This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ with unusual tetrahedral coordination of Cr(III): peculiarities of the formation, thermal stability and application as a pigment

Natalia Gorodylovaa, Veronika Kosinováa, Petra Šulcováa, Petr Bělinaa and Milan Vlčekbc

All the known chromium (III) NASICON-related phosphates are considered as solid solutions. In these compounds chromium atoms share their position in the basic framework of the crystal lattice with another structure forming elements such as zirconium. In our study, we have hypothesised a completely new way of structural organisation of the chromium (III) zirconium (IV) NASICON framework, consisting in the distribution of chromium over the charge-compensating atom sites with tetrahedral oxygen coordination. The possibility of the formation of the corresponding phosphate, Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$, was studied using a classical ceramic route and a sol-gel method. Structural affiliation of the obtained pure phase product was studied using XRD analysis. The results confirmed that the Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ phosphate belongs to monoclinic SW-subtype of NASICON family. In this structure, chromium atoms occupy charge-compensating sites with strongly distorted tetrahedral oxygen environment. To the best of our knowledge, it is the first example of tetrahedral coordination of chromium (III) in phosphates. Along with the unusual crystallographic characteristics of chromium, special attention in this paper is devoted to the thermal stability of this phosphate and to its performance as an inorganic pigment. The sample was characterised by heating microscopy and DTA study, particle size distribution analysis, IR- and VIS-spectroscopies. Stability of the obtained powder in a glaze environment, its colouring performance and lightfastness are discussed as well.

Introduction

During the last thirty years a considerable part of research in the field of phosphate chemistry has been focused on the investigation of NASICON-related compounds (NASICON is an acronym for NaTiSuper Ionic CONductor, Na$_{1+x}$Zr$_2$Si$_3$O$_{10}$). Numerous framework phosphates of this family have been intensively studied for a range of practical applications, in particular as low thermal expansion ceramics [1, 2], solid electrolytes [3, 4], host material for radioactive waste immobilisation [5], catalysts [6, 7] and pigments [8, 9, 10]. Originally, the term “NASICON” only referred to compounds of rhombohedral symmetry isostructural to the original prototype, Na$_2$Zr$_2$P$_2$O$_7$, which is also commonly known as NZP [11]. Nowadays, a broad variety of non-isostuctural compounds containing the [M$_4$W(PO$_4$)$_6$] structural fragment and possessing electronic conductivity are classified to the NASICON-family too.

Considering lattice symmetry, common NASICONs embrace rhombohedral (R$3\bar{3}$c, R$3\bar{3}$, R$3\bar{3}$c, R-3c, R-3, P$3\bar{3}$c1), orthorhombic (Pbnm) and monoclinic (C2/c and P2$_1$/n) crystal systems and on this basis the NASICONs are divided into several subtypes. In particular, NASICONs of R$3\bar{3}$c and R3 point groups are isostuctural to the original NASICON prototype, Na$_2$Zr$_2$P$_2$O$_7$, and are sub-classified as NZP-subtype; NASICONs belonging to R$3\bar{3}$c, R-3c, R-3, P3 and $P3\bar{3}$c1 point groups are isostuctural to Ca$_2$Zr$_2$P$_2$O$_7$ (CZP-subtype); NASICONs of P2$_1$/n and Phcn point groups are structurally related to scandium wolframite, Sc$_2$W$_2$O$_7$, and thus, sub-classified as SW-subtype. All subtypes deriving from NASICON differ mainly in the packing and/or orientation of the [M$_4$W(PO$_4$)$_6$] structural fragments. Basically, within the [M$_4$W(PO$_4$)$_6$] polyhedral interconnection, two types of interstitial sites are created for charge compensating ions “A”, one of which is structurally forming and connects [M$_4$W(PO$_4$)$_6$] groups, while the other one is created in framework cavities [11-14]. The ability of the phosphate units to rotate without breaking the existing symmetry determines the flexibility of the NASICON three-dimensional skeleton toward cationic substitutions and the existence of numerous chemical compositions. In particular, the basic framework sites besides M$^{IV} = $ Ti, Zr, Hf, Ge, Sn, Mo, some Ln and An, can also be substituted by trivalent Cr, Fe, Sc, In or Yb, as well as by quinivalent Nb, while the interstitial sites can be empty, partially or fully occupied by s-, p-, d- and/or f- elements of oxidation state from +1 to +3 with radii ranges from H$^+$ to Cs$^+$ [12].

The astonishing variety of substituent combinations makes the basic NASICON framework ideally suited for the development of various compositions meeting the requirements of the specific application. The deriving extensive possibilities for chemical modifications in combination with excellent thermal stability and leaching resistance of NASICONs make this class of phosphates also extremely attractive for application as thermally stable colourants. Our research group at the University of Pardubice is highly interested in the development of new thermally stable ceramic pigments and while considering the colouring performance of NASICON compounds, we recently reported excellent purple-blue colourants based on Co$_6$Zr$_2$P$_2$O$_{12}$ for application in ceramic glazes [10]. Due to the high performance characteristics of the described phosphates, we continue our investigation in this area and, in particular, zirconium phosphates containing chromium (III), which provides saturated green or pink colour shades, have interested us as perspective material for pigmented application. Several NASICON-based potential colourants containing chromium (III) have been already described by different research groups worldwide [15-17]. It was shown, that the chromatic characteristics of Cr-NASICON pigments strongly depend on co-substitutions in the structure. Specifically, the variation of the chemical composition of charge compensating ions and the degree of...
substitution allow to control the crystal field strength and the covalence factor which act on the chromophore Cr\(^{3+}\) and thus, the visual appearance of the pigments. For example, solid solutions Na\(_{1+x}\)Zr\(_2\)Cr\(_x\)P\(_3\)O\(_12\) and Cr\(_{1-x}\)Zr\(_2\)Cr\(_x\)P\(_3\)O\(_12\) provide green, beige, grey or pink shades depending on the degree of substitution “x” [16].

