time course of O₂ evolution from 100 ml solution of AgNO₃ and Na₂S₂O₈ without illumination at 24.5 ± 0.5 °C. Na₂S₂O₈: 8.82 × 10⁻² mol L⁻¹. AgNO₃: (1) 5.88 × 10⁻⁴ mol L⁻¹; (2) 1.18 × 10⁻³ mol L⁻¹; (3) 2.35 × 10⁻³ mol L⁻¹; (4) 4.71 × 10⁻³ mol L⁻¹; (5) 7.06 × 10⁻³ mol L⁻¹; (6) 9.41 × 10⁻³ mol L⁻¹; (7) 1.18 × 10⁻² mol L⁻¹; (8) 1.41 × 10⁻² mol L⁻¹.

Fig. 2. Time course of O₂ evolution from 100 ml solution of AgNO₃ and Na₂S₂O₈ without illumination. Na₂S₂O₈: 8.82 × 10⁻² mol L⁻¹. AgNO₃:1.18 × 10⁻³ mol L⁻¹. (1) 4.5 ± 0.5 °C; (2) 11.5 ± 0.5 °C; (3) 17.5 ± 0.5 °C; (4) 24.5 ± 0.5 °C.

Kinetics of Photo-assistant $\mathrm{Ag}(I)\text{-catalysed}$ water oxidation into O_2

Kinetic experiments of the photo-assistant Ag(I)-catalysed water oxidation have been performed with the initial concentration of ⁷⁵ 8.82 × 10⁻² mol L⁻¹ Na₂S₂O₈ and the different concentrations of AgNO₃ (5.88 × 10⁻⁴, 1.18 × 10⁻³, 2.35 × 10⁻³, 4.71 × 10⁻³ and 7.06 × 10⁻³ mol L⁻¹) at 24.5 °C under visible light illumination ($\lambda \ge 400$ nm). It is found that the evolution rate of O₂ is accelerated under visible light illumination. As shown in Fig. 3, the average rates of ⁸⁰ O₂ evolution in six hours are 30.2, 68.2, 120.5, 201.3 and 303.8 µmol h⁻¹ respectively. The corresponding rate constants (k_L), (see Fig. S4), are listed in Table 1. The average rate constant at 24.5 ± 0.5 °C is 12.4 ± 1 mol⁻¹ L h⁻¹.

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxx

ARTICLE TYPE

Table 1. The rate constants of water oxidation into O_2 for the different concentrations of Ag^+ under no illumination and visible light ($\lambda \ge 400$ nm) irradiation^a

Concentration of Ag ⁺ / mol L ⁻¹	Without illumination			Visible light irradiation($\lambda \ge 400 \text{ nm}$)		
	S_0^{b}	^c Rate constants k_0 / mol ⁻¹ L h ⁻¹	Average $k_0 / \text{mol}^{-1} \text{L} \text{h}^{-1}$	S_L^{b}	^c Rate constants $k_L / \text{ mol}^{-1} L h^{-1}$	Average $k_I / \text{mol}^{-1} \text{L} \text{h}^{-1}$
5.88×10 ⁻⁴	-0.0048	8.2(4.0%)		-0.0070	11.9(4.3%)	12.4 ± 1
1.18×10 ⁻³	-0.0112	9.5(11.2%)	8.5 ± 1	-0.0161	13.6(9.3%)	
2.35×10 ⁻³	-0.0212	9.0(5.4%)		-0.0307	13.1(5.3%)	
4.71×10 ⁻³	-0.0360	7.6(11.0%)		-0.0530	11.3(9.2%)	
7.06 ×10 ⁻³	-0.0591	8.4(1.6%)		-0.0870	12.3(1.1%)	

^aExperimental conditions: the initial concentration of Na₂S₂O₈: 8.82 × 10⁻² mol L⁻¹; at 24.5 °C; 300 W Xe equipped with an optical filter ($\lambda \ge 400 \text{ nm}$). ^bS₀ and S_L represent the slopes of the lines in Fig. S1 and Fig. S3 respectively.

