Dalton Transactions

Accepted Manuscript

4

Dalton Transactions

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Stepwise Cyclopalladation of 2-Phenacylthiopyridine to Give C,C,Npincer Complexes

María-Teresa Chicote,*, ${ }^{\text {a }}$ Concepción Rubio, ${ }^{\text {a }}$ Delia Bautista ${ }^{\text {b }}$ and José Vicente ${ }^{\text {a }}$

${ }_{5}$ Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
 DOI: 10.1039/b000000x

Orthopalladation of the phenyl ring in the cyclopalladated complex $[\operatorname{Pd}\{C, N-p y l-\mathrm{SCHC}(\mathrm{O}) \mathrm{Ph}\}(\mu-\mathrm{X})]_{2}$ (pyl = 2-pyridyl, $\mathrm{X}=\mathrm{Cl} ; \mathbf{1} \cdot \mathbf{C l}$) occurs upon reacting it with $\mathrm{AgOAc}(1: 2)$ in MeCN to give the pincer 10 complex $\left[\mathrm{Pd}\left\{C, C, N\right.\right.$-pyl-SCHC(O) $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-2\right\}(\mathrm{NCMe})\right]$ (2). The nature of the base and X , plays a key role because palladation neither occurs with other bases nor when X is $\mathrm{AcO}(\mathbf{1} \cdot \mathbf{O A c})$ or Br , in which case $\mathbf{1} \cdot \mathbf{O A c}$ is obtained. Complex 2 affords complexes $\left[\operatorname{Pd}\left\{C, C, N, S \text {-pyl-SCHC }(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}\right]_{\mathrm{n}},[\mathrm{Pd}\{C, C, N$-pyl$\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPh}_{3},{ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{XyNC}\right)$ or $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Pd}\left\{C, C, N\right.\right.$-pyl-SCHC(O) $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{Cl}\right]$ upon acetonitrile loss, or its replacement by neutral or anionic ligands, respectively. Some such complexes act
15 as metallaligands towards AgClO_{4} or $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ giving rise to heterodinuclear $[\{\mathrm{Pd}\{C, C, N$-pyl$\left.\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}\left(\mathrm{PPh}_{3}\right)\right\}\left\{\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\right\}\right] \mathrm{ClO}_{4}$ or homodinuclear $\left[\left\{\mathrm{Pd}\left\{C, C, N-\right.\right.\right.$ pyl- $\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-$ $2\}(\mathrm{Cl})\}\{\mathrm{Pd}(\mu-\mathrm{Cl})\}]_{2},\left[\left\{\mathrm{Pd}\left\{C, C, N-\right.\right.\right.$ pyl-SCHC$\left.\left.(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}(\mathrm{Cl})\right\}\left\{\mathrm{Pd}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right\}\right]$ complexes. Some derivatives of complexes $\mathbf{1}$ have also been obtained.

1. Introduction

${ }_{20}$ Cyclopalladated complexes are increasingly important in organic synthesis. ${ }^{1-3}$ Chiral cyclopalladated derivatives are being used both for optical resolution purposes ${ }^{4}$ and for enantioselective catalysis ${ }^{3,5}$ Many palladacycles have found use in the preparation of metallomesogens ${ }^{6}$ and some show antitumor activity. ${ }^{7}$ Cyclopalladation reactions involving a $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ activation are by far the best known while those involving a $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond are in the minority, ${ }^{2,8-12}$ those concerning a prochiral $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atom being particularly rare. ${ }^{11,12}$ We have previously reported the cyclopalladation ${ }^{13}$ and cycloauration ${ }^{14}$ of $2-\mathrm{R}-$
${ }_{30}$ carbonylmethylenethiopyridines pyl- $\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{R}$ (pyl $=2-$ pyridyl, $\mathrm{R}=\mathrm{Ph}$, $\mathrm{Me}, \mathrm{OMe}$). By reacting these ligands with $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$, or the coordination complexes $[\mathrm{Pd}\{\mathrm{pyl}-$ $\left.\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{R}\right\}_{2} \mathrm{Cl}_{2}$] (A, Scheme 1) with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or NaH , chiral complexes with one (B) or two (C) five-membered $C, N-$ ${ }_{35}$ metallacycles were prepared (Scheme 1). Transmetalation reactions between \mathbf{C} and $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ or deprotonation of \mathbf{B} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ allowed the syntheses of dinuclear complexes \mathbf{D}. Reactions of complex \mathbf{B} or $\mathbf{D}(\mathrm{R}=\mathrm{Ph})$ with excess $\mathrm{Na}_{2} \mathrm{CO}_{3}$, which we carried out in an attempt to prepare pincer complexes
${ }_{40}$ resulting upon the additional cyclometalalation of the phenyl group, were unsuccessful. This was not surprising because, although double $\mathrm{C}-\mathrm{H}$ activation processes leading to various types of doubly cyclopalladated compounds are well known, ${ }^{15}$ cyclometalation reactions involving two $\mathrm{C}-\mathrm{H}$ bond activations
${ }_{45}$ per metal atom are very rare, not only for palladium ${ }^{8,9,13}$ but also for any metal. ${ }^{16}$ However, in this paper we report that by using AgOAc as a base it is possible to prepare, from complex $\mathbf{D}(\mathrm{R}=$ $\mathrm{Ph})$, pincer complexes bearing a dianionic $C\left(\mathrm{sp}^{2}\right), C\left(\mathrm{sp}^{3}\right), N$-donor ligand. Carbometalated pincer complexes were defined as "organometallic compounds bearing tridentate monocarbanionic ligands that coordinate metal in a η^{3}-mer fashion". ${ }^{17}$ Most complexes included in this general definition display one $\mathrm{Csp}^{2}-\mathrm{M}$ bond. However, only a few such complexes with a $\mathrm{Pd}-\mathrm{Csp}^{3}$ bond are known, some of which have been found to be more active
${ }_{55}$ catalysts than their $\mathrm{Pd}-\mathrm{C}_{\mathrm{sp}}{ }^{2}$ counterparts. ${ }^{8,18}$ On the other hand, as far as we are aware, very few palladium complexes with dianionic pincer ligands have been reported so far, ${ }^{8,19}$ only one of them bearing a C,C,N-pincer ligand. ${ }^{20}$ We have recently reported the synthesis of the first family of stable $\operatorname{Pd}(\mathrm{IV})$ pincer ${ }_{60}$ complexes ${ }^{21,22}$ and the first generation of a coordinating side arm on a chelate complex giving rise to a pincer complex. ${ }^{23}$ A few examples have been reported of chelate complexes converting into palladium pincer derivatives as a consequence of the chelating ligand bearing a pendant aryl group that palladates ${ }_{65}$ intramolecularly by heating or by adding a base (NaOAc). ${ }^{24}$ However, in these cases the ligand to be palladated is a $\mathrm{N}^{\wedge} \mathrm{N}$ neutral ligand while in the present work we report the palladation of the side arm of a cyclopalladated ligand, which is probably responsible for the difficulty of the palladation process, which
70 does not occur upon heating. A relatively large number of cyclopalladated compounds containing a dianionic C,N,O-pincer ligand has been reported. ${ }^{25}$

2. Results and discussion

2.1 Synthesis

${ }_{75}$ Scheme 1 shows the results, previously reported by us ${ }^{13}$ on the reactivity of $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ toward various 2-Rcarbonylmethylenethiopyridines pyl- $\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{R}$ (pyl $=2-$ pyridyl, $\mathrm{R}=\mathrm{Ph}, \mathrm{Me}, \mathrm{OMe}$) including dehydrohalogenation reactions, spontaneous or induced by the use of a base such as
${ }_{80} \mathrm{Na}_{2} \mathrm{CO}_{3}$ or NaH , to give palladacyclic complexes of the types \mathbf{B} or \mathbf{C}, respectively. However, further deprotonation of the methine proton or of the R group did not occur even when an excess of these bases was used.

With the purpose of further studying dehydrohalogenation reactions on complexes $[\mathrm{Pd}\{C, N \text {-pyl-SCHC }(\mathrm{O}) \mathrm{R}\}(\mu-\mathrm{Cl})]_{2}(\mathbf{D}$ in ${ }_{5}$ Scheme 1) to give C, C, N-pincer complexes, we attempted an alternative synthesis of $\mathbf{1} \cdot \mathbf{C l}(\mathbf{D}, \mathrm{R}=\mathrm{Ph})$ because the previous methods were rather cumbersome $\left(\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right] \rightarrow \mathbf{B} \rightarrow \mathbf{D}\right.$ or $\left.\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right] \rightarrow \mathbf{A} \rightarrow \mathbf{C} \rightarrow \mathbf{D}\right) .{ }^{13}$ Thus, a double deprotonation of [Hpyl- $\left.\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right] \mathrm{Cl}$ (pyl- = 2-pyridyl), ${ }^{26}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ $10(1: 1$, refluxing in acetone for 3 h) gave 92% yield of $\mathbf{1} \cdot \mathbf{C l}$ in a single step. Similarly, its homologous [Pd $\{C, N$-pyl$\operatorname{SCHC}(\mathrm{O}) \mathrm{Ph}\}(\mu-\mathrm{Br})]_{2}(\mathbf{1} \cdot \mathbf{B r})$ was obtained in 83% yield from [pylH-SCH $\left.\mathrm{S}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right] \mathrm{Br}^{26}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1: 1$, refluxing in acetone for 3 h). Complexes $\mathbf{1} \cdot \mathbf{C l}$ and $\mathbf{1} \cdot \mathbf{B r}$ are obtained as a mixture of 15 isomers (See Experimental Section) which can be explained by the fact that they bear two chiral $\mathrm{CH}^{\mathrm{Pd}}$ carbon atoms and two palladacycles that can adopt mutual cisoid- or transoiddisposition.

Complex $\mathbf{1} \cdot \mathbf{C l}$ was recovered unchanged after reacting it with ${ }_{20} \mathrm{~K}^{\mathrm{t}} \mathrm{BuO}$ ($1: 1$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at room temperature for 3 h or, by additionally refluxing the reaction mixture for 2 h . However, the same complex reacted with AgOAc to give, after 4 h refluxing in MeCN , the C, C, N-pincer complex $\quad[\operatorname{Pd}\{C, C, N$-pyl$\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}(\mathrm{NCMe})\right]$ (2). Although a small amount of ${ }_{25}$ colloidal palladium also formed, complex 2 could be isolated in 77% yield. The different behavior of AgOAc with respect to $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{K}^{\mathrm{t}} \mathrm{BuO}$ suggests that the driving force for this reaction is the formation of an intermediate (\mathbf{I}, in Scheme 2) in which the acetato ligand interacts with the ortho hydrogen of the aryl group, ${ }_{30}$ as has been suggested previously. ${ }^{27,28}$ This C-H activation is probably preferred to that of the CH group coordinated to Pd , in spite of its vicinity to the carbonyl group, because of the +I effect of the metallic moiety. This is confirmed by the shift of the $v(\mathrm{CO})$ frequency towards the low energy region in all $C, N-$ ${ }_{35}$ cyclopalladated complexes compared to that in N -coordinated [Pd]-pyl- $\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$ complexes. ${ }^{13}$ In fact, we have failed other attempts to deprotonate the methine group (see below). In addition, an intermediate similar to I involving the methine proton would probably be less favored from a steric point of 40 view.

Using $\mathbf{1} \cdot \mathbf{B r}$ instead of $\mathbf{1} \cdot \mathbf{C l}$ in its reaction with AgOAc , under the same reaction conditions, gave instead a mixture containing, among other species, $\mathbf{1} \cdot \mathbf{B r}$ and the bridging acetato complex $\left[\mathrm{Pd}\{C, N \text {-pyl-SCHC }(\mathrm{O}) \mathrm{Ph}\}\left(\mu-O, O^{\prime}-\mathrm{OAc}\right)\right]_{2} \quad(1 \cdot O A c)$ that we ${ }_{45}$ could not separate. When a dichlorometane solution of that mixture was layered with n-hexane, in an attempt to obtain $\mathbf{1} \cdot \mathbf{O A c}$, crystals of $\mathbf{1} \cdot \mathbf{B r}$ grew instead, which were suitable for determining its crystal structure. However, pure 1-OAc was obtained after refluxing in acetone for 1.5 h an equimolar mixture 50 of $\mathrm{pyl}\left\{\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}-2$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of AcOH (1 equiv) The same result was obtained by using 0.5 equiv of AcOH and acetonitrile as solvent. In the absence of acid, some decomposition to $\operatorname{Pd}(0)$ was observed causing a yield decrease. 1-OAc was also obtained as a mixture of isomers (See ${ }_{55}$ Experimental Section).

Scheme 2
Although we can not fully understand the different behavior of $\mathbf{1} \cdot \mathbf{B r}$ and $\mathbf{1} \cdot \mathbf{C l}$ toward AgOAc it seems that the reaction starting ${ }_{60}$ from $\mathbf{1} \cdot \mathbf{C l}$ favors the formation of the intermediate \mathbf{I} while that from $\mathbf{1} \cdot \mathbf{B r}$ allows its irreversible conversion into $\mathbf{1} \cdot \mathbf{O A c}$ (Scheme 2). In fact, after stirring $\mathbf{1} \cdot \mathbf{O A c}(0.1 \mathrm{mmol})$ with $\mathrm{MeCN}(5 \mathrm{~mL})$ at room or refluxing temperature for 5 or 3 h , respectively, the formation of $\mathbf{2}$ could not be evidenced by ${ }^{1} \mathrm{H}$ NMR and $\mathbf{1} \cdot \mathbf{O A c}$ ${ }_{65}$ was recovered unchanged.

Complex $\mathbf{2}$ is soluble in MeCN and dmso and partially soluble in acetone. However it decomposed upon standing in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} solutions to give the insoluble complex $[\mathrm{Pd}\{C, C, S, N$-pyl$\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}\right]_{\mathrm{n}}$ (3) (Scheme 2) along with a solution 70 containing a mixture of products, likely to be oligomers that we
could not identify by ${ }^{1} \mathrm{H}$-NMR spectroscopy. Complex 3 presumably forms because the sulfur atom is capable of replacing the labile MeCN ligand in 2 (see below).