The described compounds are stable at high temperatures and were used for colouration of glazes. Moreover, scientific interest in chromium NASICON compounds is not limited by their pigmentsary application. Several compositions were reported to possess superionic conductivity (Li\(_2\)Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\) (M\(^{IV}\) = Ti, Zr, Hf), Li\(_{1-x}\)Cr\(_x\)Hf\(_2\)P\(_3\)O\(_12\), Na\(_{2}\)(LaCr)Zr\(_2\)P\(_3\)O\(_12\), Na\(_{2}\)Cr\(_2\)P\(_3\)O\(_12\), Na\(_{2}\)Zr\(_2\)Zr\(_2\)P\(_3\)O\(_12\), [18-24] or as being an attractive geological medium for nuclear waste immobilisation (M\(^6\)Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\), M\(^6\) = Sr, Ba, Pb [25]).

As it follows from the discussed studies [15-25], all the discovered chromium (III) NASICON-related phosphates can be considered as solid solutions in M\(_{2}\)\(_1\)Cr\(_{1/3}\)P\(_3\)O\(_12\)-M\(^{IV}\)\(_2\)\(_1\)P\(_3\)O\(_12\) or M\(_{2}\)\(_1\)Cr\(_2\)P\(_3\)O\(_12\)-M\(^{IV}\)\(_2\)\(_1\)P\(_3\)O\(_12\) systems, where chromium atoms share the basic framework position in crystal lattice with another structure forming elements such as zirconium. However, there is another potential way of structural organisation of chromium (III) zirconium (IV) NASICON framework, consisting in distribution of chromium atoms over the charge-compensating sites A. Taking into account the required electro neutrality of the resultant compound, a formula of such potential chromium zirconium phosphate, containing [Zr\(_2\)(PO\(_4\))\(_3\)] structure fragments, may be presented as Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\). In order to find out which of the NASICON subtypes is structurally the most suitable for Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\), it is necessary to analyse the compositionally related NASICONs in more detail. A group of isostructural double zirconium phosphates containing lanthanides, Ln\(_{2}\)\(_1\)Zr\(_2\)P\(_3\)O\(_12\) [24, 26], is compositionally the closest to Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\). The crystal structure of these phosphates belongs to the CZP-subtype (sp. gr. \(R\bar{3}\), recently refined to \(P\bar{3}\)c1 or \(P\bar{3}\) [26]), where rare earth atoms occupy A sites, i.e. compensating ion position within an octahedral oxygen environment. In addition, the crystal structure of other related phosphates containing large-sized divalent cations (M\(_{2}\)\(_1\)Zr\(_2\)P\(_3\)O\(_12\), M\(^6\) = Sr, Cd, Ba, Pb) was characterised as isosctructural to CZP too. However, substantial size difference between all these elements and chromium (III), which is, for example, for the smallest lanthanide, Yb (III), more than 1.4 times larger than that for Cr (III) in octahedral coordination [27], may not allow realisation of the CZP lattice symmetry for the Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\) composition. The crystal structure of another group of the related compounds containing smaller divalent metals, M\(_{2}\)\(_1\)Zr\(_2\)P\(_3\)O\(_12\) where M\(^6\) = Mg, Mn, Co, Ni, Cu, Zn, is distorted to monoclinic symmetry (the SW-subtype, sp. gr. \(P\bar{2}_1/n\) [12]. The main distinction between the SW and CZP subtypes is the symmetry conversion of the structure forming sites A (I) from octahedral (in CZP) to a strongly distorted tetrahedral oxygen environment (in SW). Thus, with respect to the ion radii of chromium (III), the crystal structure of the Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\) phosphate may be rather isosctructural to SW-subtype. However, tetrahedral coordination is very uncommon for chromium (III) and its realisation with oxygen has been reported only for few spinels [28-33]. To the best of our knowledge, chromium (III) occupies octahedral positions in all known phosphates. The preferable octahedral coordination of chromium (III) can be explained in terms of crystal field stabilisation energy and, specifically, octahedral site preference energy, which is one of the highest for \(d^3\) electronic configuration of Cr (III) [32, 34]. Thus, from the point of view of the crystallographic preference of Cr (III), its location in the charge-compensating tetrahedral sites of SW lattice may cause some constraint and instability of the resultant structure formation.

This paper addresses whether the considered concept makes sense and verifies the possibility of the formation of Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\). For the synthesis we have employed two different approaches and special attention in our study is devoted to the thermal stability of the obtained phase and its characterisation as an inorganic pigment.