 $5^{c}k_0$ and $k_L = -S/c(Ag^+)$.

Table 2. The rate constants of water oxidation of $S_2O_8^{2^\circ}$ into O_2 at different temperatures under no light and visible light ($\lambda \ge 400 \text{ nm}$) irradiation^a

	Without illumination		Visible light irradiation($\lambda \ge 400 \text{ nm}$)			
Temperature of solution (°C)	^b S ₀	^c Rate constant $k_0/$ mol ⁻¹ L h ⁻¹	${}^{\mathrm{b}}S_{L}$	^c Rate constant $k_L/$ mol ⁻¹ L h ⁻¹)	$\triangle k = k_{L} - k_0$	
4.5 ± 0.5	-0.0018	1.5	-0.0055	4.7	3.2	
11.5 ± 0.5	-0.0039	3.3	-0.0084	7.1	3.8	
17.5 ± 0.5	-0.0073	6.2	-0.0118	10.0	3.8	
24.5 ± 0.5	-0.0112	9.5	-0.0161	13.6	4.1	

^aExperimental conditions: the initial concentration of Na₂S₂O₈: 8.82×10^{-2} mol L⁻¹; the concentration of Ag⁺: 1.18×10^{-3} mol L⁻¹; 300 W Xe equipped with an optical filter ($\lambda \ge 400$ nm).

¹⁰ ${}^{b}S_{0}$ and S_{L} represent the slopes of the lines in Fig. S2 and Fig. S4 respectively.

 $^{c}k_{0}$ and $k_{L} = -S/c(\mathrm{Ag}^{+}).$

Kinetic experiments of the photo-assistant Ag(I)-catalysed water oxidation have also been performed with the initial ¹⁵ concentrations of 8.82×10^{-2} mol L⁻¹ Na₂S₂O₈ and 1.18×10^{-3} mol L⁻¹ AgNO₃ at 4.5, 11.5, 17.5 and 24.5 °C. As shown in Fig. 4, the average rates of O₂ evolution in six hours are 22.45, 36.22, 50.30, and 68.16 µmol h⁻¹ respectively. The rate constants (k_L), coming from Fig. S5, are listed in Table 2 and the corresponding ²⁰ activation energy (E_a) is 3.7×10^4 J mol⁻¹(see Fig. S6). The rate

equation is also expressed as

 $-dc(S_2O_8^{2-})/dt = 2dc(O_2)/dt = k_L c(S_2O_8^{2-}) c(Ag^+)$

Where k_L represents the rate constant under visible light illumination.

- ²⁵ Compared with Ag(I)-catalysed water oxidation without illumination, it is found that visible light can improve the reaction obviously. The differences between k_L and k_0 at 4.5, 11.5, 17.5 and 24.5 °C are 3.2, 3.8, 3.8 and 4.1 respectively. Considering the experimental error, they can be regarded as a constant and the
- ³⁰ average value is 3.8 approximately. This result illustrates that the visible light-increased rates do not vary with the temperature, which is in accord with the law of photochemical reaction.

$_{35}$ The mechanism of Ag(I)-catalysed water oxidation into O_2 with $S_2O_8{}^{2\text{-}}$

As known, the Ag⁺ ion is the most powerful catalyst in oxidizing both inorganic and organic substances by $S_2O_8^{2^-}$. The catalytic universality and high-efficiency of Ag⁺ result from the ⁴⁰ coexistence of Ag(II) and Ag(III) species as well as radical species generated from Equations 1-5. It is believed that the rate of the oxidation reactions is dependent on the generated rate of the Ag(II)/Ag(III) species or the radical species.⁴³ In other words, the rate-determined step is Equations 1 and 2.

⁴⁵ For Ag(I)-catalysed water oxidation, however, some experimental phenomena cannot be explained by the mechanism reported by Kimura et al. ⁴⁴ Therefore, we have employed modern techniques to characterize the intermediates and analyzed scientifically the experimental phenomena in Ag(I)-catalysed ⁵⁰ water oxidation. Based on those, a new mechanism of Ag(I)catalysed water oxidation is proposed in the paper.