Complexes 1-3 have been used as starting materials for the ${ }_{5}$ synthesis of related complexes. Thus, neutral complexes $[\operatorname{Pd}\{C, N$-pyl-SCHC(O)Ph $\} X(L)]\left(\mathrm{L}=\mathrm{XyNC}\left(\mathrm{Xy}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-\right.\right.$ $2,6), \mathrm{X}=\mathrm{Cl},(\mathbf{4 a} \cdot \mathbf{C l}), \mathrm{Br}(\mathbf{4 a} \cdot \mathbf{B r}) \mathrm{AcO}(\mathbf{4 a} \cdot \mathbf{O A c}), \mathrm{L}=\mathrm{PTol}_{3}(\mathrm{Tol}$ $\left.\left.=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right), \mathrm{X}=\mathrm{Br}(\mathbf{4 b} \cdot \mathbf{B r}), \mathrm{L}=\mathrm{dmso}, \mathrm{X}=\mathrm{Br}(\mathbf{4} \mathbf{c} \cdot \mathbf{B r})\right)$ and $\left[\mathrm{Pd}\{C, N\right.$-pyl-SCHC(O)Ph $\}\left\{O, O^{\prime}\right.$-acac $\left.\}\right]$ (acacH = acetylacetone, ${ }_{10} 5$) or anionic $\operatorname{PPN}\left[\operatorname{Pd}\{C, N\right.$-pyl- $\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{Ph}\} \mathrm{Br}_{2}\right]$ (6) ($\mathrm{PPN}=$ $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{N}=\mathrm{PPh}_{3}$) were prepared in good yields by reacting the appropriate complex 1 with neutral monodentate ligands, with Tl (acac) or with [PPN$] \mathrm{Br}$, respectively (Scheme 3). Complex $4 \mathbf{c} \cdot \mathbf{B r}$ was obtained as a mixture of the $S P-4-3-$ and $S P-4-4-$ 15 isomers (see NMR Discussion and Experimental Section).

Scheme 3
We attempted the synthesis of $\left[\mathrm{Pd}\left\{C, N\right.\right.$-pyl- $\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-$ $\left.2\}(\mathrm{OAc})\left\{\mathrm{S}(\mathrm{O}) \mathrm{Me}_{2}\right\}\right](\mathbf{4 c} \cdot \mathbf{O A c}$, analogous to $\mathbf{4 c} \cdot \mathbf{B r})$ by reacting ${ }_{20} \mathbf{1} \cdot \mathbf{O A c}$ with dmso under various reaction conditions ($1: 1$ or 1:2, at room temperature or refluxing in chloroform for 3 h or, as for $\mathbf{4 c} \cdot \mathbf{B r}, 1: 9$ in acetone at room temperature for 2 h or even after 3 h refluxing) in the hope that, if both of the possible isomers formed, the $S P-4-4$-one would be prone to form upon heating an ${ }_{25}$ intermediate similar to \mathbf{I}, replacing MeCN by dmso, giving finally the pincer complex $\left[\mathrm{Pd}\left\{C, C, N\right.\right.$-pyl- $\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-$ $2\}\left(\mathrm{S}(\mathrm{O}) \mathrm{Me}_{2}\right)$] homologous of $\mathbf{2}$. Unfortunately, from any of these reactions, neither the mononuclear dmso-complex $4 \mathrm{c} \cdot \mathbf{O A c}$ nor the pincer complex could be detected by NMR. In fact, $\mathbf{1} \cdot \mathbf{O A c}$ 30 was recovered almost quantitatively in all cases. Also, 1•OAc was isolated in 70% yield from the reaction of $\mathbf{1} \cdot \mathbf{C l}$ with AgOAc and dmso (1:1:2, refluxing in acetone for 2 h). The acetylatetonato complex 5 was recovered unchanged after refluxing it in MeCN for 4 h in an attempt to prepare 2 upon
${ }_{35}$ acetylacetone loss. Similarly, refluxing 6 in acetonitrile for 5 h did not give 2 or the anionic pincer $\operatorname{PPN}[\operatorname{Pd}\{C, C, N$-pyl$\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{Br}\right]$ and $\mathbf{6}$ was also recovered unchanged. From complex 2, neutral $\left[\operatorname{Pd}\left\{C, C, N\right.\right.$-pyl- $\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{L}\right](\mathrm{L}=$ PPh_{3} (7a), $\left.{ }^{\mathrm{t}} \mathrm{BuNC}(7 \mathbf{b}), \mathrm{XyNC}(7 \mathbf{c})\right)$ or anionic $\mathrm{Me}_{4} \mathrm{~N}[\mathrm{Pd}\{C, C, N-$ ${ }_{40}$ pyl-SCHC(O) $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{Cl}\right](\mathbf{8})$ complexes could be obtained upon replacement of the labile MeCN ligand by the appropriate ligands (Scheme 4). Complex 7a, could be prepared using a 1:1 molar ratio of the reagents but it was best obtained by slow addition of solid complex 2 to a solution of PP_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in order to
45 minimize the formation of the polymer $\mathbf{3}$. The yield of $\mathbf{7 b}$ improved when an excess of the ligand (1:2) was used; otherwise
some unidentified side-products also formed which we could not separate. In spite of the excess ${ }^{t} \mathrm{BuNC}$ in the reaction giving $\mathbf{7 b}$, neither insertion of the isocyanide into the $\mathrm{Pd}-\mathrm{C}_{\text {aryl }}$ bond nor ${ }_{50}$ replacement of the pyridine moiety was observed. The reaction of 2 with pyridine gave a product the spectroscopic data of which suggest the formation of the corresponding neutral complex. However, its elemental analyses indicate some contamination, ${ }^{29}$ probably with $\mathbf{3}$ that we could not resolve.

Scheme 4
Complexes 7a-c could also be obtained by reacting $\mathbf{3}$ with the appropriate ligand, but since this complex is obtained in rather low yield, the former method was preferred. However, as an ${ }_{60}$ example of its use, we describe in the Experimental Section the synthesis of $\left[\operatorname{Pd}\left\{C, C, N\right.\right.$-pyl- $\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}(\mathrm{CNXy})\right]$ (7c) by slow addition of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of XyNC to a suspension containing the equimolar amount of $\mathbf{3}$ in the same solvent (40 $\min , 72 \%$). No insertion of XyNC was observed either in the ${ }_{5}$ reaction of $\mathbf{3}$ with 3 equiv XyNC in CHCl_{3} at room temperature or at $65^{\circ} \mathrm{C}$ in a Carius tube for 6 h , giving only 7 c .

Since the sulfur and oxygen atoms in complexes $\mathbf{2}$ and $\mathbf{7}$ bear lone electron pairs we have explored their behavior as ligands towards palladium(II) and silver(I). The reaction of 2 with ${ }_{70}\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ in acetone gave different species depending on the molar ratio of reagents that can be considered derivatives of the anion of $\mathbf{8}$ acting as a ligand (Scheme 5). However, we have only been able to isolate pure the complex $[S, O-\{\operatorname{Pd}\{C, C, N$-pyl$\left.\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{Cl}\right\}\{\mathrm{Pd}(\mu-\mathrm{Cl})\}\right]_{2} \quad$ (9) which immediately ${ }_{5}$ precipitates in the $1: 1$ reaction (Scheme 5). 9 results from the replacement of all the nitrile ligands, migration of one chloro ligand from $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ to 2 and the necessary dimerization in order to provide $\mathrm{Pd}(\mathrm{II})$ with its preferred square planar tetracoordination. When different 2: $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ molar ratios
so were used, ranging from $1: 2$ to $1: 4$, precipitation of variable amounts of 9 occurred and, from the solutions, mixtures were obtained (by ${ }^{1} \mathrm{H}$ NMR) with elemental analyses approaching those for \mathbf{A} with $\mathrm{n}=1$ (Scheme 5). The reaction of $\mathbf{2}$ with PdCl_{2} ($1: 1$ in acetone) intended to produce 9 gave instead a red ${ }_{5 s}$ insoluble compound with elemental analyses suitable for the stoichiometry of \mathbf{A} with $\mathrm{n}=2.5$. These results suggest processes in which soluble species resulting from bridge splitting of complexes A by $\mathrm{RCN}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ or acetone could be involved,
giving rise to complexes with different stoichiometries depending on their solubility as well as on the reagents' molar ratio.
$(\mathrm{n}+1)\left[\mathrm{PdCl}_{2}\left(\mathrm{NCPR}_{2}\right]\right.$

Scheme 5
5 The reaction of $\mathbf{9}$ with PPh_{3} (acetone, 1:1), or better that of 7a with $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1\right)$, gave $[S, O-\{\mathrm{Pd}\{C, C, N$-pyl$\left.\left.\left.\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{Cl}\right\}\left\{\mathrm{Pd}(\mathrm{Cl}) \mathrm{PPh}_{3}\right\}\right]$ (10), which again is a derivative of the anionic metallaligand present in $\mathbf{8}$. The former of these reactions produced bridge splitting and coordination of 10 the neutral ligand while in the latter, the interchange of chloro and phosphine ligands provided a new example of $\mathrm{PPh}_{3} /$ carbon donor ligands transphobia. ${ }^{13,30,31,32}$ The proposed geometry for $\mathbf{1 0}$ is based on those of related complexes in which P - and O-donor ligands as well as Cl and S -donor ligands are placed in trans. ${ }^{33}$
${ }_{15}$ The reaction of $\mathbf{2}$ with $(\mathrm{PPN})_{2}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{6}\right]$ (acetone, 2:1) intended to produce the anionic dinuclear complex $\operatorname{PPN}[S, O-\{\operatorname{Pd}\{C, C, N$-pyl$\left.\operatorname{SCHC}(\mathrm{O}) \mathrm{Ph}\} \mathrm{Cl}\}\left(\mathrm{PdCl}_{2}\right)\right]$, led instead to the precipitation of 9 while (PPN)Cl was recovered from the mother liquor.

20

Scheme 6

In turn, the reaction of 7 a with AgClO_{4} and PPh_{3} (acetone, 1:1:1) produced a white suspension of $\mathbf{1 1}$ (57%, Scheme 6) ${ }_{25}$ shown by ${ }^{31} \mathrm{P}$ NMR to be an equilibrium mixture of complexes $\left[S, O-\left\{\mathrm{Pd}\left\{C, C, N-\right.\right.\right.$ pyl-SCHC $\left.\left.\left.(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\} \mathrm{PPh}_{3}\right\}\left(\mathrm{AgPPh}_{3}\right)\right] \mathrm{ClO}_{4}$ (11a) and $\left[S, O-\left\{\mathrm{Pd}\left\{C, C, N-\right.\right.\right.$ pyl-SCHC $(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-$ $\left.\left.2\} \mathrm{PPh}_{3}\right\}\left\{\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{PPh}_{3}\right\}\right]$ (11b) (see below).

Attempts to deprotonate the $\mathrm{CH}^{\mathrm{Pd}}$ group by reacting 2 with 30 AgOAc (acetone, $1: 1$) or 7 a or $\mathbf{8}$ with $\left[\mathrm{Ag}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]($ acetone, $1: 1)^{34}$ failed and the starting materials were recovered in all cases. We have also reacted 7a or $\mathbf{8}$ with an excess of Cl_{2} in CCl_{4} or with the stoichiometric amount of $\mathrm{Cl}_{2} \mathrm{IPh}$, respectively, in an attempt to produce $\mathrm{Pd}(\mathrm{IV})$ complexes, as we have reported with
35 other pincer complexes, ${ }^{22}$ or, more likely, according to previous experiences in similar systems, ${ }^{12,22}$ the $\mathrm{C}-\mathrm{Pd}$ bond cleavage to form $\mathrm{C}-\mathrm{Cl}+\mathrm{Pd}-\mathrm{Cl}$ bonds. However, complex mixtures were obtained in the reactions with Cl_{2} and no reaction was observed in those with $\mathrm{Cl}_{2} \mathrm{IPh}$.

40 2.2. X-ray crystal structures

The crystal structures of complexes $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3}$ (Figure 1), $\mathbf{1} \cdot \mathbf{A c O}$ (Figure 2) and 7c (Figure 3) have been determined by Xray diffraction studies. Details on crystal data, data collection, and refinements are summarized in the Supporting Information.
${ }_{45}$ The crystal structure of $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3}$ corresponds to the $R S$ transoid isomer and is centrosymetric while that of $\mathbf{1} \cdot \mathbf{O A c}$ corresponds to the the $R R$-cisoid isomer, the $S S$-one being also present in the centrosymetric unit cell. All the structures display some common features. Thus, in all cases, the Pd atom is in a ${ }_{50}$ distorted square-planar environment, the mean deviation from planarity for the Pd atom and its four immediate neighbors being $\leq 0.05 \AA$, except for Pd1 in $\mathbf{1}$-OAc $(0.08 \AA)$. The five membered C-Pd-N ring adopts in complexes $\mathbf{1} \cdot \mathbf{B r}$ and $\mathbf{1} \cdot \mathbf{O A c}$ an envelope conformation. However in $\mathbf{7 c}$ it is nearly planar (mean deviation 55 from planarity $0.065 \AA$, being the C 1 atom the most deviated, $+0.0833 \AA$) while the other five membered C-Pd-C palladacycle adopts an envelope conformation. In $\mathbf{1}$-OAc the two acetato ligands substend an angle of 91.7°. The $\mathrm{Pd}-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond distances (similar in all complexes: $2.042(6) \AA$ in $\mathbf{1} \cdot \mathbf{B r}, 2.027(3)$ and ${ }_{60} 2.035(3) \AA$ in $\mathbf{1} \cdot \mathbf{O A c}, 2.049(4) \AA$ in $7 \mathbf{c}$) are longer than the Pd$\mathrm{C}\left(\mathrm{sp}^{2}\right)$ and $\mathrm{Pd}-\mathrm{C}(\mathrm{sp})$ bond distances in 7 c (2.0072(17) and 1.9904(16) \AA, resectively). The trans influence sequence $\mathrm{C}>\mathrm{Br}$ $>\mathrm{O}$ is responsible for the slightly different $\mathrm{Pd}-\mathrm{N}$ bond distances in these complexes $(2.1080(16)(7 \mathbf{c})>2.036(5)(\mathbf{1} \cdot \mathbf{B r})>$ $\left.{ }_{65} 2.012(3), 2.007(3) \AA(\mathbf{1} \cdot \mathbf{O A c})\right)$. All other structural parameters are unremarkable. The bite angles of the N, C-chelating ligand in $\mathbf{1} \cdot \mathbf{B r}$ and $\mathbf{1 \cdot O A c}\left(\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}(6), 85.5(2)\right.$ and $85.39(12)^{\circ}$, respectively) are similar while in the pincer complex 7c the homologous $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)$ bond angle is similar $\left(86.47(6)^{\circ}\right)$
70 and the $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}(31)$ one rather narrower $\left(80.98(7)^{\circ}\right)$. Intermolecular hydrogen bonds are present in all the structures. In $\mathbf{1} \cdot \mathbf{B r}$ and $\mathbf{7 c}$, chains parallel to the a axis form through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds with participation of the carbonyl oxygen and the orthoCH (phenyl) ($\mathbf{1} \cdot \mathbf{B r}$) or the ortho -CH (phenyl) plus one CH in the ${ }_{75} \mathrm{Me}$ (xylyl) fragment. In $\mathbf{1} \cdot \mathbf{A c O}$ a 3D net forms through various $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with participation of CH groups in the pyridine, phenyl and methyl fragments and both, acetato and phenacyl oxygen atoms.