Experimental part

Materials and methodology

Two different approaches were used for synthesis: solid state reaction and sol-gel method. In the first case we used Cr\(_2\)O\(_3\) (P., Lachema, CZ), ZrO\(_2\) (P.A., Sepr, FR) and (NH\(_4\))\(_2\)HPO\(_4\) (P.A., Lachema, CZ) as initial reagents. Stoichiometric powder mixture was thoroughly ground in an agate mortar with a pestle and transferred into an agate milling form and homogenised by ball-milling in a planetary mill (Pulverisette 5, Frisch, DE). In order to obtain a thick suspension, an appropriate amount of acetone was added. The rotation speed was 200 rpm and the homogenisation time – 2 h. After this procedure the obtained suspension was completely dried overnight in open air and subjected to further thermal treatment. Calcination was performed in an electric furnace in several steps: 200 °C for 4 h, 300 °C for 4 h (heating rate 5 °C·min\(^{-1}\)), regrinding and further calcination at temperatures of 800, 1000 and 1200 °C (heating rate of 5 °C·min\(^{-1}\)) with exposure time of 24 h at each step.

The synthesis procedure of the sol-gel method (SG) was performed as following: stoichiometric amounts of CrCl\(_3\)-6H\(_2\)O (P., Lachema, CZ) and ZrOCl\(_2\)-8H\(_2\)O (P.A., Merck, DE) were separately dissolved in distilled water with addition of a little amount of HCl (P.A., Penta, CZ). The zirconium solution was added dropwise to the chromium solution while constantly stirring. Afterwards, an appropriate amount of 1 M solution of (NH\(_4\))\(_2\)HPO\(_4\) was added dropwise to this mixture while continuous heated at a temperature of 70 °C and constantly stirred to maintain uniform mixing. A gelatinous precipitate began to form immediately after addition of the phosphate solution. After complete mixing, the gelled suspension was maintained under stirring for some hours, dried overnight at 60 °C and exposed to calcination. At the first stage the sample was continuously heated at a temperature of 600 °C during 24 h (heating rate of 5 °C·min\(^{-1}\)) in order to remove all volatile residues. After this, the ground powder was calcinated similarly to the solid state reaction method (800, 1000 and 1200 °C).

Characterisation techniques

Crystallochemical characterisation of the calcined powders was performed by X-Ray diffraction analysis (monochromatic CuK\(_\alpha\) radiation, a scintillation detector and a Diffractometer D8 Advance, Bruker, GB). Data were collected by step scanning over 20 range from 10° to 80° with a step size of 0.02° and 3 s counting time at each step. Thermal behaviour of the reaction mixtures and the final product of Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\) was investigated using simultaneous differential thermal and thermogravimetric analysis (DTA-TGA, Jupiter STA 449/C/6F, Netzsch, DE) with temperature intervals between 20 and 1400 °C and a heating rate of 10 °C·min\(^{-1}\). \(d\)-Al\(_2\)O\(_3\) was used as reference material and the mass of the sample was ~150 mg. Thermal stability of Cr\(_{1/3}\)Zr\(_2\)P\(_3\)O\(_12\) was tested using a heating microscope with automatic image analysis (EM201-12, Hesse Instruments, DE). The equipment was calibrated using Sn, In, Al, Zn and its standard measurement uncertainty typically is \(\pm 5 ^\circ C\). For the measurement, a pellet of cylindrical form with dimensions of 3\(\times\)3 mm was prepared manually using ethanol as a binding agent. The test was performed with temperature intervals between 20 and 2012
1400 °C and a heating rate of 10 °C·min⁻¹. Particle size distribution of the sample was measured using a laser scattering system based on Fraunhofer bending (Mastersizer 2000/MU, Malvern Instruments, UK). Milling of the sample was performed using a laboratory planetary mill (Pulverisette 5, Fritsch, DE). Scanning electron microscopy (SEM) was used to characterise the obtained sample with respect to particle size, homogeneity, morphology and microstructure (JOEL JSM-5500 LV apparatus equipped with analyser IXRF Systems and detector Gresham Sirius 10, Joel Inc., USA). IR spectrum of Cr₁₂Zr₂P₃O₁₂ powder pressed in a pellet with potassium bromide was measured using SPECORD M80 (Carl Zeiss, Jena, DE) in the region of 300-1800 cm⁻¹. The colour of the sample was evaluated by measurement of spectral reflectance in the visible region of light (400-700 nm) using a ColorQuestXE (HunterLab, USA). The measurement conditions were following: an illuminant D₆₅, 10° standard observer and measuring geometry d/8°. The colour properties are described in terms of CIELAB system recommended by CIE (Comission Internationale de l’Eclairage [35]). The measurement was done in triplicate and the average value was chosen as its result for each colorimetric parameter. The standard deviation of the measured colorimetric parameters was <0.10 and the relative standard deviation was ≤1%, indicating that the measurement error can be ignored. The measurement was performed for Cr₁₂Zr₂P₃O₁₂ powder, which was manually pressed into a quartz cuvette, and for enamelled samples. The milled powder was enamelled with two types of commercial single-firing glazes (G 050 91 and G 070 91, Glazura, CZ) in an amount of 10% wt. onto conventional ceramic biscuits (950 °C, 15 min, 10 °C·min⁻¹). Interaction between the pigment particles and the melted glazes was also investigated using SEM technique and powder XRD analysis. Finally, the colour stability of the enamelled samples at daylight was tested with a Q-panel test chamber (Q-Sun Xe-1-10S Xenon Test Chamber, Lab. Products, USA). The samples were exposed to a xenon-arc light source for 1000 h with an irradiance setting at 340 nm and 0.51 W·m⁻². A standard program for lightfastness measurement was employed (step 1: light, 3.48 h, 65 °C; step 2: dark, 1 h, 45 °C; step 3: back to step 1) and the colour evaluation was performed after each 250 h.