The time of flight mass spectrum of a solution of Na₂S₂O₈ and AgNO₃ is investigated. As shown in Fig. 5, A peak set of five mass-to-charge rations at 298.8090, 299.8093, 300.8086, ⁵⁵ 301.8701 and 302.8061 is observed, which agrees well with the

Dalton Transactions

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxx

Fig. 3. Time course of O₂ evolution from 100 ml solution of AgNO₃ and Na₂S₂O₈ under the irradiation of a 300 W Xe lamp equipped with an ultraviolet cutoff filter ($\lambda \ge 400$ nm) at 24.5 ± 0.5 °C. Na₂S₂O₈: 8.82×10⁻² 5 mol L⁻¹. AgNO₃: (1) 5.88 × 10⁻⁴ mol L⁻¹; (2) 1.18 × 10⁻³ mol L⁻¹; (3) 2.35 × 10⁻³ mol L⁻¹; (4) 4.71 × 10⁻³ mol L⁻¹; (5) 7.06 × 10⁻³ mol L⁻¹.

Fig. 4. Time course of O₂ evolution from 100 ml solution of AgNO₃ and ¹⁰ Na₂S₂O₈ under the irradiation of a 300 W Xe lamp equipped with an ultraviolet cutoff filter ($\lambda \ge 400$ nm). Na₂S₂O₈: 8.82×10⁻² mol L⁻¹. AgNO₃:1.18 × 10⁻³ mol L⁻¹ (1) 4.5 ± 0.5 °C; (2) 11.5 ± 0.5 °C; (3) 17.5 ± 0.5 °C; (4) 24.5 ± 0.5 °C.

- ¹⁵ fitting figure of $[Ag^+ + S_2O_8^{2-}]$. This shows that a $\{AgS_2O_8\}^-$ complex be formed in the process of Ag(I)-catalysed oxidation of water (Equation 1). This demonstrates the House's speculation, in which it is considered that the complex should be formed as a initial step of the catalytic oxidation reaction of Ag⁺ ions.
- ²⁰ ESR spectrum of the solution of Na₂S₂O₈ and AgNO₃ at 100 K is shown in Fig. 6. It consists of the three broad lines, and the anisotropic hyperfine splitting (A_⊥) is 29.6 G, which agrees well with those of the Ag²⁺ ions.⁴⁵⁻⁴⁷ This result confirms the existence

ARTICLE TYPE

of Ag(II) ions in the process of Ag(I)-catalysed water oxidation. ²⁵ Employing DMPO as an ESR spin trap, consecutive ESR spectra of the solution Na₂S₂O₈ and AgNO₃ is obtained. As shown in Fig. 7, ESR signals are centered at g = 2.0065.⁴⁸⁻⁴⁹ The typical quartets with intensity of 1: 2: 2: 1 and hyperfine coupling constants of $\alpha_N = 14.9$ G and $\alpha_{H^{\beta}} = 14.9$ G for DMPO-OH ³⁰ adducts appear, indicating that OH' radicals are formed *via* Equation 3 in the process of Ag⁺-catalysed water oxidation.

Fig. 5. Time of flight mass spectrogram for the mixed solution of 0.01 ³⁵ mol L^{-1} AgNO₃ and 0.01 mol L^{-1} Na₂S₂O₈. Insert: fitting figure of [S₂O₈²⁻ + Ag⁺].

 $_{40}$ Fig. 6. ESR spectrum of a solution of $Na_2S_2O_8\,(8.82\times10^{-2}\,mol~L^{-1})$ and AgNO₃ (1.18 $\times10^{-3}$ mol $L^{-1})$ at 100 K.