Figure 1. Thermal ellipsoid representation plot (50% probability) of 5 compound $\mathbf{1} \cdot \mathbf{B r}$. Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-\mathrm{N}(1)$ 2.036(5), $\operatorname{Pd}(1)-\mathrm{C}(6)$ 2.042(6), $\operatorname{Pd}(1)-\operatorname{Br}(1) 2.4351(8), \operatorname{Pd}(1)-\operatorname{Br}(1 \mathrm{~A})$ $2.5266(8), \mathrm{N}(1)-\mathrm{C}(1) 1.354(8), \mathrm{C}(1)-\mathrm{S}(1) 1.740(6), \mathrm{C}(6)-\mathrm{S}(1) 1.811(6)$, $\mathrm{C}(7)-\mathrm{O}(1) \quad 1.225(7) ; \quad \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(6) \quad 85.5(2), \quad \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{Br}(1)$ $92.41(16), \mathrm{N}(1)-\operatorname{Pd}(1)-\operatorname{Br}(1 \mathrm{~A}) 95.36(13), \operatorname{Br}(1)-\operatorname{Pd}(1)-\operatorname{Br}(1 \mathrm{~A}) 86.63(3)$, ${ }_{10} \mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(6) 98.5(3), \mathrm{S}(1)-\mathrm{C}(6)-\mathrm{Pd}(1) \quad 108.3(3), \quad \mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$ 123.2(6), $\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(11) 119.7(5)$.

Figure 2. Thermal ellipsoid representation plot (50% probability) of compound $1 \cdot \mathrm{AcO}$. Selected bond lengths (\AA) and angles (deg): $\mathrm{Pd}(1)-$ $\mathrm{N}(1) 2.012(3), \mathrm{Pd}(1)-\mathrm{C}(6) 2.027(3), \mathrm{Pd}(1)-\mathrm{O}(2) 2.033(2), \mathrm{Pd}(1)-\mathrm{O}(3)$ 2.134(2), $\mathrm{N}(1)-\mathrm{C}(1) 1.358(4), \mathrm{C}(1)-\mathrm{S}(1) 1.735(3), \mathrm{C}(6)-\mathrm{S}(1) 1.811(3)$, $\mathrm{C}(7)-\mathrm{O}(1) \quad 1.229(4) ; \quad \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(6) \quad 85.39(12), \quad \mathrm{C}(6)-\mathrm{Pd}(1)-\mathrm{O}(2)$ 20 92.99(11), $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(3) 93.44(10), \mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{O}(3) 88.33(9), \mathrm{C}(1)-$ $\mathrm{S}(1)-\mathrm{C}(6) 98.05(15), \mathrm{S}(1)-\mathrm{C}(6)-\mathrm{Pd}(1) \quad 109.07(16), \mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$ 122.0(3), $\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(11) 119.3(3)$.

25

Figure 3. Above: Thermal ellipsoid representation plot (50\% probability) 30 of compound 7c. Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-$ $\mathrm{C}(11) 1.9904(16), \mathrm{Pd}(1)-\mathrm{C}(31) 2.0072(17), \mathrm{Pd}(1)-\mathrm{C}(1) 2.0494(16)$, $\operatorname{Pd}(1)-\mathrm{N}(1) 2.1080(16), \quad \mathrm{C}(1)-\mathrm{S}(1)$ 1.7971(18), $\mathrm{C}(1)-\mathrm{C}(7)$ 1.493(2), $\mathrm{C}(11)-\mathrm{N}(2) 1.154(2) ; \mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{C}(31) 94.10(7), \mathrm{C}(31)-\mathrm{Pd}(1)-\mathrm{C}(1)$ 80.98(7), $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1) 86.47(6), \mathrm{C}(11)-\mathrm{Pd}(1)-\mathrm{N}(1) 97.63(6)$, $\mathrm{C}(2)-$ ${ }_{35} \mathrm{~S}(1)-\mathrm{C}(1) \quad 101.44(7), \quad \mathrm{S}(1)-\mathrm{C}(1)-\mathrm{Pd}(1) \quad 113.45(8), \quad \mathrm{C}(7)-\mathrm{C}(1)-\mathrm{Pd}(1)$ 104.65(10), C(32)-C(7)-C(1) 109.42(13). Below: Chain parallel to axis a formed in 7c through $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bonds. Hydrogens omitted except those involved in these bonds.

2.3. NMR spectra

${ }_{40}$ The NMR spectra of complexes $\mathbf{1} \cdot \mathbf{O A c}, 4-8,10$ and 12-were measured in $\mathrm{CDCl}_{3},\left(\mathbf{1} \cdot \mathbf{B r}\right.$ also in dmso- $\left.\mathrm{d}_{6}\right)$ while the instability $(\mathbf{2}, \mathbf{4} \mathbf{c} \cdot \mathbf{B r})$ or the insolubility of the other complexes in non-donor solvents required the use of $\mathrm{CD}_{3} \mathrm{CN}(\mathbf{2})$ or $\mathrm{dmso}_{6}(\mathbf{3}, \mathbf{4 c} \cdot \mathbf{B r}, \mathbf{9}$ and 11), which means that the NMR spectra of the latter probably 45 correspond to species resulting from solvent coordination. As mentioned above, various isomeric forms are possible for complexes $\mathbf{1} \cdot \mathbf{C l}, \mathbf{1} \cdot \mathbf{B r}$ and $\mathbf{1} \cdot \mathbf{O A c}$. The presence in their ${ }^{1} \mathrm{H}$ NMR spectra, measured in CDCl_{3}, of various $\mathrm{CH}^{\mathrm{Pd}}$ resonances at 5.22, $5.58,5.64(\mathbf{1} \cdot \mathbf{C l}$, relative intensities $1: 1: 0.5), 5.24,5.62,5.66$ ${ }_{50}(\mathbf{1} \cdot \mathbf{B r}$, relative intensities $1: 1: 0.5)$ and $4.78,4.86,5.90,6.20,6.34$
(1•OAc, relative intensities 0.16:1:0.21:0.11:0.18) as well as various MeCO_{2} resonances in $\mathbf{1} \cdot \mathbf{O A c}$ at $1.13,1.48,1.74,1.77$, 1.95 ppm (relative intensities $0.16: 0.11: 1: 0.18: 0.21$) is indicative of the presence of different isomers in solution. Supporting that 5 these extra resonances are no arising from impurities, only one set of resonances is observed for the $R+S$ enantiomers in the NMR spectra of their mononuclear derivatives, except in the case of $\mathbf{4 c} \cdot \mathbf{B r}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum, which coincides with that of $\mathbf{1} \cdot \mathbf{B r}$ in dmso $-\mathrm{d}_{6}$, shows two $\mathrm{CH}^{\mathrm{Pd}}$ resonances at 5.33 and 5.56 ${ }_{10} \mathrm{ppm}$ that we attribute to the $S P-4-3-$ and $S P-4-4$ - isomers. The same occurs in the ${ }^{1} \mathrm{H}$ NMR spectrum of 9 in dmso- d_{6}. We assume the geometry of the remaining complexes 4 to be that with the neutral ligand disposed trans to nitrogen in order to avoid the high transphobia of the C / C and C / P couples. ${ }^{13,30,31,32}$
15 The room temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of $\mathbf{1 1}$ in CDCl_{3} shows a singlet at 31.04 ppm , assignable to the phosphine ligand coordinated to palladium and two broad resonances centered at 15.5 and 11.5 ppm , with relative intensities $1: 3$, attributable to PPh_{3} coordinated to silver. At $-60{ }^{\circ} \mathrm{C}$ the resonance at higher ${ }_{20}$ frequency splits into two singlets at 32.6 and 34.0 ppm , with relative intensities $3: 1$ while that at 15.5 ppm splits into two broad peaks at 18.1 and 12.7 ppm (separated 660 Hz approx.) and that at 11.5 resolves into two doublets centered at 12.0 ppm (due to coupling to ${ }^{109} \mathrm{Ag}$ and ${ }^{107} \mathrm{Ag} ; \mathrm{J}_{\mathrm{AgP}}=564$ and 489 Hz , ${ }_{25}$ respectively). These data support the existence of two isomeric species in solution (11a and 11b) and, as bigger J values correspond to larger s-character of the hybrid orbital involved and thus to smaller coordination numbers, $\operatorname{Ag}(\mathrm{I})$ should be tricoordinate in the less abundant species $(\delta=15.5)$ in solution ${ }_{30}$ (structure 11a) while the most abundant one $(\delta=11.5)$ should contain tetracoordinate $\mathrm{Ag}(\mathrm{I})$ (structure 11b).

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of complex 9 could not be measured because its dmso solution is not stable long enough. In the remaining complexes, the $\mathrm{CH}^{\mathrm{Pd}}$ carbon resonance appears in 35 the ranges of $39.8-45.6$ or $55.2-67.4 \mathrm{ppm}$ for quelate or pincer complexes, respectively, while the CS and CO resonances (in the ranges 171.22-178.00 and 187.02-199.55 ppm, respectively) do not show noticiable differences among both types of complexes. ${ }^{13}$

The IR spectra of pincer complexes show one CO band in the ${ }_{40} 1634-1658 \mathrm{~cm}^{-1}$ range, at lower energy than that of the 2 (phenacylthio)pyridine ligand ($1678 \mathrm{~cm}^{-1}$) and similar to that in the cyclometallated complexes $C, N-\mathrm{Pd}\{$ pyl- $\mathrm{SCHC}(\mathrm{O}) \mathrm{Ph}\}$ here or previously reported, ${ }^{13}$ in the range $1623-1652 \mathrm{~cm}^{-1}$. Coordination of $\operatorname{Ag}(\mathrm{I})$ or $\mathrm{Pd}(\mathrm{II})$ to the carbonyl group in complexes $\mathbf{9 - 1 1}$ must ${ }_{45}$ be weak as it does not affect significantly the energy of the $v(\mathrm{CO})$ band. Weak to medium bands in the $1540-1590 \mathrm{~cm}^{-1}$ region can be assigned to $v(\mathrm{CC})$ and $v(\mathrm{CN})$ from the aryl and pyridyl rings. ${ }^{35}$ The chloro complexes show, one ($\mathbf{4 a \cdot C l}, 267 ; \mathbf{8}, 293 \mathrm{~cm}^{-1}$), or two $\left(\mathbf{9}, 322,265 ; 10,355,255 \mathrm{~cm}^{-1}\right) v(\mathrm{PdCl})$ bands. We assign ${ }_{50}$ those below $300 \mathrm{~cm}^{-1}$ to $v(\mathrm{PdCl})$ trans to carbon because of its higher trans influence. Complexes bearing an isocyanide ligand display an intense $v(\mathrm{C} \equiv \mathrm{N})$ absorption in the 2179-2209 cm^{-1} range. The presence of an strong $v(\mathrm{~S}=\mathrm{O})$ band at $1117 \mathrm{~cm}^{-1}$ in the spectrum of $\mathbf{4 c} \cdot \mathbf{B r}$ is indicative of the S -coordination of the dmso
${ }_{55}$ ligand. ${ }^{36}$ The IR spectrum of $\mathbf{1 1}$ shows strong perchlorate bands at around 1100 and $620 \mathrm{~cm}^{-1}$. Both bands are narrow pointing to a species with tricoordinate silver (structure 11a). The molar conductivity of $\mathbf{1 1}$ in acetone solution corresponds to that of an

1:1 electrolyte ($118 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$). ${ }^{37}$
${ }_{60}$ The FAB^{+}-MS of complexes 7a-c show the M^{+}ion at m / z 595.89 (7a), and 416.85 (7b), respectively. Additionally, the molecular weight of 7 a measured in chloroform by vaporpressure osmometry (560) demonstrates the mononuclear nature of this complex in solution. The spectra of $\mathbf{7 b}$ (as well as that of ${ }_{65} 8$) show also a peak at $\mathrm{m} / \mathrm{z} 333.8$ corresponding to the fragment "Pd $\left\{\right.$ pyl $-\left\{\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-2\right\}$ ". The spectrum of complex $\mathbf{1 1}$ shows peaks corresponding to $\mathrm{M}^{+}-\mathrm{ClO}_{4}$ and $\mathrm{M}^{+}-\mathrm{AgClO}_{4}-\mathrm{PPh}_{3}$, which support the structure proposed. In the spectra of complexes $\mathbf{2 , 3}, \mathbf{9}$ and 10, only peaks of the matrix were observed.
70

4. Conclusion

We report the synthesis of a family of palladium C, C, N-pincer complexes derived from 2-phenacylthiopyridine obtained by an unprecedented stepwise double cyclopalladation process. The 75 second step was successful by using AgAcO as the base and dehalogenating reagent. Other attempts with various bases or monocyclopalladated precursors, some here reported for the first time, were unsuccessful. We have shown that the pincer complex containing MeCN as ligand polymerizes, most likely because the ${ }_{80}$ sulfur and carbonyl oxygen atoms make the pincer moiety a chelating metallaligand. We have supported this idea by reacting it with neutral ligands and by preparing $\operatorname{Ag}(\mathrm{I})$ and $\mathrm{Pd}(\mathrm{II})$ derivatives of such ligand.