Results and discussion

X-ray diffraction characterisation (XRD)

XRD patterns of the samples (SSR) are shown in Fig. 1. Phase composition analysis revealed that upon calcination of the reaction mixture, interaction between the initial components mainly led to the formation of the ZrP₂O₇ phase. At lower temperatures the mixture contained some amount of unreacted Cr₂O₃ and ZrO₂, while only at 1200 °C a NASICON-related phase, which was identified as Zr₅(PO₄)₆, appeared as well. In our experiment we used a monoclinic modification of ZrO₂ as zirconium source, which is known to be low reactive. It may provide a reasonable explanation for the low reactivity of the reaction mixture at lower temperatures and the observed results. The reactivity of powders in solid state reaction can be improved through different approaches such as, for example, a pre-treatment procedure involving mechanochemical activation or by using low melting mineralisers. However, on basis of our experience with Co₀.₅Zr₅P₃O₁₂ [10], we decided to use a completely different synthesis approach in order to achieve the formation of a single phase product of Cr₁₂Zr₅P₃O₁₂. The second employed method was sol-gel. Technically it is much more complicated than conventional ceramic route, however, it often allows to obtain a pure single phase product at low temperatures where simple solid state reaction fails [10]. XRD patterns of the samples are shown in Fig. 2. A NASICON-related single phase product was only detected at 800 °C and an increase of calcination temperature up to 1000 °C and 1200 °C led to its decomposition and formation of additional zirconium and chromium phosphates.

![Fig. 1 XRD patterns of the samples prepared by solid state reaction (unmarked phase: Zr₅P₂O₇).](image)

![Fig. 2 XRD patterns of the samples prepared by sol-gel method.](image)
The XRD pattern of the sample Cr₃₂Z₅P₂O₁₁ (SG, 800 °C) was indexed using FullProf software [36] and the calculated unit cell parameters are specified in Table 1. The analysis of the XRD pattern suggested a primitive monoclinic lattice symmetry P2/n. According to the rules, which were formulated for distinguishing the monoclinic distortions of the NASICON family using powder XRD method [13], the obtained compound Cr₃₂Z₅P₂O₁₁ belongs to the monoclinic P2/n space group and can be classified to NASICON SW-subtype. In order to support this conclusion we have analysed the available crystallographic information for other representatives of SW-subtype (Table 1). As follows from the comparative analysis, the similarities between the chemical formulas of Cr₃₂Z₅P₂O₁₁ and SW representatives of M₀.₆₃Z₅P₂O₁₁ (M⁺ = Mg, Mn, Co, Ni, Cu, Zn, Zn), their identical diffraction patterns (ICDD# 00-041-0040, 00-053-0955, 00-045-0015, 00-053-0956, 00-045-0014, 00-047-0412, 00-053-0957, 00-053-0958), the closeness of the lattice parameters and the identical space group of these compounds (see Table 1) indicate a common basis for the formation of their crystal structures. This allows us to firmly conclude that Cr₃₂Z₅P₂O₁₁ is isosstructural with M₀.₆₃Z₅P₂O₁₁ and that it belongs to NASICON-related SW-subtype. On basis of the already known structure of one of the representatives of the group, Ni₃₂Z₅P₂O₁₁ [13], it is also possible to make some conclusions concerning Cr₃₂Z₅P₂O₁₁ crystal structure. The most important issue concerns the crystallographic position of charge-compensating ions in the crystal lattice: identically to Ni(II), ions of Cr(III) occupy charge-compensating sites A within a strongly distorted tetrahedral oxygen environment. It is worthwhile to note that to the best of our knowledge this is the first example of tetrahedral coordination of chromium (III) in phosphates.

Appearance of additional impurity phases above 800 °C in XRD patterns indicates degradation of Cr₃₂Z₅P₂O₁₁ at higher temperatures. The instability of this phase can be connected with constraints of the Cr₃₂Z₅P₂O₁₁ structural organisation induced by energetically disadvantageous coordination of chromium (III). In addition, the structural constraints can be caused by low occupancy of charge compensation sites, which is only ½ in Cr₃₂Z₅P₂O₁₁ in comparison with ⅔ in M₀.₆₃Z₅P₂O₁₁. It is worth to mention, that several related NASICONS also possess limited phase stability at high temperatures. For example, isostructural phosphates Mg₃₂Z₅P₂O₁₁ and Co₃₂Z₅P₂O₁₁ degrade at temperatures above 1200 °C yielding Z₅O₁₁PO₄₀ as an impurity phase. Other compounds of analogous composition, La₃₂Z₅P₂O₁₁, where the occupancy of the charge compensating site is as low as in Cr₃₂Z₅P₂O₁₁, already decompose at temperatures above 900 °C [10, 24, 37]. On the contrary, rhombohedral NASICON phases containing chromium (III) at basic framework positions with octahedral coordination (Na₃₂Z₅Cr₃P₂O₁₁ and M₁/₃₃Z₅Cr₃P₂O₁₁, M = Cd, Ca, Sr), show improved thermal stability (above 1300 °C) [15, 16]. Thermal behaviour of the obtained phosphate is discussed in more details in the next section.