For the aqueous solution of 8.8×10^{-2} mol L⁻¹ S₂O₈²⁻, when the concentration of adding Ag⁺ is more than 1.41×10^{-2} mol L⁻¹, an ⁴⁵ important phenomenon is observed that the evolution rate of O₂

does not rise with the concentration of adding Ag^+ (Fig. 1), and simultaneously a black precipitate is formed as soon as the amount of Ag^+ is added. After the precipitate is washed several times with distilled water, XRD analysis indicated the presence of

- s a single compound, which was identified as silver (III) oxide⁵⁰ (Fig.8). As early as 1926, Yost ⁵¹ have employed the accurate chemical analysis to determine the precipitate to be a Ag(III) oxide, formulized as Ag_2O_3 . The Ag_2O_3 precipitate should be formed *via* a soluble Ag(III) species in the solution, recognized as
- 10 AgO^{+ 43,44,52}. As shown in Fig. 9, no absorption (> 350 nm) is observed for the individual solution of Na₂S₂O₈ or AgNO₃. For the mixed solution of Na₂S₂O₈ and AgNO₃, however, an obvious absorption band is observed with the maximum peak at 375 nm, which is attributed to a AgO⁺ species. ^{53,54} In addition, the band
- ¹⁵ intensity is dependent on the concentrations of Ag⁺. This confirms the existence of Ag(III) in the process of Ag⁺-catalysed water oxidation. Because the OH⁻ radicals has a strong oxidizing ability, it is deduced reasonably that the AgO⁺ species should be generated through oxidizing Ag(II) ions with the OH⁻ radicals.
- ²⁰ (Equation 4). Theoretically, there are two pathways to produce the AgO⁺ species: (1) oxidation of Ag(II) ions with the radicals (equation 4); (2) disproportionation of Ag(II) ions (equation 6). It has been recognized generally that Equations 3, 4, 5 and 6 are fast reactions. A process of Ag⁺ \rightarrow Ag₂O₃ can be imaged reasonably
- ²⁵ below. Firstly, Ag^+ ions are oxidized into the AgO^+ species through Equations 1-6, then the Ag_2O_3 precipitate is produced after the AgO^+ species reaches supersaturation. In this case, the evolution rate of O_2 does not increase with the concentration of adding Ag^+ . For the saturated solution of AgO^+ , its concentration
- ³⁰ should be fixed so that the evolution rate of O_2 is not changed. The experimental evidence shows that the evolution rate of O_2 is dependent on the concentration of AgO⁺. The above experimental phenomena cannot be explained by the mechanism proposed by Kimura et al.

Fig. 7. In situ ESR spectra of DMPOX generated in the solution of $Na_2S_2O_8$ and $AgNO_3$ without illumination. The signal is denoted as '1.4 min' when the reaction is conducted for 1.4 minutes, as '14 min' for 14 minutes and as '28 min' for 28 minutes.

40

Compared with some Ag(I)-catalysed oxidation reactions, however, water oxidation into O_2 is much slower. ⁴³ For example,

Fig. 8. XRD patterns of (1) Ag_2O_3 in Ref. 52 and (2) the black precipitate ⁵⁵ in our work, indicating the black precipitate is Ag_2O_3 .

Fig. 9. UV-Visible spectra of (1) AgNO₃ (7.06 × 10^{-3} mol L⁻¹); (2) Na₂S₂O₈ (8.82 × 10^{-2} mol L⁻¹); (3) the solution of Na₂S₂O₈ (8.82 × 10^{-2} mol L⁻¹) and AgNO₃ (1.18 × 10^{-3} mol L⁻¹); (4) the solution of Na₂S₂O₈ (8.82 × 10^{-2} mol L⁻¹) and AgNO₃ (2.35 × 10^{-3} mol L⁻¹); (5) the solution of Na₂S₂O₈ (8.82 × 10^{-2} mol L⁻¹) and AgNO₃ (4.71 × 10^{-3} mol L⁻¹); (6) the solution of Na₂S₂O₈ (8.82 × 10^{-2} mol L⁻¹) and AgNO₃ (7.06 × 10^{-3} mol L⁻¹); (7) the filtrate of mixing Na₂S₂O₈ (0.1 mol L⁻¹) and AgNO₃ (0.1 mol L⁻¹).