${ }_{85}$ 3. Experimental Section

The IR spectra, elemental analyses, conductance measurements in acetone and melting point determinations were carried out as described earlier. ${ }^{38}$ The neutral complexes 2, 4a-d, and $\mathbf{9}$ are nonconducting in acetone. The molar conductivities of complexes $\mathbf{3}$,
${ }_{90} 6$ and 8 could not be measured because of their very low solubility in acetone. Unless otherwise stated the reactions were carried out at room temperature without special precautions against moisture. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with a Varian Unity- 300 spectrometer in CDCl_{3} ${ }_{95}$ solution and chemical shifts are referred to TMS $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right]$ or $\mathrm{H}_{3} \mathrm{PO}_{4}\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]$. Mass spectra ($\mathrm{FAB}+$) were measured with a Fisons VG-Autospec spectrometer using 3-nitrobenzyl alcohol as the dispersing matrix. The molecular weight was determined with a vapor-pressure osmometer. The synthesis of $\mathbf{6}$ required the use 100 of [PPN]Br which we prepared as a dichloromethane solvate from the commercial chloride and excess NaBr (1:3, in acetone, 4 h). The suspension was concentrated to dryness, the residue was stirred with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the suspension was filtered through a short pad of Celite. The solution was concentrated (1 mL) and ${ }_{105} \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The suspension was filtered and the solid collected was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ and dried, first by suction and then in an oven at $70^{\circ} \mathrm{C}$ for 2 h to give [PPN]Br $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a white solid. Yield: 84%. Mp: $252{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{BrNP}_{2}$: C, 63.17; H, 4.58; N, 1.99. Found: C, 110 62.86; H, 4.59; N, 2.04. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.30$ (s, 2 $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), 7.30-7.50 (various m, 24 H , orto- + meta- Ph), 7.65 (tdd, 6 H , para $-\mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 126.8\left(\mathrm{~d}\right.$, ipso-C, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CP}}=108 \mathrm{~Hz}\right), 129.5$
(m, meta-CH), 132.0 (m, ortho-CH), 133.9 (para-CH). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.11$ (s).

Single-Crystal X-ray Structure Determinations: Crystals suitable for X-ray diffraction of compounds $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3}, \mathbf{1} \cdot \mathbf{O A c}$ and $7 \mathbf{c}$ were mounted in inert oil on a loop and transferred to a Bruker D8 Quest diffractometer. Data were recorded at 100(2) K using multilayer-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073$ $\AA)$ and ω-scan mode. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data 10 were corrected for absorption effects using the multi-scan method (SADABS).

Solution and Refinements: Crystal structures were solved by direct method and all non-hydrogen atoms refined anisotropically on F^{2} using the program SHELXL-97 ${ }^{39}$ for $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3}$ and $\mathbf{7 c}$ 15 and SHELXTL-2013 ${ }^{40}$ for 1•OAc. The methyl groups were refined using rigid groups (AFIX 137), and the other hydrogens were refined using a riding model.

Synthesis of $[\mathbf{P d}\{C, N-\text { pyl-SCHC(O)Ph }\}(\mu-\mathrm{Br})]_{2}(1 \cdot \mathrm{X})(\mathrm{X}=$ $\mathrm{Cl}(\mathbf{1} \cdot \mathbf{C l}), \mathrm{Br}(\mathbf{1} \cdot \mathbf{B r})$). A suspension containing $\mathrm{Pd}(\mathrm{OAc})_{2}$ (for $\mathbf{1} \cdot \mathbf{C l}, 298 \mathrm{mg}, 1.33 \mathrm{mmol}$; for $\mathbf{1} \cdot \mathbf{B r}, 387 \mathrm{mg}, 1.72 \mathrm{mmol}$) and the appropriate [$\left.\mathrm{Hpyl}-\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right] \mathrm{X}(\mathrm{X}=\mathrm{Cl}, 353 \mathrm{mg}, 1.33 \mathrm{mmol}$; $\mathrm{Br}, 535 \mathrm{mg}, 1.72 \mathrm{mmol}$) in acetone (30 mL) was refluxed for 4 h . During that time a solution initially formed which gradually transformed into a suspension. After allowing the suspension to ${ }_{25}$ cool at room temperature, it was filtered and the solid collected was washed with acetone $(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and dried, first by suction and then in an oven at $75^{\circ} \mathrm{C}$ for 4 h to give a yellow $(\mathbf{1} \cdot \mathrm{Cl})$ or orange $(\mathbf{1} \cdot \mathbf{B r})$ solid.
1.Cl: Yield $436 \mathrm{mg}, 1.18 \mathrm{mmol}, 89 \%)$. Mp: $225{ }^{\circ} \mathrm{C}$. Anal. ${ }_{30}$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNOPdS}: \mathrm{C}, 42.18$; H, 2.72; N, 3.78, S, 8.66. Found: $\mathrm{C}, 41.85 ; \mathrm{H}, 2.71 ; \mathrm{N}, 3.82, \mathrm{~S}, 8.54$. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})$, 1644; $v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1590,1552 .{ }^{1} \mathrm{H}$ NMR (300 MHz , dmsod_{6}): $\delta 5.20,\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right.$), 7.27 (ddd, $1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1 \mathrm{~Hz}$), 7.37-7.96 (various m, $7 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4$, $\left.{ }_{35} \mathrm{pyl}+\mathrm{Ph}\right), 8.57\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 6, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1 \mathrm{~Hz}\right)$. Resonances for the minor isomer (21% with respect to the major one, see Discussion) are also observed. Most of them are obscured in part by those of the major isomer, except those at δ $5.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\text {Pd }}\right), 7.18\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right.$, ${ }_{40}{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1 \mathrm{~Hz}$). In $\mathrm{CDCl}_{3}(200 \mathrm{MHz})$ three $\mathrm{CH}^{\text {Pd }}$ resonances appear at $5.22,5.58$ and 5.64 ppm with relative intensities 1:1:0.5 while the aromatic region is poorly resolved (See Discussion).
$1 \cdot B r$: Yield, $584 \mathrm{mg}, 1.41 \mathrm{mmol}, 82 \%$. Mp: $206{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrNOPdS}: \mathrm{C}, 37.61$; $\mathrm{H}, 2.60$; N, 3.38, S, 7.73 . ${ }_{45}$ Found: C, 37.75; H, 2.54; N, 3.45, S, 7.44. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})$, 1641; v(C=C), (C=N), 1588, 1553. ${ }^{1} \mathrm{H}$ NMR (300 MHz , dmsod_{6}): $\delta 5.33$, ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}$), 7.27 (ddd, $1 \mathrm{H}, \mathrm{H} 5$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.47\left(" \mathrm{t}\right.$, $\left., 2 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right), 7.58$ ("t", $1 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}$), 7.73-7.84 (m, $\left.3 \mathrm{H}, \mathrm{H} 3, \mathrm{pyl}+\mathrm{Ph}\right), 7.86$ ${ }_{50}\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 4, \operatorname{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 8.78(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 6$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1 \mathrm{~Hz}$). Resonances for the minor isomer (36% with respect to the major one, see Discussion) are also observed at $\delta 5.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right) .7 .21\left(" \mathrm{t} ", 1 \mathrm{H}, \mathrm{H} 5\right.$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6$ Hz), 7.39 ("t", $2 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}$), $7.51\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7\right.$ $\left.{ }_{55} \mathrm{~Hz}\right), 7.74\left(\mathrm{dd}\right.$ ", $1 \mathrm{H}, \mathrm{H} 3$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.92(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4$, pyl $+\mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}$), $8.00\left(\mathrm{~d}, \mathrm{br}, \mathrm{H} 6\right.$, pyl, $\left.{ }^{4} \mathrm{~J}_{\mathrm{HH}}=5 \mathrm{~Hz}\right) . \mathrm{In} \mathrm{CDCl}_{3}$ $(300 \mathrm{MHz})$ three $\mathrm{CH}^{\mathrm{Pd}}$ resonances appear at $5.24,5.62$ and 5.66 ppm with relative intensities 1:1:0.5 while the aromatic region is
poorly resolved (See Discussion).
${ }_{60}$ Crystals of $\mathbf{1} \cdot \mathrm{Br}$ suitable for an X ray diffraction study were obtained by the slow diffusion of n-hexane in a dichlorometane solution of a mixture obtained in the reaction of $\mathbf{1} \cdot \mathbf{B r}$ with AgOAc (see Discussion).

Synthesis of $[\mathbf{P d}\{C, N-\mathrm{pyl}-\mathrm{SCHC}(\mathbf{O}) \mathbf{P h}\}(\mu-\mathrm{OAc})]_{2}(\mathbf{1} \cdot \mathrm{OAc})$. ${ }_{65} \mathrm{Pd}(\mathrm{OAc})_{2}(248 \mathrm{mg}, 1.10 \mathrm{mmol})$ and $\mathrm{AcOH}(0.1 \mathrm{~mL}, 1.2 \mathrm{mmol})$ were added to a solution of pyl- $\mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}(253 \mathrm{mg}, 1.10$ $\mathrm{mmol})$ in acetone (15 mL). After refluxing the reaction mixture for 1.5 h , the solution was concentrated under vacuum to 1 mL and the suspension formed was filtered. The solid collected was
70 washed with acetone $(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried, first by suction and then in an oven at $70^{\circ} \mathrm{C}$ for 2 h , to give $\mathbf{1} \cdot \mathbf{O A c}$ as an orange/red solid. Yield, $365 \mathrm{mg}, 0.93 \mathrm{mmol}, 84 \%$. Mp: 242 (decomp) ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{PdS}$: C, 45.76; $\mathrm{H}, 3.33$; N, 3.56, S, 8.14. Found: C, 46.03; H, 3.12; N, 3.51, S, 8.41.
${ }_{75}$ IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1653 ; \mathrm{v}_{\text {asym }}\left(\mathrm{CO}_{2}\right), 1562 v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N})$, 1590, 1551. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, AcO), $4.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 7.03$ (ddd, $1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.36(\mathrm{~m}, 2 \mathrm{H}$, meta-Ph), 7.43-7.47(m, 2 H , para $-\mathrm{Ph}+\mathrm{H} 3$, pyl), 7.63 (ddd, $1 \mathrm{H}, \mathrm{H} 4$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}$ $\left.{ }_{80}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.77(\mathrm{~m}, 2 \mathrm{H}$, ortho- Ph$), 8.13(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 6$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}$). Various other minor resonances are also found at $1.13,1.49,1,77,1.96 \mathrm{ppm}(\mathrm{Me}, \mathrm{OAc}$, relative intensities 0.16 , $0.11,0.18$ and 0.21 with respect to that at 1.74 ppm) and at 4.78 , $5.90,6.20,6.34 \mathrm{ppm}\left(\mathrm{CH}^{\mathrm{Pd}}\right.$, relative intensities $0.16,0.21,0.11$ ${ }_{85}$ and 0.18 with respect to that at 4.86 ppm$)$ which indicate the presence of four other isomers (see Discussion). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.9(\mathrm{Me}, \mathrm{AcO}), 39.8\left(\mathrm{CH}^{\mathrm{Pd}}\right), 119.4(\mathrm{CH} 5$, py), 120.8 (CH3, py), 127.9 (ortho- CH, Ph), 128.4 (meta-CH, Ph), 131.9 (para- CH, Ph), 137.6 (CH4, py), 138.0 (ipso-C, Ph), ${ }_{90} 149.8$ (CH6, py), 176.9 (CS), $182.5\left(\mathrm{CO}_{2}, \mathrm{AcO}\right), 196.8(\mathrm{C}=\mathrm{O})$. Crystals suitable for an X ray diffraction study were obtained by the slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a CDCl_{3} solution of $\mathbf{1} \cdot \mathbf{O A c}$.

Synthesis of [Pd $\left.\left\{C, C, N-p y l-S C H C(O) C_{6} H_{4}-2\right\}(N C M e)\right](2)$. To a suspension of $\mathbf{1} \cdot \mathbf{C l}(215 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ ${ }_{95}$ solid $\mathrm{AgOAc}(97 \mathrm{mg}, 0.58 \mathrm{mmol})$ was added and the mixture was refluxed for 4 h . The suspension was filtered through anhydrous MgSO_{4} to remove AgCl and a small amount of palladium, the resulting brown solution was concentrated to ca 1 mL , and $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added. The suspension was filtered and the solid 100 was dried, by sucction to give 2 as a brown solid. Yield, 138 mg , $0.37 \mathrm{mmol}, 63 \%$. Mp: $215{ }^{\circ} \mathrm{C}$ (decomp). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}$ OPdS: C, 48.08; H, 3.23; N, 7.48, S, 8.56. Found: C, $47.98 ; \mathrm{H}, 2.91 ; \mathrm{N}, 7.27, \mathrm{~S}, 8.44$. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1644$; $v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1588,1574,1550 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): ${ }_{105} \delta 1.97$ (m, Me + solvent), $5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 7.03-7.09(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.12\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2\right.$ $\mathrm{Hz}), 7.28\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 3, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=0.4\right.$ $\mathrm{Hz})$), $7.42\left(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 4\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.55-7.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.35\left(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(50$
$\left.{ }_{110} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 57.1\left(\mathrm{CH}^{\mathrm{Pd}}\right), 119.6(\mathrm{CH}), 121.8(\mathrm{CH}), 124.68$ $(\mathrm{CH}), 124.8(\mathrm{CH}), 128.8(\mathrm{C}), 130.2(\mathrm{CH}), 131.5(\mathrm{C}), 136.1(\mathrm{CH})$, 137.9, (CH) 150.0 (CH), 173.2 (CS), 199.7 (CO).