Table 1 Crystallographic characteristics of the compounds of SW-subtype

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>Ionic radii*</th>
<th>Space group</th>
<th>aÅ</th>
<th>bÅ</th>
<th>cÅ</th>
<th>β°</th>
<th>V/Å³</th>
<th>Z</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg₃₂Z₅P₂O₁₁</td>
<td>0.57</td>
<td>P₂/n</td>
<td>12.384(3)</td>
<td>8.922(3)</td>
<td>8.844(3)</td>
<td>90.56(2)</td>
<td>977.1</td>
<td>4</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.426</td>
<td>8.903</td>
<td>8.836</td>
<td>89.62</td>
<td>977.49</td>
<td></td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.421(2)</td>
<td>8.902(2)</td>
<td>8.8218(2)</td>
<td>90.466(1)</td>
<td>975.527</td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>Mn₃₂Z₅P₂O₁₁</td>
<td>0.66</td>
<td>P₂/n</td>
<td>12.390(3)</td>
<td>8.931(4)</td>
<td>8.843(3)</td>
<td>90.55(1)</td>
<td>978.5</td>
<td>4</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.390(3)</td>
<td>8.903</td>
<td>8.836</td>
<td>89.62</td>
<td>977.49</td>
<td></td>
<td>[41]</td>
</tr>
<tr>
<td>Co₃₂Z₅P₂O₁₁</td>
<td>0.58</td>
<td>P₂/n</td>
<td>12.389(3)</td>
<td>8.928(3)</td>
<td>8.840(2)</td>
<td>90.54(1)</td>
<td>977.7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.389(3)</td>
<td>8.924</td>
<td>8.853</td>
<td>90.35</td>
<td>982.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni₃₂Z₅P₂O₁₁</td>
<td>0.55</td>
<td>P₂/n</td>
<td>12.389(3)</td>
<td>8.924(4)</td>
<td>8.840(3)</td>
<td>90.53(1)</td>
<td>977.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.389(1)</td>
<td>8.926(7)</td>
<td>8.840(7)</td>
<td>90.55(1)</td>
<td>978.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cr₃₂Z₅P₂O₁₁</td>
<td>0.615</td>
<td>P₂/n</td>
<td>12.389(2)</td>
<td>8.929(3)</td>
<td>8.842(2)</td>
<td>90.54(1)</td>
<td>978.1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

*Ionic radii are specified for the divalent elements with coordination number IV and chromium (III) with coordination number VI (the only available) [27].

Thermal analysis (DTA-TGA) of the reaction mixtures and thermal stability of Cr₃₂Z₅P₂O₁₁

The differential thermal and thermogravimetric (DTA-TGA) analysis was performed in order to reveal physical transformations, which accompanied chemical transformations in the mixtures during heating. In the case of solid state reaction, the analysis of the powder was performed after the ball-milling stage and drying in open air. The observed thermoanalytical curves are presented in Fig. 3(a).

Fig. 3 DTA-TGA curves of the reaction mixtures: (a) – solid state reaction; (b) – sol–gel method.

Two main reaction stages can be distinguished from the presented data. The first stage is accompanied by a dual endothermic effect on the DTA curve between 120 and 300 °C and by a substantial mass loss (~15%). This effect can be connected with thermal transformations of diammonium hydrophosphate, in particular elimination of ammonia and melting. According to our calculations, the release of two molecules of ammonia of (NH₄)₂HPO₄ in the reaction mixture leads to ~15.2% of mass loss, which perfectly matches the observed value of 15%. The second stage is
accompanied by a weak endothermic effect and a step-like mass loss (~9%), which correspond to dehydration of the phosphate-component and interaction between the reagents. Gradual mass loss of ~4% between 450 and 1100 °C most likely is related to intermolecular dehydration of phosphate resulting in the formation of pyrophosphate \(\text{ZrP}_2\text{O}_7 \), which is the main reaction product according to the XRD data. The total mass loss of the sample constitutes 28.4%, which is in good agreement with the calculated value for the starting mixture (28.5%).

The dried precursor, which was obtained by sol-gel method, was examined using the same technique. The obtained thermoanalytical curves are shown in Fig. 3(b) and several overlapping stages can be distinguished from the presented data. The first weak endothermic effect with a minimum at 150 °C and associated mass loss of ~5% can be connected with dehydration of the mixture. Due to a high number of options for polymerisation of the phosphate component and an unknown content of remaining water in the dried precursor, it is difficult to estimate the theoretical value of mass loss which is connected with this process, even approximately. The next strong endothermic effect takes place around 330 °C and is accompanied by substantial mass loss. This was attributed to decomposition of ammonium chloride (\(T_d = 338 °C \)), which forms during the drying stage of the gel. Theoretical calculation provides a number of ~33% (if all chloride in the mixture is bonded with ammonium), which correlates well with the observed value of 30%. The next endothermic effects and gradual mass loss can be associated with further dehydration and interaction in the mixture. The mass loss stopped around 800 °C, where the single phase of \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \) was detected in XRD pattern.