⁶⁵ and $S_2O_8^{2-}$, the band at 375 nm disappears immediately (Fig. S7), indicating that oxidation of H_2O_2 by AgO⁺ is very fast. Therefore, this shows that the mechanism of oxidation of H_2O_2 must be different from that of H_2O . It is not entirely true that mechanism 15

20

of oxidation of water into O2 has been considered as general oxidation of inorganic and organic substances.

- In 1968, Po et al. ⁵¹ proposed a concept that AgO⁺ oxidizes water into H2O2 while they investigated the mechanism of water 5 oxidation by Ag(II). If the concept is introduced in the mechanism of Ag(I)-catalysed water oxidation into O2 with $S_2O_8^{2-}$ (equation 7), a new mechanism, involving the formation of O-O bonds, is proposed, in which equation 7 is considered as a rate-determined step. Afterwards, H2O2 is oxidized very fast into
- $_{10}$ O₂ by Ag(II), AgO⁺ or radicals. It is not surprised that no H₂O₂ is detected in the system because the oxidation of H₂O₂ is very fast (Fig. S6).

$\mathrm{Ag}^{+} + \mathrm{S}_{2}\mathrm{O}_{8}^{2^{-}} \rightarrow \mathrm{\{AgS_{2}\mathrm{O}_{8}\}^{-}}$	1
$\{AgS_2O_8\}^{-} \rightarrow Ag^{2+} + SO_4^{-+} + SO_4^{2-}$	2
$H_2O + SO_4^{-} = OH^{-} + H^{+} + SO_4^{-2}$	3
$Ag^{2+} + OH = AgO^+ + H^+$	4
$Ag^+ + OH = Ag^{2+} + OH$	5
$2Ag^{2+} + H_2O = Ag^+ + AgO^+ + 2H^+$	6
$AgO^+ + H_2O \rightarrow Ag^+ + H_2O_2$	7
$AgO^+ + H_2O_2 \rightarrow Ag^+ + O_2 + H_2O$	8
$2OH' + H_2O_2 \rightarrow O_2 + 2H_2O$	9
$2Ag^{2+} + H_2O_2 \rightarrow 2Ag^+ + O_2 + 2H^+$	10
The overall reaction:	
$2H_2O + 2S_2O_8^{2-} \rightarrow 4SO_4^{2-} + O_2 + 4H^+$	11

For the mechanism, if Equation 7 is considered as a slow 25 reaction or a rate-determined step, the experimental phenomena can be explained very well. Firstly, the Ag₂O₃ precipitate can be generated when the high concentration of Ag⁺ is employed. Secondly, the AgO⁺ species can be detected obviously in the 30 reaction system, and Ag₂O₃ precipitate can be formed when the concentration of Ag⁺ is more than 1.41×10^{-2} mol L⁻¹. Thirdly, the rate of Ag(I)-catalysed oxidation of water is much slower than

that of H₂O₂. Wavelength dependency of the photo-assistant Ag(I)-catalysed $_{35}$ water oxidation have been performed in the solution of 8.82×10^{-10}

- 2 mol L⁻¹ Na₂S₂O₈ and 1.18 × 10⁻³ mol L⁻¹ AgNO₃ at 24.5 °C under the irradiation of a 300 W Xe lamp equipped with the cutoff filters of (1) $\lambda \ge 370$ nm, (2) $\lambda \ge 380$ nm, (3) $\lambda \ge 390$ nm, (4) $\lambda \ge 400$ nm, (5) $\lambda \ge 420$ nm, (6) $\lambda \ge 500$ nm and (7) $\lambda \ge 660$
- 40 nm and (8) without illumination. As shown in Fig. 10 and Fig. S8, the average rates of O_2 evolution in six hours are 87.3, 76.8, 72.3, 67.8, 61.1, 49.9, 48.0 and 47.8 μ mol h⁻¹ respectively. It is found that the photo-reaction system with the cutoff filter of $\lambda \geq$ 370 nm shows the highest rate obviously, and the rates are
- 45 decreased gradually as the ranges of the radiation wavelength are deduced, or far away from 370 nm. When the radiation light wavelength is more than 500 nm, the rates are almost the same as that without illumination. This illustrates that the photo-assistant

catalytic water oxidation results from the AgO⁺ species. Because 50 the absorption of the AgO⁺ species at 350 - 450 nm accelerates equation 7, so that the evolution rate of O_2 is increased by visible light illumination.