Synthesis of $\left[\mathrm{Pd}\left\{N, C, C, S-\text { pyl-SCHC(O)C } \mathbf{C}_{6} \mathbf{H}_{4}-2\right\}\right]_{\text {n }}$ (3). A solution of $2(84 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred 115 at room temperature for 1 h during which time a white suspension formed which was allowed to stir for 24 h and then filtered. The
solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and air-dried to give 3 as a white solid. Yield, $29 \mathrm{mg}, 0.09 \mathrm{mmol}, 39 \%$. Mp: $248{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOPdS}: \mathrm{C}, 46.79$; H, 2.72; N, 4.20, S, 9.61. Found: C, 46.56; H, 2.56; N, 4.36, S, 9.31. IR (cm^{-1}): $v(\mathrm{C}=\mathrm{O})$, $1658, v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1590,1580,1556 .{ }^{1} \mathrm{H}$ NMR (300 MHz , dmso-d d_{6}): $\delta 5.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 6.98-7.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{pyl}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 7.49 ("d", $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}\right), 7.70\left(\mathrm{tt}\right.$ ", 1 H, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8$ $\mathrm{Hz}), 8.29\left(" \mathrm{~d} ", 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl, $\left.{ }^{6} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(50$ MHz , dmso-d d_{6}): $\delta 55.2$ (CH), $119.3(\mathrm{CH}), 121.4(\mathrm{CH}), 123.8$ ${ }_{10}(\mathrm{CH}), 123.9(\mathrm{CH}), 129.3(\mathrm{CH}), 134.2(\mathrm{CH}), 137.8(\mathrm{CH}), 146.5$ (C), 148.8 (CH), 152.1 (C), 171.2 (CS), 199.1 (CO).

Synthesis of [Pd\{N,C-pyl-SCHC(O)Ph\}X(L)] (L = CNXy, $\mathrm{Xy}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-\mathbf{2 , 6}, \mathrm{X}=\mathrm{Cl}(4 \mathrm{a} \cdot \mathrm{Cl}), \mathrm{Br}(4 \mathrm{a} \cdot \mathrm{Br}), \mathrm{AcO}(4 \mathrm{a} \cdot \mathrm{OAc})$; $\mathrm{L}=\mathrm{PTol}_{3}, \mathbf{T o l}=\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}-\mathbf{4}, \mathrm{X}=\mathbf{B r}(\mathbf{4 b} \cdot \mathrm{Br})$. A solution 15 containing the appropriate complex $\mathbf{1}$ (for $\mathbf{4 a} \cdot \mathbf{C l}, \mathbf{1} \cdot \mathbf{C l}, 53 \mathrm{mg}$, 0.07 mmol ; for $\mathbf{4 a} \cdot \mathbf{B r}$ or $\mathbf{4 b} \cdot \mathbf{B r}, \mathbf{1} \cdot \mathbf{B r}, 82 \mathrm{mg}, 0.1 \mathrm{mmol}$ or 100 $\mathrm{mg}, 0.12 \mathrm{mmol}$, respectively; for $4 \mathrm{a} \cdot \mathbf{O A c}, \mathbf{1} \cdot \mathbf{O A c}, 100 \mathrm{mg}, 0.25$ mmol) and ligand (for $\mathbf{4 a \cdot C l}$ or $\mathbf{4 a} \cdot \mathbf{B r}$ or $\mathbf{4 a \cdot O A c}, \mathrm{XyNC}$, 18.8 $\mathrm{mg}, 0.14 \mathrm{mmol}, 26 \mathrm{mg}, 0.2 \mathrm{mmol}$, or $33.3 \mathrm{mg}, 0.25 \mathrm{mmol}$, 20 respectively; for $\mathbf{4 b} \cdot \mathbf{B r}, \mathrm{PTol}_{3}, 110 \mathrm{mg}, 0.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was stirred for 1 h or $30 \mathrm{~min}(\mathbf{4 a} \cdot \mathbf{O A c}, 4 \mathbf{b} \cdot \mathbf{B r}$, respectively), filtered through a short pad of Celite and concentrated under vacuum (1 mL). Upon the addition of $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ or pentane $(\mathbf{4 a} \cdot \mathbf{O A c})$ a suspension formed which was 25 filtered and the yellow or pale $\tan (\mathbf{4 a} \cdot \mathbf{O A c})$ solid collected was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ or pentane $(\mathbf{4 a} \cdot \mathbf{O A c}, 2 \times 3 \mathrm{~mL})$ and dried by suction. In the case of $\mathbf{4 a} \cdot \mathbf{B r}$, a second crop precipitated when n -hexane (15 mL) was added to the concentrated filtrate. $\mathbf{4 b} \cdot \mathbf{B r}$ was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathbf{4 a} \cdot \mathbf{C l}$: Yield, $55 \mathrm{mg}, 0.11 \mathrm{mmol}, 78 \%$. Mp: $160{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{OPdS}: \mathrm{C}, 52.71 ; \mathrm{H}, 3.82 ; \mathrm{N}, 5.59, \mathrm{~S}, 6.40$. Found: C, 52.79; H, 3.75; $\mathrm{N}, 5.52, \mathrm{~S}, 6.31$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{N})$, 2199; $v(\mathrm{C}=\mathrm{O}), 1650 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1591,1578,1555$; $v(\mathrm{PdCl}), 267 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.21$ (s, $6 \mathrm{H}, \mathrm{Me}$, ${ }_{35} \mathrm{Xy}$), $5.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 7.03(\mathrm{~d}, 2 \mathrm{H}$, meta-CH, Xy), 7.11 (ddd, $\left.1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.17-7.21(\mathrm{~m}$, 3 H , meta- $\mathrm{CH}, \mathrm{Ph}+$ para-CH, Xy), 7.24 (m, 1 H, para- Ph), 7.57 $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H} 3, \operatorname{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9 \mathrm{~Hz}\right), 7.65\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 4, \operatorname{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.90(\mathrm{~m}, 2 \mathrm{H}$, ortho-Ph$), 9.04(\mathrm{dm}$, ${ }_{40} 1 \mathrm{H}, \mathrm{H} 6$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 18.5 (Me, Xy), 45.6 ($\left.\mathrm{CH}^{\mathrm{Pd}}\right), 119.9$ (CH5, pyl), 120.3 (CH3, pyl), 127.7 (ortho-CH, Ph), 127.8 (meta-CH, Xy), 128.1 (meta-CH, Ph), 129.9 (para-CH, Xy), 131.9 (para-CH, Ph), 135.5 (ortho-C, Xy), 137.5 (ipso-C, Ph), 138.4 (CH4, pyl), 151.0 (CH6, pyl), ${ }_{45} 173.0$ (CS), 196.5 (C=O).

4a•Br: Yield, $95 \mathrm{mg}, 0.17 \mathrm{mmol}, 87 \% . \mathrm{Mp}: 159{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{OPdS}: \mathrm{C}, 48.42 ; \mathrm{H}, 3.51 ; \mathrm{N}, 5.13, \mathrm{~S}, 5.87$. Found: C, 48.35; H, 3.28; N, 5.12, S, 5.72. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{N})$, 2196; $v(\mathrm{C}=\mathrm{O}), 1648 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1591,1578,1555 .{ }^{1} \mathrm{H}$ ${ }_{50}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.22(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}), 5.80(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}^{\mathrm{Pd}}\right), 7.03\left(\mathrm{~d}, 2 \mathrm{H}\right.$, meta- $\left.\mathrm{CH}, \mathrm{Xy},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.10(\mathrm{ddd}, 1 \mathrm{H}$, H 5, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}$), 7.15-7.25 (various m, 4 H , meta- $\mathrm{CH}, \mathrm{Ph}+$ para- $\mathrm{CH}, \mathrm{Ph}+$ para $-\mathrm{CH}, \mathrm{Xy}$), $7.58\left(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 3\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right), 7.64\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 4, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.{ }_{55}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.89(\mathrm{~m}, 2 \mathrm{H}$, ortho-Ph), 9.24 (dm, $1 \mathrm{H}, \mathrm{H} 6$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}): $\delta 18.6$ (Me, Xy), $47.3\left(\mathrm{CH}^{\mathrm{Pd}}\right.$), 120.2 (CH5, pyl), 120.4 (CH3, pyl), 127.7 (ortho-CH, Ph), 127.8 (meta-CH, Xy), 128.2
(meta-CH, Ph), 129.9 (para-CH, Xy), 131.9 (para-CH, Ph), ${ }_{60} 135.5$ (ortho-C, Xy), 137.7 (ipso-C, Ph), 138.4 (CH4, pyl), 152.5 (CH6, pyl), 172.8 (CS), 196.1 (CO).
4a•OAc: Yield, $98 \mathrm{mg}, 0.19 \mathrm{mmol}, 75 \% . \mathrm{Mp}: 145{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ PdS: C, 54.92; H, 4.22; N, 5.34, S, 6.11. Found: C, 54.71; H, 3.91; N, 5.31, S, 5.99. IR $\left(\mathrm{cm}^{-1}\right): \mathrm{v}(\mathrm{C} \equiv \mathrm{N})$, ${ }_{65} 2209$; $v(\mathrm{C}=\mathrm{O}), 1642 ; v_{\text {asym }}\left(\mathrm{CO}_{2}\right), 1620 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1591$, 1553. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.04$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{OAc}$), 2.19 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Xy}$), $5.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 7.00(\mathrm{~d}, 2 \mathrm{H}$, meta-CH, $\left.\mathrm{Xy},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right), 7.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6\right.$ $\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}$), 7.14-7.17 (various m, 3 H , meta-CH, $\mathrm{Ph}+$ ${ }_{70}$ para $\left.-\mathrm{CH}, \mathrm{Ph}\right), 7.21\left(\mathrm{~d}, 1 \mathrm{H}\right.$, para $\left.-\mathrm{CH}, \mathrm{Xy},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right), 7.53(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H} 3$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.64\left(\right.$ ddd, $1 \mathrm{H}, \mathrm{H} 4$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.90(\mathrm{~m}, 2 \mathrm{H}$, ortho-Ph$), 8.36(\mathrm{dm}, 1$ H, H6, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $18.4(\mathrm{Me}, \mathrm{Xy}), 23.8(\mathrm{Me}, \mathrm{OAc}), 41.7\left(\mathrm{CH}^{\mathrm{Pd}}\right), 119.4$ (CH5, pyl), 120.3 (CH3, pyl), 127.7 (ortho-CH, Ph), 127.8 (meta-CH, Xy), 128.1 (meta-CH, Ph), 129.7 (para-CH, Xy), 131.8 (para-CH, Ph), 135.6 (ortho-C, Xy), 137.7 (ipso-C, Ph), 138.4 (CH4, pyl), 149.3 (CH6, pyl), 173.8 (CS), 176.4 ($\left.\mathrm{CO}_{2}, \mathrm{OAc}\right), 198.1$ (CO).
$\mathbf{4 b} \cdot \mathbf{B r}$: Yield, $202 \mathrm{mg}, 0.28 \mathrm{mmol}, 78 \%$. Mp: $232{ }^{\circ} \mathrm{C}$ ${ }_{80}$ (decomp). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{31}$ BrNOPPdS: C, $56.80 ; \mathrm{H}, 4.35$; N, 1.95: S, 4.46. Found: C, 56.56; H, 4.35; N, 1.92; S, 4.19. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1644 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1588,1555 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}, \mathrm{Tol}), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HP}}=3 \mathrm{~Hz}\right), 7.07-7.13(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Tol}+\mathrm{Ph}+\mathrm{pyl}), 7.30-7.37(\mathrm{~m}, 6$ $\left.{ }_{85} \mathrm{H}, \mathrm{Tol}\right), 7.54\left(\mathrm{t}, \mathrm{br}, 1 \mathrm{H}, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.60\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 9.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.4 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.3$ (Me, Tol), $51.3\left(\mathrm{CH}^{\mathrm{Pd}}\right), 120.21(\mathrm{CH} 5$, pyl), 120.23 (CH3, pyl), 127.6 (ortho-CH, Ph), 128.0 (meta-CH, Ph), ${ }_{90} 128.2$ (d, ipso-C, Tol, ${ }^{1} \mathrm{~J}_{\mathrm{CP}}=46 \mathrm{~Hz}$), 128.9 (d, meta-CH, Tol, ${ }^{3} \mathrm{~J}_{\mathrm{CP}}$ $=12 \mathrm{~Hz}), 131.1$ (para-CH, Ph), 134.6 (d, ortho- $\mathrm{CH}, \mathrm{Tol},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=$ $12 \mathrm{~Hz}), 137.5$ (CH4, pyl), 139.1 (ipso-C, Ph), 140.7 (d, para-CH, Tol, ${ }^{4} \mathrm{~J}_{\mathrm{CP}}=2 \mathrm{~Hz}$), 152.2 (CH6, pyl), 170.4 (CS), 196.8.1 (C=O).
Synthesis of [Pd\{N,C-pyl-SCHC(O)Ph\}Br(dmso)] (4c•Br). ${ }_{95}$ To a suspension containing $\mathbf{1} \cdot \mathbf{B r}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added dmso ($0.15 \mathrm{~mL}, 2.11 \mathrm{mmol}$). After 2 h , of stirring, the resulting solution was concentrated under vacuum to 2 mL and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. Partial evaporation of the solvents' mixture under vacuum, and the concomitant cooling, 100 caused the precipitation of a yellow solid which was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and dried by suction to give $\mathbf{4 c} \cdot \mathbf{B r}$. Yield, $95 \mathrm{mg}, 0.19 \mathrm{mmol}, 80 \% . \mathrm{Mp}: 138{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}_{2} \mathrm{Pd}: \mathrm{C}: 36,56 ; \mathrm{H}: 3.27$; $\mathrm{N}, 2.84$; $\mathrm{S}: 13.01$. Found: C: 36,63 ; H: 3.47; N, 2.92; S: 12.98. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1643$; $105 v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1588,1577 ; v(\mathrm{~S}=\mathrm{O})$, 1117. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c} \cdot \mathbf{B r}$ in dmso- d_{6} is identical to that of $\mathbf{1} \cdot \mathbf{B r}$ in the same solvent.