The \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \) single phase product (SG, 800 °C) was subjected to further thermal analysis in a temperature range of 20-1400 °C using two approaches: heating microscopy and DTA-TGA. Analysis by heating microscopy commonly provides results on thermal resistance and sintering of the ceramic powders at high temperatures. Results of this measurement are presented in Fig. 4. The curve represents the change of the sample area during temperature increase. The sample silhouettes correspond to the starting (27 °C) and final (1416 °C) point of the measurement. The detected curve shows that the sintering of \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \) started just below 900 °C, intensively progressed up to 980 °C and slowed down above this temperature. If to compare these results with our previous research on \(\text{CrO}_3\text{ZrP}_2\text{O}_12 \) [10], some correlations between thermal behaviour of these NASICON-related phosphates can be found as well. Our previous study revealed that the SG-method provided lower thermal stability and sintering of the ceramic powders at high temperatures. Results of this measurement are shown in Fig. 5. The observed shrinkage above 900 °C is certainly connected with phase degradation of this phosphate as well. Very similar results were also observed for analogous compounds of zirconium and lanthanides, \(\text{Ln}_3\text{ZrP}_2\text{O}_{12} \). In particular, it was reported that the thermal stability range of these phosphates is limited to 900 °C due to their decomposition, which prevents sintering at higher temperatures [24]. This similarity in thermal instability between the lanthanides and chromium phosphates probably is connected with their common structural peculiarities and in particular with very low occupancy of charge-compensating sites, which in both cases is only 1/3.

In order to gain more information about the sintering and degradation processes of \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \), DTA of the sample was also performed under the same conditions as with heating microscopy analysis. The obtained DTA curve (Fig. 5) can be characterised by a dominant endothermic decrease, where only one exothermic effect with an extremum at 977 °C is observed. This effect is not present at the DTA curve of the reaction mixture (Fig. 3) and thus, it must be characteristic for the \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \) phase. In our opinion it can be connected with crystallisation of a new phase, which is a product of decomposition of \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \). Most probably it is \(\text{ZrP}_2\text{O}_7 \), because it is the main phase which was detected by XRD analysis after 24 h of exposure at 1000 °C (Fig. 2). The slight flattening of the sintering curve which was observed around 980 °C in the previous experiment using heating microscopy (Fig. 4) can be also connected with appearance of \(\text{ZrP}_2\text{O}_7 \) in the phase composition. It is well known that this pyrophosphate possesses enhanced thermal characteristics and its formation could slow down the process of sintering of the sample.

Particle size distribution and morphology

For application as a ceramic pigment, it is important to determine the particle size distribution of the powder, which highly affects colour homogeneity, surface appearance and gloss of enamelled bodies. Generally, for ceramic pigments it is recommended that the median particle size (\(d(50) \)) passes in a range of 0.1–10 μm. Considering the application into glaze, \(d(50) \) values between 1 and 10 μm are optimal in order to achieve good hiding power and at the same time to provide resistance to the dissolution of pigment particles during glazing. Particle size distribution of \(\text{Cr}_3\text{ZrP}_2\text{O}_12 \) (SG, 800 °C) was measured after preliminary manual grinding of the powder in an agate mortar with a pestle. The volume distribution of particles according to their size is presented as a histogram on logarithmical scale in Fig. 6. The observed distribution is non-symmetrical with a mode at 30 μm. Other important size values are summarised in the top left corner of the figure. The specified volume-basis median value (\(d(50) = 14.76 \mu m \)), which splits the volume distribution in two halves, is below the mode value. The distribution width was calculated according to the formula: \(\text{Span} = (d(90)-d(10)) \text{d}(50)^{-1} \).
3.27 µm. The observed particle size distribution parameters are higher than it is recommended for pigments for application in glaze, thus a milling procedure is required for the sample. Milling was performed in a laboratory planetary mill (200 rpm) in an agate milling form in acetone media with addition of a grinding filling (in mass ratio 1:10, type ZY, fraction 1.6-1.4 µm, SiLyheads, DE). In order to obtain the desired size distribution, 10 minutes of milling under specified conditions is sufficient for this powder. The resulting median size is 5.17 µm and the distribution width is reduced to 2 µm.

In order to gain further information about the particle size, morphology and homogeneity of the powder, SEM characterisation was performed as well (Fig. 7). As it follows from the SEM observations, the unmilled sample is formed from aggregates of different size, as well as from smaller disconnected particles of irregular shape. On the image with lower magnitude (50 µm scale), two distribution ranges are clearly observed: massive aggregates (~20-50 µm) and dominating little particles (~1-10 µm). The obtained results correlate well with the particle size distribution measurement and the observed non-symmetric form of the distribution histogram.

Spectral characterisation (IR and VIS) and lightfastness

For a more complete characterisation, the obtained Cr_{1/3}Zr_2P_3O_{12} phase (SG, 800 °C) was analysed by IR spectroscopy. In general, the vibrational modes of the NASICON-related compounds can be attributed to external and internal modes of PO_4 tetrahedra, and also to lattice modes including the motion of the metallic ions in their oxygen environment. The PO_4 external modes correspond to librational and translational motions of these groups and are observed below 300 cm^{-1}, which, in our case, is beyond the measured range (300-1800 cm^{-1}) [38]. In turn, the internal modes of the isolated phosphate groups represent a symmetric/antisymmetric degenerate of phosphorous nonbridging oxygen stretchings (ν1/ν2), and symmetric/antisymmetric degenerate bendings (ν3/ν4). For the isolated phosphate groups of the ideal Td symmetry only the ν1 and ν3 vibrations are IR active, however, in crystaline structure the symmetry of the PO_4 group is distorted by lattice environment changing the situation dramatically. The monoclinic NASICONs are characterised with 3 independent phosphorus positions of C1 site group and monoclinic C101 factor group. According to factor group analysis, 27 IR active bands of internal vibrations are expected to appear for these compounds [14].