Application of the steady state hypothesis to equations 1-7 in the mechanism (see supporting information) leads to the rate law $dc(O_2)/dt = k c(S_2O_8^{2-}) c(Ag^+)$ 55

which is consistent with the experimental rate law (the concentrations of Ag⁺ are less than $1.41 \times 10^{-2} \text{ mol } \text{L}^{-1}$). Therefore, not only that, but the experimental phenomena can be explained very well. This shows that the mechanism is more 60 reasonable. It is significant for understanding of water oxidation into O₂ and to develop high-efficiency WOCs based on silver complexes.

Fig. 10. Time course of O₂ evolution from 100 ml solution of AgNO₃ 65 (1.18 × 10⁻³ mol L⁻¹) and Na₂S₂O₈ (8.82×10⁻² mol L⁻¹) at 24.5 ± 0.5 °C. under the irradiation of a 300 W Xe lamp equipped with the cutoff filters of (1) $\lambda \ge 370$ nm, (2) $\lambda \ge 380$ nm, (3) $\lambda \ge 390$ nm, (4) $\lambda \ge 400$ nm, (5) $\lambda \ge$ 420 nm, (6) $\lambda \ge 500$ nm and (7) $\lambda \ge 660$ nm and (8) without illumination.

70 Summary

1 Visible light ($\lambda \ge 400$ nm) can increase the rate of Ag(I)catalysed water oxidation with $S_2O_8^{2-}$ into O_2 further. The rate equation is $-dc(S_2O_8^{2-})/dt = 2dc(O_2)/dt = k_L c(S_2O_8^{2-})c(Ag^+)$, where k_L is 8.5 \pm 1 at 24.5 °C and the activation energy is *ca.* 3.7 $_{75} \times 10^4 \text{ J mol}^{-1}$.

2 Based on the intermediate species of $\{Ag^+ \cdots S_2O_8^{2-}\}, Ag^{2+},$ OH', Ag₂O₃, AgO⁺ detected in Ag(I)-catalysed water oxidation with $S_2O_8^{2-}$, the mechanism of has been developed, where the reaction (AgO⁺ + H₂O \rightarrow Ag⁺ + H₂O₂) is the rate-determined 80 step. The increase of oxidation rate under visible light illumination results from the absorption of the AgO⁺ species at 375 nm, promoting the reaction (AgO⁺ + H₂O \rightarrow Ag⁺ + H₂O₂).

3 The above results show that the high valent silver ion possesses not only the applicable potential for water oxidation, 85 but also the ability of the formation of O-O bonds. Some silver complexes would become high-efficient WOCs.

Acknowledgment

This work is financially supported by the National Science Foundation of China (No. 20773057) and the State Key Laboratory of Fine Chemicals of China (KF 1204) and Key Laboratory of Polyoxometalates Science of Ministry of Education 5 of China for support of this research.