Synthesis of [Pd\{C,N-pyl-SCHC(O)Ph\}(O,O'-acac)] (5). To a suspension of $\mathbf{1} \cdot \mathbf{B r}(106 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ 110 was added $\mathrm{Tl}(\mathrm{acac})(77.6 \mathrm{mg}, 0.26 \mathrm{mmol})$. A yellow suspension immediately formed which was stirred for 1 h and then filtered. The solution was concentrated under vacuum to $c a 2 \mathrm{~mL}$ and n hexane (20 mL) was added. The resulting suspension was filtered, and the solid collected was washed with n-hexane 2 mL 115 and dried, first by suction and then in an oven at $70^{\circ} \mathrm{C}$ for 2 h to give 5 as a yellow solid. Yield, $89 \mathrm{mg}, 0.20 \mathrm{mmol}, 80 \%$. Mp: 188
${ }^{\circ} \mathrm{C}$ (decomp). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{PdS}: \mathrm{C}, 49.84 ; \mathrm{H}, 3.95$; N, 3.23, S, 7.39. Found: C, 49.56; H, 3.80; N, 3.27, S, 7.36. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1637 ; v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1578,1557 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.67$ ($\mathrm{s}, \mathrm{Me}, \mathrm{acac}$), 1.95 ($\mathrm{s}, \mathrm{Me}, \mathrm{acac}$), 5.20 ${ }_{5}\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{acac}), 6.93$ (ddd, $1 \mathrm{H}, \mathrm{H} 5$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}$), 7.31-7.59 (various $\mathrm{m}, 5$ H , pyl +Ph), $8.05(\mathrm{~m}, 2 \mathrm{H}$, ortho -Ph$), 8.24(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 6$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.2(\mathrm{Me}$, acac), 27.4 (Me, acac), $41.7\left(\mathrm{CH}^{\mathrm{Pd}}\right)$, $100.1(\mathrm{CH}$, acac), 118.8 10 (CH5, pyl), 120.7 (CH3, pyl), 127.2 (ortho- CH, Ph), 128.9 (metaCH, Ph), 131.6 (para-CH, Ph), 137.4 (CH4, pyl), 137.9 (ipso-C, Ph), 148.8 (CH6, pyl), 176.9 (CS), 185.334 (CO, acac), 187.2 (CO, acac), 197.1 (C=O).

Synthesis of $\operatorname{PPN}\left[\mathbf{P d}\{\boldsymbol{C}, \boldsymbol{N}\right.$-pyl-SCHC(O)Ph $\left.\} \mathrm{Br}_{2}\right]$ (6). To a 15 suspension of $\mathbf{1} \cdot \mathbf{B r}(62 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added [PPN]Br $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(105.2 \mathrm{mg}, 0.15 \mathrm{mmol})$. The resulting solution was stirred for 30 min , filtered through a short pad of Celite and concentrated under vacuum (1 mL). Upon the addition of $\mathrm{Et}_{2} \mathrm{O}$ a suspension formed which was filtered. The solid 20 collected was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{6}$ as an orange solid. Yield, $135 \mathrm{mg}, 0.13 \mathrm{mmol}, 87 \% \mathrm{Mp}: 97{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{PdS}: \mathrm{C}, 56.97$; H, 3.90; N, 2.71; S, 3.10. Found: C, $56.90 ; H, 3.91 ; \mathrm{N}, 2.87 ; \mathrm{S}, 3.07$. IR $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{C}=\mathrm{O}), 1630 ; v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1586,1575,1552 .{ }^{1} \mathrm{H}$ NMR (200 ${ }_{25} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 6.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4$, pyl), 7.277.44 (various m, $7 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 5$, pyl, +Ph), 7.48 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{PPN}$), 7.67 (m, $6 \mathrm{H}, \mathrm{PPN}), 8.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (81 MHz, CDCl_{3}): δ 21.2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 42.9\left(\mathrm{CH}^{\mathrm{Pd}}\right), 119.2(\mathrm{CH} 5, \mathrm{pyl}), 120.2(\mathrm{CH} 3$, pyl), 127.2 30 (ortho-CH, Ph), 127.9 (ipso-C, PPN), 129.4 (meta-CH, Ph), 129.6 (meta-CH, PPN), 130.9 (para-CH, Ph), 132.0 (ortho-PPN), 133.8 (para-PPN), $136.2\left(\mathrm{CH}^{4}\right.$, pyl), 137.9 (ipso-C, Ph), 144.2 (CH6, pyl), CS, C=O not observed.

Synthesis of $\left[\mathbf{P d}\{\boldsymbol{C}, \boldsymbol{C}, \boldsymbol{N}\right.$-pyl-SCHC(O)Ph $\left.\}\left(\mathbf{P P h}_{3}\right)\right]$ (7a). To a ${ }_{35}$ solution of $\mathrm{PPh}_{3}(95 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added complex $2(136 \mathrm{mg}, 0.36 \mathrm{mmol})$. The resulting brownorange solution was stirred for 1 h , concentrated to $c a .2 \mathrm{~mL}$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to give a solid which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ to give 7a as a pale brown solid. Yield, ${ }_{40} 181 \mathrm{mg}, 0.31 \mathrm{mmol}, 85 \%$. Mp: $205{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{24}$ NOPPdS: C, 62.48 ; H, 4.06; N, 2.35; S, 5.38. Found: C, 62.53; H, 4.18; N, 2.59, S, 5.86. IR ($\left.\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O}), 1634$; $v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1588,1576,1548 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=12 \mathrm{~Hz}\right), 6.15-6.19(\mathrm{~m}, 1 \mathrm{H})$, ${ }_{45}$ 6.51-6.53 (m, 1 H$), 6.90-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.26(\mathrm{~m}, 14 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 67.4\left(\mathrm{~d}, \mathrm{CH}^{\mathrm{Pd}},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=72 \mathrm{~Hz}\right), 117.3(\mathrm{CH}), 121.5(\mathrm{CH})$, $123.9(\mathrm{CH}), 124.3(\mathrm{CH}), 128.0\left(\mathrm{~d}, \mathrm{CH},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=2 \mathrm{~Hz}\right), 128.5(\mathrm{~d}$, $\left.\mathrm{CH},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=10 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, \mathrm{CH}^{2} \mathrm{~J}_{\mathrm{CP}}=2 \mathrm{~Hz}\right), 131.4(\mathrm{C}), 132.1$ ${ }_{50}(\mathrm{C}), 134.8\left(\mathrm{~d}, \mathrm{CH}, \mathrm{J}_{\mathrm{CP}}=14 \mathrm{~Hz}\right), 135.8(\mathrm{CH}), 136.9\left(\mathrm{~d}, \mathrm{CH}, \mathrm{J}_{\mathrm{CP}}=\right.$ $12 \mathrm{~Hz}), 147.2\left(\mathrm{~d}, \mathrm{C}, \mathrm{J}_{\mathrm{CP}}=9 \mathrm{~Hz}\right), 147.6(\mathrm{C}), 151.2\left(\mathrm{~d}, \mathrm{CH},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=\right.$ 2.82 Hz), $177.4(\mathrm{CS}), 195.8\left(\mathrm{~d}, \mathrm{CO}, \mathrm{J}_{\mathrm{CP}}=6 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.8$ (s). Mass spectrum $\left(\mathrm{FAB}^{+}\right) m / z(\%$ abundance) $595.89\left(\mathrm{M}^{+}, 10.43 \%\right)$. Molecular weight in ${ }_{55}$ chloroform, 560.

Synthesis of $\left[\mathbf{P d}\left\{C, C, N-\right.\right.$ pyl-SCHC $\left.\left.(O) \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{2}\right\}\left({ }^{(} \mathrm{BuNC}\right)\right]$ (7b). To a suspension of $\mathbf{2}(c a .0 .1-0.5 \mathrm{mmol})$ in acetone (10-20 mL) one equivalent of ${ }^{\mathrm{t}} \mathrm{BuNC}$ was added. The resulting red
brown solution was stirred for 1 h , concentrated (2 mL) and n ${ }_{60}$ hexane $(15 \mathrm{~mL})$ added to precipitate a dark red solid which was filtered and air dried. Yield, $204 \mathrm{mg}, 0.49 \mathrm{mmol}, 92 \%$. Mp: 158 ${ }^{\circ} \mathrm{C}$. Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OPdS}: \mathrm{C}, 51.87 ; \mathrm{H}, 4.35 ; \mathrm{N}, 6.72 ; \mathrm{S}$, 7.69%. Found: C, $51.65 ; \mathrm{H}, 4.76 ; \mathrm{N}, 7.12, \mathrm{~S}, 7.38$. IR $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{C} \equiv \mathrm{N}), 2179 ; v(\mathrm{C}=\mathrm{O}), 1636 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1583,1568$,
${ }_{65} 1546 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.65\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}\right), 5.57$ (s, $1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}$), $6.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5, \mathrm{pyl}), 7.10-7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 7.27-7.54 (m, 4 H, pyl $\left.+\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=5$ Hz). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.4\left(\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 57.6 (CMe_{3}), $61.7\left(\mathrm{CH}^{\mathrm{Pd}}\right), 118.5$ (CH5, pyl), 121.7 (CH4, pyl), 124.6 ${ }_{70}\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 125.3\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3(\mathrm{C}), 129.7\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $136.3(\mathrm{CH} 3$, pyl $), 137.5\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 147.8\left(\mathrm{Pd}-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 148.4$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 150.5(\mathrm{CH} 6$, pyl), $177.0(\mathrm{CS}), 196.7(\mathrm{CO})$. Mass spectrum (FAB^{+}) m/z (\% abundance) $416.86\left(\mathrm{M}^{+}, 27.34 \%\right)$, 333.77 (M^{+}- ${ }^{\mathrm{t}} \mathrm{BuNC}, 16.38 \%$).
${ }_{75}$ Synthesis of [Pd\{C,C,N-pyl-SCHC(O)C $\left.\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{- 2 \}}(\mathbf{C N X y})\right](7 \mathbf{c})$. To a suspension of complex $3(51 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ $\mathrm{mL})$ was added dropwise a solution of $\mathrm{XyNC}(20.1 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in the same solvent (5 mL). After 1 h of stirring, the resulting solution was filtered through a short pad of Celite, ${ }_{80}$ concentrated to 1 mL and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The suspension was filtered and the solid collected was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ to give $7 \mathrm{c}(52 \mathrm{mg}, 0.11 \mathrm{mmol})$ as an off white solid which was dried by suction. Yield, $52 \mathrm{mg}, 0.11 \mathrm{mmol}$, 72%. Mp: $160{ }^{\circ} \mathrm{C}$. Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{OPdS} \mathrm{C}, 52.71$; H , ${ }_{85} 3.82$; N, 5.69; S, 6.40. Found: C, 52.79 ; H, 3.75; N, 5.52, S, 6.31. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{N}), 2199 ;(\mathrm{C}=\mathrm{O}), 1650 ; v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1591$, 1578, 1555. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.53$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$, Xy), $5.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 6.87$ (ddd, $1 \mathrm{H}, \mathrm{H} 5$, pyl, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.20(\mathrm{~d}, 2 \mathrm{H}$, ${ }_{90}$ meta-Xy, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.32\left(\mathrm{dd}, 1 \mathrm{H}\right.$, para-Xy, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}$ $=7 \mathrm{~Hz}), 7.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 7.48(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 4$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 7.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $8.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 19.1(\mathrm{Me}, \mathrm{Xy}), 62.5\left(\mathrm{CH}^{\mathrm{Pd}}\right), 118.6$ (CH5, pyl), 121.9 $95\left(\mathrm{CH} 3\right.$, pyl), $124.8\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 125.5\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.1$ (ipso-C, Xy), 128.5 (meta-CH, Xy), $129.8\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 129.9$ (para-CH, Xy), 135.5 (ortho-C, Xy), 136.5 (CH4, pyl), 147.7 ($\mathrm{Pd}-C, \mathrm{C}_{6} \mathrm{H}_{4}$), $148.5\left(\mathrm{C}(\mathrm{O}) \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 150.8(\mathrm{CH} 6$, py), $177.0(\mathrm{CS}), 196.8(\mathrm{CO})$. Crystals of 7c suitable for an X ray diffraction study were 100 obtained by the liquid diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$.

Synthesis of $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Pd}\left\{C, C, N\right.\right.$-pyl-SCHC(O)C $\left.\left.\mathbf{C}_{6} \mathrm{H}_{4}-\mathbf{2}\right\} \mathrm{Cl}\right]$ (8). To a suspension of $2(144 \mathrm{mg}, 0.38 \mathrm{mmol})$ in acetone (20 mL), solid $\mathrm{Me}_{4} \mathrm{NCl}$ ($42 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added. The resulting suspension was stirred for 7 h , the solvent was then removed 105 under vacuum and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were filtered through Celite. Concentration of the brown-orange solution under vacuum (to $c a$. $2 \mathrm{~mL})$ and addition of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ gave a solid that was filtered and dried in an oven at $80^{\circ} \mathrm{C}$ overnight to give $\mathbf{8}$ as an orange110 brown solid. Yield $159 \mathrm{mg}, 0.36 \mathrm{mmol}, 94 \% . \mathrm{Mp}: 178{ }^{\circ} \mathrm{C}$. Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OPdS}: \mathrm{C}, 46.06$; $\mathrm{H}, 4.78$; N, 6.32; S, 7.23. Found: C, 46.15; H, 5.08; N, 6.50; S, 6.97. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})$, 1637; $v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1582,1568,1547 ; v(\mathrm{PdCl})$, 293. $\Lambda_{\mathrm{M}}, 61$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.15(\mathrm{~s}, 12 \mathrm{H}$, ${ }_{115} \mathrm{NMe}_{4}$), $5.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 6.85\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H} 5, \operatorname{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2 \mathrm{~Hz}\right), 6.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.26-7.30(\mathrm{~m}, 1$

H, H3, pyl), 7.33-7.53 (m, $3 \mathrm{H}, \mathrm{pyl}+\mathrm{C}_{6} \mathrm{H}_{4}$), $7.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 8.90\left(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.9\left(\mathrm{t}, \mathrm{NMe}_{4},{ }^{1} \mathrm{~J}_{\mathrm{CN}}=4 \mathrm{~Hz}\right.$), $58.2\left(\mathrm{~s}, \mathrm{CH}^{\mathrm{Pd}}\right)$, 118.4 (CH5, pyl), $120.8\left(\mathrm{CH} 3\right.$, pyl), $123.8\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.7$ ${ }_{5}\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.9\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 136.2(\mathrm{CH} 4, \mathrm{pyl}), 136.8(\mathrm{CH})$, $147.4\left(\mathrm{Pd}-C, \mathrm{C}_{6} \mathrm{H}_{4}\right), 150.0\left(\mathrm{CH} 6\right.$, pyl), 151.1 (C(O)C, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 174.1 (CS), 198.6 (s, CO). Mass spectrum (FAB^{+}) m/z (\% abundance): $333.81\left(\mathrm{M}^{+}-\mathrm{NMe}_{4} \mathrm{Cl}, 7.25 \%\right)$.