IR spectrum of Cr_{1/3}Zr_2P_3O_{12} is shown in Fig. 8. At the spectrum, a band between 300 and 400 cm^{-1} can be attributed to the MO motions, the next group of badly resolved bands between 450 and 700 cm^{-1} – to the symmetric/antisymmetric degenerate OPO bendings, and a not-resolved broad band between 900 and 1300 cm^{-1} – to the symmetric/antisymmetric degenerate of PO stretchings. Comparing the structure of the better resolved spectrum part between 450 and 700 cm^{-1} with related NASICONs of monoclinic and rhombohedral symmetries, we came to conclusion that the complexity of this part of Cr_{1/3}Zr_2P_3O_{12} spectrum also testifies in favour of the monoclinic lattice of this compound [14]. In addition, the broad absorption band between 900 and 1300 cm^{-1} with almost unresolved component structure indicates the presence of a short-range static disorder in the lattice. Probably, it can be connected with the mobility of the chromium atoms over the predominantly vacant sites A [38]. A weak band between 1600 and 1700 cm^{-1} can be attributed to the presence of some traces of water, which is mainly connected with the technical aspect of the measurement, in particular, the use of the hygroscopic potassium bromide for preparation of the pellet.

![Fig. 6 Particle size distribution of Cr_{1/3}Zr_2P_3O_{12} (SG, 800 °C).](image)

![Fig. 7 SEM images of Cr_{1/3}Zr_2P_3O_{12} (SG, 800 °C).](image)

![Fig. 8 IR spectrum of Cr_{1/3}Zr_2P_3O_{12} sample (SG, 800 °C).](image)
lightness or darkness of colour as related to a neutral grey scale (which is described by numbers from 0 (black) to 100 (white)). The parameter \(C^* \) (chroma) represents saturation of the colour \((C^* = (a^* + b^*)^{0.5}) \) and \(h^* \) represents the hue angle which characterises the colour shade \((h^* = \arctangent(b^*a^*)^{0.5}/(b^*a^*)^{0.5} - (2.3:14))^2 \). The obtained colour parameters are summarised in Table 2. The powdered sample has a green shade and the calculated value of its colour hue \((h^*) \) indicates some shift from pure green (120°) to yellow (51-60°). The enamelled samples have a saturated bright green colouration with a colour hue of 120.4° and 123.3°, which is very close to a pure green hue (120°) (Fig. 9). The colour of the sample which was enamelled with glaze G 050 91 is more saturated and is a bit lighter than that with glaze G 070 91. At the same time, the saturation of both the enamelled samples is almost 3 times higher than that of the powder. This can clearly be observed from the reflectance spectra in Fig. 10, where a higher absorption of the wavelengths displace from green and higher reflection of green (492-577 nm) in the visible range of the electromagnetic spectrum indicates a higher intensity of the resultant green shade (Fig. 10).

<table>
<thead>
<tr>
<th>Sample</th>
<th>(L^*)</th>
<th>(a^*)</th>
<th>(b^*)</th>
<th>(C^*)</th>
<th>(h^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder</td>
<td>56.3</td>
<td>-2.7</td>
<td>10</td>
<td>10.4</td>
<td>105.1</td>
</tr>
<tr>
<td>Enamelled, glaze G 050 91</td>
<td>66.1</td>
<td>-14.3</td>
<td>24.3</td>
<td>28.2</td>
<td>120.4</td>
</tr>
<tr>
<td>Enamelled, glaze G 070 91</td>
<td>65.0</td>
<td>-14.1</td>
<td>21.5</td>
<td>25.7</td>
<td>123.3</td>
</tr>
</tbody>
</table>

The colour of the samples can be explained by the formalism of the crystal field theory applied to Cr (III). It has a \(d^3 \) electronic configuration and in the SW structure it occupies the sites with distorted tetrahedral coordination. Accordingly, two main absorption bands, which correspond to \(T_1 \rightarrow T_1 \) and \(T_1 \rightarrow A_2 \) transitions, appear in the visible part of the spectrum (Fig. 10). Form and position of these bands are crucial for the colour perceived by the human eye. For example, high and low energy shifts of the absorption bands result in pink shades, while a middle position gives rise to a deep green colour. For our samples it is 16393 cm\(^{-1}\) (610 nm) and 21978 cm\(^{-1}\) (455 nm), which are intermediate and the values are typical for green coloured compounds. As earlier discussed in the introduction, tetrahedral oxygen coordination is very uncommon for chromium (III) and was reported before only for several spinels [28-33]. Unfortunately, optical characterisation of these compounds was performed only for few inverted spinels based on LiGa\(_3\)Cr\(_2\)O\(_8\), where chromium atoms occupy both, octahedral and tetrahedral positions [32, 33, 39]. On basis of the presented data in those publications it is very difficult to attribute with certainty the spectrum components, which appear at the visible part of the spectrum, and to distinguish the absorption bands corresponding to electronic transition of chromium (III) in a different crystallographic environment and to compare it with our result. Thus, to the best of our knowledge, the optical spectrum, which is presented in our study (Fig. 10), can be considered as the first example of such a spectrum, characterising chromium (III) in a unique tetrahedral coordination with oxygen.