Notes and references

- ^a Institute of Chemistry for Functionalized Materials, Liaoning Normal
 ¹⁰ University, Dalian, 116029, P. R. China. Fax: +86 411 82156858; Tel: +86 411 82159378; E-mail: wsyou@lnnu.edu.cn
- ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, P. R. China.. E-mail: canli@dicp.ac.cn
- ¹⁵ [†] Electronic Supplementary Information (ESI) available: Plots of $\ln c(S_2O_8^{2-})$ vs. time; Plots of $\ln k$ vs. 1000/T(K); UV-Visible spectra of the solution of (1) Na₂S₂O₈ (8.82 × 10⁻² mol L⁻¹) and AgNO₃ (7.06 × 10⁻³ mol L⁻¹), (2) H₂O₂ is added to (1); Steady State Analysis of the Proposed Mechanism. For ESI electronic format see DOI: 10.1039/b000000x/²⁰
- 1 J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer, *Inorg. Chem.*, 2005, 44, 6802.
- 2 L. Sun, L. Hammarström, B. Åkermark, S. Styring, *Chem. Soc. Rev.*, 2001, **30**, 36.
- ²⁵ 3 D. Gust, T. A. Moore, A. L. Moore, *Acc. Chem. Res.*, 2009, 42, 1890.
 ⁴ R. Eisenberg, H. B. Gray, *Inorg. Chem.*, 2008, 47, 1697.
 - 5 S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc., 1982, 104, 4029.
- 6 J. J. Concepcion, M. K. Tsai, J. T. Muckerman, T. J. Meyer, J. Am. Chem. Soc., 2010, **132**, 1545.
- 7 J. Nyhlén, L. L. Duan, B. Akermark, L. C. Sun, T. Privalov, *Angew. Chem. Int. Ed.*, 2010, **49**, 1773.
- 8 X. Sala, I. Romero, M. Rodríguez, L. Escriche, A. Llobet, Angew. Chem. Int. Ed., 2009, 48, 2842.
- 35 9 R. Zong, R. P. Thummel, J. Am. Chem. Soc., 2005, 127, 12802.
- 10 S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein, *Science*, 2009, **324**, 74.
- 11 N. D. McDaniel, F. J. Coughlin, L. L.Tinker, S. Bernhard, J. Am. 40 Chem. Soc., 2008, **130**, 210.
 - 12 H. Kunkely, A. Vogler, Angew. Chem. Int. Ed., 2009, 48, 1685.
 - 13 J. Limburg, J. S. Vrettos, J. M. LiableSands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig, *Science*, 1999, 283, 1524.
- 14 W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. 5 Soc., 2010, **132**, 10990.
- 15 Y. H. Xu, L. L. Duan, L. P. Tong, B. Akermarkb, L. C. Sun, *Chem. Commun.*, 2010, **46**, 6506.
- 16 M. Yagi, K. Narita, J. Am. Chem. Soc., 2004, 126, 8084.
- 17 L.L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L.C.Sun, *Nat. Chem.*, 2012, 4, 418.
- 18 H. J. Lv, J. Song,Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P. F. Zhuk, J. Bacsa, G. B. Zhu, and C. L. Hill, *J. Am. Chem. Soc.*, 2014, **136**, 9268.
- 19 Y. V. Geletii, B. Botar, P. Kogerler, D. A. Hillesheim, D. G. Musaev, 55 C. L. Hill, *Angew. Chem. Int. Ed.*, 2008, **47**, 3896.
- 20 A. Sartorel, M. Carraro, G. Scorrano, R. D. Zorzi, S. Geremia,; N. D. McDaniel, S. Bernhard, M. Bonchio, J. Am. Chem. Soc., 2008, 130, 5006.
- 21 Y. V. Geletii, Z. Q. Huang, Y. Hou, D. G. Musaev, T. Q. Lian, C. L.
- ^o Hill, J. Am. Chem. Soc., 2009, **131**, 7522.
- 22 A. Sartorel, P. Miró, E. Salvadori, S. Romain, M. Carraro, G. Scorrano, M. D. Valentin, A. Llobet, C. Bo, M. Bonchio, J. Am. Chem. Soc., 2009, **131**, 16051.