Synthesis of $\left[\boldsymbol{S}, \mathrm{O}-\left\{\mathbf{P d}\left\{\boldsymbol{C}, \mathrm{C}, \mathrm{N}-\mathrm{pyl}-\mathrm{SCHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\left.\left.{ }_{10} \mathbf{2}\right\} \mathbf{C l}\right\}\{\mathbf{P d}(\mu-\mathbf{C l})\}\right]_{2}(\mathbf{9})$. To a suspension of $\mathbf{2}(203 \mathrm{mg}, 0.54 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ was added solid $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right](208 \mathrm{mg}$, 0.54 mmol). Immediately an orange suspension formed which was stirred for 1 h . It was then filtered and the solid washed with acetone ($3 \times 5 \mathrm{~mL}$) to give a solid. A second crop was obtained 15 upon concentration of the mother liquor. Complex 9 was obtained as an orange solid by treating both samples in an oven at $80^{\circ} \mathrm{C}$ overnight. Yield $267 \mathrm{mg}, 0.26 \mathrm{mmol}, 97 \%$. Mp: $267^{\circ} \mathrm{C}$. Anal Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{4} \mathrm{~S}_{2}$: C, 30.56; H, 1.78; N, 2.74; S, 6.27. Found: $\mathrm{C}, 31.06 ; \mathrm{H}, 2.00 ; \mathrm{N}, 2.80 ; \mathrm{S}, 6.06$. IR $\left(\mathrm{cm}^{-1}\right)$: ${ }_{20} v(\mathrm{C}=\mathrm{O}), 1638 ; v(\mathrm{C}=\mathrm{C}),(\mathrm{C}=\mathrm{N}), 1587,1569,1541 ; v(\mathrm{PdCl}), 322$, 265. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{dmso}^{2}$): $\delta 4.62$ (s, br, $1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}$), 6.88.1 (various overlapping multiplets, 4 H , pyl $+\mathrm{C}_{6} \mathrm{H}_{4}$), $8.55(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{H} 6$, py, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}$). Minor resonances are observed for another isomer at $5.64\left(\mathrm{~s}, 0.2 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 8.50(\mathrm{~m}, \mathrm{br}, 0.2 \mathrm{H}, \mathrm{H} 6$, $\left.{ }_{25} \mathrm{pyl}\right)$). The remaining resonances are obscured by those of the major isomer.

Synthesis of $\left[S, O-\left\{P d\left\{C, C, N-p y l-S C H C(O) C_{6} \mathbf{H}_{4}-\right.\right.\right.$ $\mathbf{2}\} \mathbf{C l}\}\left\{\mathbf{P d}(\mathbf{C l})\left(\mathbf{P P h}_{3}\right\}\right] \mathbf{(1 0)}$. To a solution of $\mathbf{7 a}(80 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solid $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right](52 \mathrm{mg}, 0.13$ ${ }_{30} \mathrm{mmol}$) was added. An orange color developed immediately and the solution was stirred for 20 h . It was filtered through anhydrous MgSO_{4}, concentrated under vacuum (to $c a .2 \mathrm{~mL}$) and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ added to give $\mathbf{1 0}$ as a yellow solid. Yield 63 mg , $0.26 \mathrm{mmol}, \quad 61 \%$. Mp: $210{ }^{\circ} \mathrm{C}$. Anal Calcd for ${ }_{35} \mathrm{C}_{31} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NOPPd}_{2} \mathrm{~S}: 48.15 ; \mathrm{H}, 3.13 ; \mathrm{N}, 1.81 ; \mathrm{S}, 4.15$. Found: C, 47.96; H, 3.03; N, 1.85, S, 3.98. IR (cm^{-1}): $v(\mathrm{C}=\mathrm{O})$, 1634; $v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1583,1565,1546 ; v(\mathrm{PdCl}), 355,255 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.75\left(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Pd}}\right), 6.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5$, pyl), $7.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.27(\mathrm{~m}, 1 \mathrm{H}$, pyl), 7.30-7.65 (m, 14 H ,
${ }_{40} \mathrm{C}_{6} \mathrm{H}_{4}+$ ortho- + meta- $\left.\mathrm{PPh}_{3}\right) 7.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}+\right.$ para- $\left.\mathrm{PPh}_{3}\right)$, $8.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{pyl},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right), 8.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6\right.$, pyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 45.9\left(\mathrm{CH}^{\mathrm{Pd}}\right), 122.9(\mathrm{CH}), 124.89$ $(\mathrm{CH}), 125.25(\mathrm{CH}), 128.44\left(\mathrm{CH}, \mathrm{PPh}_{3}\right), 128.66(\mathrm{CH}), 129.58(\mathrm{C})$, $130.43(\mathrm{C}), 130.68\left(\mathrm{CH}, \mathrm{PPh}_{3}\right), 131.13\left(\mathrm{~d}\right.$, ortho- $\mathrm{CH}, \mathrm{PPh}_{3},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=$ $\left.{ }_{45} 1 \mathrm{~Hz}\right), 134.81(\mathrm{CH}), 135.03\left(\mathrm{CH}, \mathrm{PPh}_{3}\right), 138.64(\mathrm{CH}), 140.00(\mathrm{C})$, 150.5 (CH6, pyl), 175.2 (CS), 187.0 (CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.79$ (s).

Synthesis of $\left[S, O-\left\{P d\left\{C, C, N-p y l-S C H C(O) C_{6} H_{4}-\right.\right.\right.$ $\left.\left.\mathbf{2 \}}\left(\mathbf{P P h}_{3}\right)\right\} \mathbf{A g}\left(\mathbf{P P h}_{3}\right) \mathbf{C l O}_{4}\right]$ (11). To a suspension of $\mathbf{7 a}(115 \mathrm{mg}$, ${ }_{50} 0.19 \mathrm{mmol}$) in acetone (20 mL) solid $\mathrm{AgClO}_{4}(40 \mathrm{mg}, 0.19$ mmol) was added. After 10 min of stirring a solution of PPh_{3} ($101 \mathrm{mg}, 0.39 \mathrm{mmol}$) in acetone (20 mL) was added and the resulting suspension was stirred for 24 h . It was filtered through Celite, the pale orange solution was concentrated under vacuum 55 (to $c a .2 \mathrm{~mL}$) and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to give a solid which was recrystallized from CHCl_{3} and $\mathrm{Et}_{2} \mathrm{O}$ and dried in an oven at $80^{\circ} \mathrm{C}$ overnight to give $\mathbf{1 1}$ as a pale brown solid. Yield 119 mg , 0.11 mmol , 59%. Mp: $154{ }^{\circ} \mathrm{C}$. Anal Calcd for
$\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{AgClNO}_{5} \mathrm{P}_{2} \mathrm{PdS}: \mathrm{C}, 55.23 ; \mathrm{H}, 3.69 ; \mathrm{N}, 1.31 ; \mathrm{S}, 3.01$. ${ }_{60}$ Found: C, 54.88 ; H, 3.68; N, 1.13; S, 2.78. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{O})$, 1652; $v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}), 1586,1573,1558, \mathrm{ClO}_{4}, 1190,622 . \Lambda_{\mathrm{M}}$ (acetone) $=118 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}^{\text {Pd }},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=10.2 \mathrm{~Hz}\right), 6.41-6.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4$, py $)$, 7.68-7.16 (m, 37 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 62.4$ $\left(\mathrm{CH}^{\mathrm{Pd}}\right), 119.7(\mathrm{CH}), 122.3(\mathrm{CH}), 124.3(\mathrm{CH}), 124.6(\mathrm{CH}), 129.2$ (CH), 130.2 (C), 130.7 (C), 130.9 (CH), 131.00 (CH), 132.0 $(\mathrm{CH}), 132.1(\mathrm{CH}), 133.8(\mathrm{CH}), 134.9(\mathrm{CH}), 135.0(\mathrm{CH}), 137.8$ (CH), 147.3 (C), $151.6(\mathrm{CH}), 174.2(\mathrm{CS}), 194.6(\mathrm{CO}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$, see Discussion): $\delta\left(20^{\circ} \mathrm{C}\right) 11.5$ (v br, $\left.70 \mathrm{AgPPh}_{3}\right), 15.5\left(\mathrm{v} \mathrm{br}, \mathrm{AgPPh}_{3}\right), 31.0\left(\mathrm{~s}, \mathrm{PdPPh}_{3}\right) ;\left(-60{ }^{\circ} \mathrm{C}\right) \delta 12.0$ [two d, $\operatorname{AgPPh}_{3}, \mathrm{~J}\left({ }^{109} \mathrm{Ag}^{31} \mathrm{P}\right)=564 \mathrm{~Hz}, \mathrm{~J}\left({ }^{107} \mathrm{Ag}^{31} \mathrm{P}\right)=489 \mathrm{~Hz}$], 12.7 (br, AgPPh_{3}), 18.1 (br, AgPPh_{3}), 32.6 (s, PdPPh_{3}), 34.0 (s, PdPPh_{3}). Mass spectrum (FAB^{+}) m/z (\% abundance): $966\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{ClO}_{4}, 5.34 \%\right) ; 595.97\left(\mathrm{M}^{+}-\mathrm{AgClO}_{4}-\mathrm{PPh}_{3}\right)$.
75

Acknowledgments

We thank Ministerio de Educación y Ciencia (Spain), FEDER (CTQ2011-24016) and Fundación Séneca (04539/GERM/06 and 03059/PI/05) for financial support.
${ }^{a}$ Grupo de Quimica Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, 30071 Murcia, Spain; E-mail: mch@um.es, jvs1@um.es
${ }^{b}$ SAI, Universidad de Murcia, Apartado 4021, 30071 Murcia, Spain; E85 mail:dbc@um.es
\dagger Electronic Supplementary Information (ESI) available: Crystallographic data for compounds $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3}, \mathbf{1} \cdot \mathbf{A c O}$ and $\mathbf{7 c}$. CCDC 1001641 for $\mathbf{1} \cdot \mathbf{B r} \cdot \mathrm{CHCl}_{3} ; 1001642$ for $\mathbf{1} \cdot \mathbf{A c O} ; 1001640$ for 7c. For ESI and crystallographic data in CIF format see DOI: 10.1039/b000000x/

Notes and references

1 L. A. Hegedus, Tetrahedron, 1984, 40, 2415; R. D. O'Sullivan and A. W. Parkins, J. Chem. Soc., Chem. Commun., 1984, 1165; A.

95 D. Ryabov, Synthesis, 1985, 233; I. R. Girling and D. A. Widdowson, J. Chem. Soc. Perkin Trans 1, , 1988, 1317; M. Pfeffer, Recl. Trav. Chim. Pays-Bas, 1990, 109, 567; M. Pfeffer, Pure Appl. Chem., 1992, 64, 335; J. Vicente, J.-A. Abad and J. Gil-Rubio, J. Organomet. Chem., 1992, 436, C9; P. Ballester, M. Capo, X. Garcias and J. M. Saa, J. Org. Chem., 1993, 58, 328; J. Vicente, J. A. Abad, J. Gil-Rubio and P. G. Jones, Organometallics, 1995, 14, 2677; J. Vicente, J. A. Abad and J. Gil-Rubio, Organometallics, 1996, 15, 3509; M. A. Stark and C. J. Richards, Tetrahedron Lett., 1997, 38, 5881; S. E. Denmark, R. A. Stavenger, A. M. Faucher and J. P. Edwards, J. Org. Chem., 1997, 62, 3375; M. Ohff, A. Ohff, M. E. van der Boom and D. Milstein, J. Am. Chem. Soc., 1997, 119, 11687; P. Steenwinkel, R. A. Gossage and G. van Koten, Chem. Eur. J., 1998, 4, 759; J. Vicente, J.-A. Abad, J. LopezSerrano, P. G. Jones, C. Najera and L. Botella-Segura, Organometallics, 2005, 24, 5044; K. Godula and D. Sames, Science, 2006, 312, 67; J. Vicente, I. Saura-Llamas, J.-A. Garcia-Lopez, B. Calmuschi-Cula and D. Bautista, Organometallics, 2007, 26, 2768; K.-E. Lee, H.-T. Jeon, S.-Y.

Han, J. Ham, Y.-J. Kim and S. W. Lee, Dalton, 2009; X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed. Engl., 2009, 48, 5094; B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu and L. Liu, J. Am. Chem. Soc., 2011, 133, 1466; J.-A. Garcia-Lopez, M.-J. Oliva-Madrid, I. Saura-Llamas, D. Bautista and J. Vicente, Chem. Commun., 2012, 48, 6744.
2 W. A. Herrmann, C. Brossmer, K. Ofele, C. P. Reisinger, T. Priermeier, M. Beller and H. Fischer, Angew. Chem., Int. Ed. Engl., 1995, 34, 1844.
3 T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 1147.
M. Chiang, Y. Li, K. Deepa, S. Pulllarkat, K. H. Ng and P.-H. Leung, Eur. J. Inorg. Chem., 2010, 1413; Y. Ding, M. Chiang, S. A. Pulllarkat, Y. Li and P.-H. Leung, Organometallics, 2009, 28, 4358; M. Ogasawara, S. Arae, S. Watanabe, V. Subbarayan, H. Sato and T. Takahasi, Organometallics, 2013, 32, 4997; C. E. Barday, G. Deeble, R. J. Doyle, S. A. Elix, G. Salem, T. L. Jones, S. B. Wild and A. C. Willis, J. Chem. Soc., Dalton Trans., 1995, 57; M. Pabel, A. C. Willis and S. B. Wild, Angew. Chem., Int. Ed. Engl., 1994, 33, 1835; S. B. Wild, Coord. Chem. Rev., 1997, 166, 291; V. V. Dunina, L. G. Kuzmina, M. Y. Kazakova, Y. K. Grishin, Y. A. Veits and E. I. Kazakova, Tetrahedron: Asymmetry, 1997, 8, 2537; J. Albert, J. M. Cadena and J. Granell, Tetrahedron: Asymmetry, 1997, 8, 991; J. Spencer, F. Maassarani, M. Pfeffer, A. Decian and J. Fischer, Tetrahedron: Asymmetry, 1994, 5, 321.
C. Chen, E. Zhan, Y. Li and W. Shen, J. Mol. Catal., 2013, 379, 117; Q. Liu, Y.-A. Zhanng, P. Xu and Y. Jia, J. Org. Chem., 2013, 78, 10885; L. Chu, X.-C. Wang, C. E. Moore, A. L. Rheingold and Y. J.-Q., J. Am. Chem. Soc., 2013, 135, 16344; T. K. Hollis and L. E. Overman, Tetrahedron Lett., 1997, 38, 8837.
6 N. Usol'tseva, P. Espinet, J. Buey and J. L. Serrano, J. Mater. Chem., 1997, 7, 215; J. L. Serrano, 'Metallomesogens', VCH, 1996; N. J. Thompson, J. L. Serrano, M. J. Baena and P. Espinet, Chem. Eur. J., 1996, 214; D. P. Lydon and J. P. Rourke, Chem. Commun., 1997, 1741; F. Neve, M. Ghedini and A. Crispini, Chem. Commun., 1996, 2463; J. Barberá, P. Espinet, E. Lalinde, M. Marcos and J. L. Serrano, Liq. Cryst., 1987, 2, 833; P. Espinet, E. Lalinde, M. Marcos, J. Pérez and J. L. Serrano, Organometallics, 1990, 9, 555; P. Espinet, J. Pérez, M. Marcos, M. B. Ros, J. L. Serrano, J. Barberá and A. M. Levelut, Organometallics, 1990, 9, 2028; P. Espinet, J. Etxebarría, M. Marcos, J. Pérez, A. Remón and J. L. Serrano, Angew. Chem., Int. Ed. Engl., 1989, 28, 1065; A. El-ghayoury, L. Douce, A. Skoulios and R. Ziessel, Angew. Chem., Int. Ed. Engl., 1998, 37, 1255; B. Neumann, T. Hegmann, R. Wolf and C. Tschierske, Chem. Comunn., 1998, 105.

7 C. Bincoletto, I. L. S. Tersariol, C. R. Oliveira, S. Dreher, D. M. Fausto, M. A. Soufen, F. D. Nascimento and A. C. F. Caires, Bioorg. Med.Chem. , 2005, 13, 3047; D. Pucci, V. Albertini, R. Bloise, A. Bellusci, A. Cataldi, C. V. Catapano, M. Ghedini and A. Crispini, J. Inorg. Biochem., 2006, 100; A. I. Matesanz and P. Souza, J. Inorg. Biochem., 2007, 101; A. C. Moro, A. E. Mauro, A. V. G. Netto, S. R. Ananias, M. B. Quilles, I. Z. Carlos, F. R. Pavan, C. Q. F. Leite and M. D. Hörner, Eur. J. Med. Chem., 2009, 44, 4611; C. Navarro-Ranninger, I. LópezSolera, V. M. González, J. M. Pérez, A. Alvarez-Valdés, A.

Martín, P. Raithby, J. R. Masaguer and C. Alonso, Inorg. Chem., 1996, 35, 5181; A. G. Quiroga, J. M. Perez, I. LopezSolera, J. R. Masaguer, A. Luque, P. Román, A. Edwards, C. Alonso and C. Navarro-Ranninger, J. Med. Chem., 1998, 41, 1399.

8 N. Nebra, J. Lisena, N. Saffon, L. Maron, B. Martin-Vaca and D. Bourissou, Dalton Trans., 2011, 40, 8912.
9 G. R. Newkome, T. Kawato, D. K. Kohli, W. E. Puckett, B. D. Oliver, G. Chiari, F. R. Fronczek and W. A. Deutsch, J. Am. Chem. Soc., 1981, 103, 3423; G. R. Newkome, W. E. Puckett, G. E. Kiefer, V. K. Gupta, F. R. Fronczek, D. C. Pantaleo, G. L. McClure, J. B. Simpson and W. A. Deutsch, Inorg. Chem., 1985, 24, 811.
7010 G. R. Newkome, V. K. Gupta and F. R. Fronczek, Organometallics, 1982, 1, 907; G. R. Newkome, W. E. Puckett, V. K. Gupta and F. R. Fronczek, Organometallics, 1983, 2, 1247; Y. Nojima, M. Nonoyama and K. Nakajima, Polyhedron, 1996, 15, 3795; G. De Munno, M. Ghedini and F. Neve, Inorg. Chim. Acta, 1995, 239, 155; B. Galli, F. Gasparrini, L. Maresca, G. Natile and G. Palimieri, J. Chem. Soc., Dalton Trans., 1983, 1483; J. Forniés, R. Navarro, V. Sicilia and M. Tomas, Inorg. Chem., 1993, 32, 3675; A. D. Ryabov and A. K. Yatsimirsky, Inorg. Chem., 1984, 23, 789; A. G. Constable, W. S. McDonald, L.
80 C. Sawkins and B. L. Shaw, J. Chem. Soc. Dalton Trans.,, 1980, 1992; J. E. Baldwin, R. H. Jones, C. Nájera and M. Yus, Tetrahedron, 1985, 41, 699.
11 J. Dupont, R. A. P. Halfen, R. Schenato, A. Berger, M. Horner, A. Bortoluzzi and C. Maichlemossmer, Polyhedron, 1996, 15, 3465; A. Yoneda, T. Hakushi, G. R. Newcome and F. R. Fronczek, Organometallics, 1994, 13, 4912.
12 J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones and E. Bembenek, Organometallics, 1994, 13, 1243.
13 J. Vicente, M. T. Chicote, C. Rubio, M. C. Ramírez de Arellano and P. G. Jones, Organometallics, 1999, 18, 2750.

14 J. Vicente, M. T. Chicote, M. I. Lozano and S. Huertas, Organometallics, 1999, 18, 753.
15 M. T. Chicote, I. Vicente-Hernández, P. G. Jones and J. Vicente, Organometallics, 2012, 31, 6252; B. J. O'Keefe and P. J. Steel, Organometallics, 1998, 17, 3621; K. Hamamura, M. Kita, M. Nonoyama and J. Fujita, J. Organomet. Chem., 1993, 463, 169; I. G. Phillipps and P. J. Steel, J. Organomet. Chem., 1991, 410, 247; G. B. Caygill and P. J. Steel, J. Organomet. Chem., 1990, 395, 375; B. J. O'Keefe and P. J. Steel, Organometallics, 2003, 22, 1281; V. I. Sokolov, L. L. Troitskaya and V. L. Bondareva-Don, Molecules, 2005, 10; M. Mariño, J. Martínez, M. Caamaño, M. T. Pereira, J. M. Ortigueira, E. Gayoso, A. Fernández and J. M. Vila, Organometallics, 2012, 31, 890; D. J. Geest and S. P. J., Inorg. Chem. Commun., 1998, 1; S. Chakladar, P. Paul, A. K. Mukherjee, S. K. Dutta, K. K. Nanda, D. Podderb and K. Nag, J. Chem. Soc., Dalton Trans., 1992, 3119.

16 D.-H. Lee, J. Chen, J. W. Faller and R. H. Crabtree, Chem. Commun., 2001, 213.
11017 S. Musa, A. Shpruhman and D. Gelman, J. Organomet. Chem., 2012, 699, 92.

18 W. Weng, C.-H. Chen, B. M. Foxman and O. V. Ozerov, Organometallics, 2007, 26, 3315; S. Sjövall, O. F. Wendt and C. Andersson, J. Chem. Soc., Dalton Trans., 2002, 1396; R. Gerber, O. Blacque and C. M. Frech, ChemCatChem., 2009, 1, 393; M. Ciclosi, J. Lloret, F. Estevan, P. Lahuerta, M. Sanaú and J. Perez-Prieto, Angew. Chem., Int. Ed. Engl., 2006, 45, 6741
19 P. Oulié, N. Nebra, S. Ladeira, B. Martin-Vaca and D. Bourissou, Organometallics, 2011, 30, 6416.
1020 D. Solé, X. Solans and M. Font-Bardia, Dalton Trans., 2007, 4286.
21 J. Vicente, A. Arcas, F. Julia-Hernandez and D. Bautista, Angew. Chem., Int. Ed. Engl., 2011, 50, 6896; J. Vicente, A. Arcas, F. Julia-Hernandez and D. Bautista, Inorg. Chem., 2011, 50, 5339; F. Juliá-Hernández, A. Arcas and J. Vicente, Chem. Eur. J., 2012, 18, 7780.

22 J. Vicente, A. Arcas, F. Julia-Hernandez and D. Bautista, Chem. Comтип., 2010, 46, 7253.
23 A. Abellan-Lopez, M. T. Chicote, D. Bautista and J. Vicente, Organometallics, 2012, 31, 7434.
2024 G. Aragay, J. Pons, J. García-Antón, X. Solans, M. Font-Bardía and J. Ros, J. Organomet. Chem.,, 2008, 693, 3396; C. J. Wallis, I. L. Kraft, J. N. Murphy, B. O. Patrick and P. Mehrkhodavandi, Organometallics, 2009, 28, 3889.
25 J. Albert, M. Crespo, J. Granell, J. Rodriguez, J. Zafrilla, T. Calvet, M. Font-Bardia and X. Solans, Organometallics, 2010, 29, 214; A. Bohm and W. Beck, J. Organomet. Chem., 1999, 588, 247; C. L. Chen, Y. H. Liu, S. M. Peng and S. T. Liu, J. Organomet. Chem., 2004, 689, 1806; S. Das and S. Pal, J. Organomet. Chem., 2006, 691, 2575; A. Fernandez, D. Vazquez-Garcia, J. J. Fernandez, M. Lopez-Torres, A. Suarez, S. Castro-Juiz and J. M. Vila, New J. Chem., 2002, 26, 398; R. Grigg and J. Devlin, J. Chem. Soc., Chem. Commun., 1986, 631; K. Hiraki, S. Ibaraki, M. Onishi, Y. Ono, J. K. Kawashima and M. Ando, J. Organomet. Chem., 1997, 547, 199; Y. Hu, M. A. Khan and K. M. Nicholas, J. Chem. Soc., Chem. Commun., 1992, 210; C. Lopez, A. Caubet, S. Perez, X. Solans and M. Font-Bardia, J. Organomet. Chem., 2003, 681, 82; C. Lopez, S. Perez, X. Solans, M. Font-Bardia and T. Calvet, New J. Chem., 2010, 34, 676; A. K. Mahapatra, D.

40 Bandyopadhyay, P. Bandyopadhyay and A. Chakravorty, J. Chem. Soc., Chem. Commun., 1984, 999; D. N. Neogi, A. N. Biswas, P. Das, R. Bhawmick and P. Bandyopadhyay, Inorg. Chim. Acta, 2007, 360, 2181; S. Perez, C. Lopez, A. Caubet, X. Solans, M. Font-Bardia, A. Roig and E. Molins, Organometallics, 2006, 25, 596; A. R. B. Rao and S. Pal, J. Organomet. Chem., 2011, 696, 2660; J. M. Vila, T. Pereira, J. M. Ortigueira, M. L. Torres, A. Castineiras, D. Lata, J. J. Fernandez and A. Fernandez, J. Organomet. Chem., 1998, 556, 21.

5026 J. Vicente, M. T. Chicote, S. Huertas, M. C. Ramírez de Arellano and P. G. Jones, Eur. J. Inorg. Chem., 1998, 511.

27 J. Vicente, I. Saura-Llamas, M. G. Palin, P. G. Jones and M. C. Ramírez de Arellano, Organometallics, 1997, 16, 826; A. D. Ryabov, Chem. Rev., 1990, 90, 403.
5528 J. Vicente, I. Saura-Llamas, M. G. Palin and P. G. Jones, J. Chem. Soc., Dalton Trans., 1995, 2535.

29 Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OPdS}: \mathrm{C}, 52.38 ; \mathrm{H}, 3.42 ; \mathrm{N}, 6.79 ; \mathrm{S}, 7.77$. Found: C, 51.48; H, 3.35; N, 6.80; S, 7.33.
30 J. Vicente, J. A. Abad, A. D. Frankland and M. C. Ramírez de 60 Arellano, Chem. Commun., 1997, 959.

31 J. Vicente, A. Arcas, D. Bautista and P. G. Jones, Organometallics, 1997, 16, 2127.
32 J. Vicente, A. Arcas, M. A. Blasco, J. Lozano and M. C. Ramírez de Arellano, Organometallics, 1998, 17, 5374.
6533 M. B. Smith and A. M. Z. Slawin, Inorg. Chim. Acta, 2000, 299, 172; A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Polyhedron, 1998, 17, 4465.
34 D. Gibson, B. F. G. Johnson and J. Lewis., J. Chem. Soc. A, 1970, 367.

7035 E. Pretsch, T. Clerc, J. Seibl and W. Simon, 'Tablas para la determinación estructural por métodos espectroscópicos', Springer-Verlag Ibérica, 1998.
36 K. Nakamoto. Infrarred and Raman Spectra of Inorganic and Coordination Compounds. Part B. Wiley and Sons, New Jersey, 2009, 107
37 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
38 J. Vicente, M. T. Chicote, P. González-Herrero and P. G. Jones, Inorg. Chem., 1997, 36, 5735.
39 Sheldrick, G. M. SHELX-97; University of Göttingen: Göttingen, $80 \quad$ Germany, 1997

40 SHELXTL Xlmp Crystal Structure Refinement - Multi-cpu Version Copyright(c) Bruker AXS Inc. 1993-2013, Version 2013/2