- 23 F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato,
- 65 S. Rapino, B. R. Gonzalez, H. Amenitsch, T. D. Ros, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Pratol, M. Bonchio, *Nat. Chem.*, 2010, 2, 826.
- 24 M. Murakami, D. Hong, T. Suenobu, S. Yamaguchi, T. Ogura, *S.* Fukuzumi, *J. Am. Chem. Soc.*, 2011, **133**, 11605.
- 70 25 P. Car, M. Guttentag, K. K. Baldridge, R. Alberto, G. R. Patzk, *Green Chem.*, 2012, **14**, 1680.
- 26 Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, *Science*, 2010, **328**, 342.
- 75 27 Z. Q. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. S.Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc., 2011, 133, 2068.
- 28 M. Natali, S. Berardi, A. Sartorel, M. Bonchio, S. Campagnac, F. Scandola, Chem. Commun., 2012, 48, 8808.
- 80 29 S. Tanaka, M. Annaka, K. Sakai, Chem. Commun., 2012, 48, 1653.
- 30 F. Y. Song, Y. Ding, B. C. Ma, C. M. Wang, Q. Wang, X. Q. Du, S. Fu, J. Song, *Energy Environ. Sci.*, 2013, **6**, 1170.
- 31 J. Soriano-López, S. Goberna-Ferrón, L. Vigara, J. J. Carbó, J. M. Poblet, *Inorg. Chem.*, 2013, **52**, 4753.
- 85 32 H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, C. L. Hill, *Chem. Soc. Rev.*, 2012, **41**, 7572.
- 33 J. K. Hurst, J. L. Cape, A. E. Clark, S. Das, C.Y. Qin, *Inorg. Chem.*, 2008, 47, 1753-1764.
- 34 Z. L. Lang, G. C. Yang, N. N. Ma, S.Z.Wen, L. K. Yan, W. Guan, Z.
 M. Su, *Dalton Trans.*, 2013, 42, 10617.
- 35 F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton, T. J. Meyer, *Inorg. Chem.*, 2008, 47, 1727.
- 36 T. A. Betley, Q. Wu, T. V. Voorhis, D. G. Nocera, *Inorg. Chem.*, 2008, 47, 1849.
- 95 37 D. J. Wasylenko, C. Ganesamoorthy, M. A. Henderson, C. P. Berlinguette, *Inorg. Chem.*, 2011, 50, 3662.
- 38 D. J. Wasylenko, C. Ganesamoorthy, M. A. Henderson, B. D. Koivisto, H. D. Osthoff, C. P. Berlinguette, J. Am. Chem. Soc., 2010, 132, 16094.
- 100 39 G. Mattioli, P. Giannozzi, A. A. Bonapasta, L. Guidoni, J. Am. Chem. Soc., 2013, 135, 15353.
 - 40 S. Romain, F.Bozoglian, X.Sala, A. Llobet, J. Am. Chem. Soc., 2009, 131, 2768.
- 41 B. S. Brunschwig, M.H. Chou, C. Creutz, P. Ghosh, N.Sutin, J. Am. 105 Chem. Soc., 1983, **105**, 4832.
- 42 Y. H. Xu, L. L. Duan, L. P. Tong, B. Akermark, L. C. Sun, *Chem. Commun.*, 2010, **46**, 6506.
- 43 D. A. House, Chem. Rev., 1962, 62, 185.
- 44 M. Kimura, T. Kawajiri, J. Chem. Soc. Dalton., 1980, 726.
- 110 45 T. Buch, J. Chem. Phys., 1965, 43, 761.
- 46 J. A. McMlllan, B. Smaller, J. Chem. Phys., 1961, 35, 1698.
- 47 N. Kanrakl, I. Yasumorl, J. Phys. Chem., 1978, 82, 2351.
- 48 S. Leonard, P. M. Gannett, Y. Rojanasakul, D. Schwegler-Berry, V. Castranova, V. Vallyathan, X. L. Shi, *J. Inorg. Biochem.*, 1998, 70, 239.
- 49 S. Stan, J. S. Woods, M. A. Daeschel, J. Agric. Food. Chem., 2005, 53, 4901.
- 50 S. Ando, T. Hioki, T. Yamada, N. Watanabe, A. Higashitani, J. Mater. Sci., 2012, 47, 2928.
- 120 51 D. M. Yost, Chem. Rev., 1926, 48, 152.
- 52 H. N. Po, J. H. Swinehart, T. L. Allen, *Inorg. Chem.*, 1968, **7**, 244. 53 J. D. Miller, *J. Chem. Soc. (A)*, 1968, 1778.
- 54 G. L. Cohen, G. Atkinson, Inorg. Chem., 1964, 42, 52.