For comparison, optical parameters of other NASICON-related chromium phosphates, which have been reported in the literature, are summarised in Table 3. This table includes only data of the samples with the close molar content of chromium (III) to \(Cr_2(Zr,P)O_7 \) composition or alternatively with the close molar ratio of \(Cr_2/Zr/P \) to 1:3:2:3. As follows from the summarised results, the colour of \(Na_4Cr_2Zr_2P_2O_{12} \) and \(Ca_4Cr_2Zr_2P_2O_{12} \) phosphates is pink or light beige. The observed colour shade of the samples is directly connected with the location of the absorption bands in a lower energy field of the electromagnetic spectrum (longer wavelengths) resulted from a weak crystal field of octahedral oxygen coordination of chromium. For \(Cr_2O_7 \) and \(Cr_2P_2O_7 \) with chromium in a different crystallographic environment, the absorption bands are located in the higher energy field of the electromagnetic spectrum (shorter wavelengths) and the resultant colour of the sample is green. It is worth to mention, that the colouration of \(Cr_2ZrP_2O_{12} \) powder is more saturated and deeper than that of \(Na_2ZrP_2O_{12}:0.2Cr \) and \(Cr_2O_7 \) powder [17]. It can be explained by the crystallographic environment of chromium in \(Cr_2ZrP_2O_{12} \) sample, which is distorted tetrahedral and thus, non-centrosymmetric. In terms of crystal field theory, a non-symmetric environment of central ion leads to the exclusion of the Laporte selection rule and usually results in the intensification of the absorption band and the resultant colour.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Band position/nm</th>
<th>Colour</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Na_4Cr_2Zr_2P_2O_{12})</td>
<td>485, 695</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Na_4Cr_2Zr_2P_2O_{12})</td>
<td>478</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Na_4Cr_2Zr_2P_2O_{12})</td>
<td>477</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Ca_4Cr_2Zr_2P_2O_{12})</td>
<td>496</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Ca_4Cr_2Zr_2P_2O_{12})</td>
<td>486, 692</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Ca_4Cr_2Zr_2P_2O_{12})</td>
<td>484, 692</td>
<td>pink</td>
<td>[16]</td>
</tr>
<tr>
<td>(Na_2ZrP_2O_{12}:0.2Cr)</td>
<td>~500</td>
<td>light beige</td>
<td>[17]</td>
</tr>
<tr>
<td>(Cr_2O_7)</td>
<td>~500</td>
<td>light beige</td>
<td>[17]</td>
</tr>
<tr>
<td>(Cr_2ZrP_2O_{12})</td>
<td>453</td>
<td>green</td>
<td>—</td>
</tr>
</tbody>
</table>

In order to achieve a smooth surface and a steady colour appearance of the glazed body, it is important to pay special attention to the choice of glaze and, in particular, to the processes which take place in the pigment-glaze system during enamelling, because pigment dissolution or crystallisation of an additional phase could affect the expected result. Because of the limited thermal stability of the investigated pigment, we have emphasised this matter in our study. We employed two types of glazes with different composition and the interaction between the pigment particles and glaze was investigated by SEM technique and powder XRD analysis. A considerable
difference between surface appearance of the two employed glazes is observed at the SEM images (Fig. 11), where the image of one of the samples, G 070 91, reveals abundant crystallisation on the surface (appearing as black rod-shaped inclusions). The little black dots, which appear in both observations, refer to protruding tips of the pigment particles. XRD analysis of this powdered enamel detected mainly ZrSiO$_4$ and also a minor Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ phase revealing dissolution of a substantial amount of the pigment during glazing. The XRD pattern of the other sample, (G 050 91), showed that the Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ phase remained as the main one, as well as revealed appearance of a few low intensive additional reflections, which have not been identified. The result indicated a very low pigment-glaze interaction in this system. Such different behaviour of the pigment in the glazes can be connected with their composition, in particular, with the content of fluxing agents. The glaze G 070 91 has a higher content of fluxing oxides and melts at a lower temperature [40]. This explains its more aggressive behaviour towards the pigment. Thus, the other glaze, G 050 91, with a higher melting temperature, is preferred for the application of this pigment.

![Fig. 11 SEM images of enamelled Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ sample (5G, 800 °C) within two types of glazes.](image)

At the last step, we have tested the colour stability of the enamelled samples at daylight. It is well known, that sunlight causes the most damage such as discolouration or colour change to the coloured surfaces. The employed O-Sun Xenon Test chamber can be used to simulate and accelerate service conditions and to test lightfastness of the pigments. The irradiation of the xenon lamp which is employed in this test provides the most realistic simulation of full sunlight spectrum. The colour stability of the samples was tested during 1000 h. The total colour difference of the samples after sunlight irradiation can be calculated by several approaches [42-43]. The most conventional difference can be presented as geometrical distance between the two positions in the CIELAB colour space: $\Delta E_{ab}^* = (\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2$. A ΔE_{ab}^* value of around 2.3 corresponds to a just noticeable difference (JND). The resulting colour difference can be split into component contributions, namely

$$\Delta L^* = L_1^* - L_2^*$$

saturation ($\Delta C_{ab}^* = (\alpha_2^2 + b_2^2)^{1/2} - (\alpha_1^2 + b_1^2)^{1/2}$) and hue ($\Delta H_{ab}^* = \Delta L^* / \Delta E_{ab}^*$). Despite of wide application of these formulas due to their simplicity, the obtained differences are not always correctly reproduced when the system is applied to pigmented coating. The same concerns JND, which value of 2.3 is quite approximate, and there are significant variations in a visual JND over colour space. For these reasons a new colour difference formula "CIEL94" have been presented by CIE: $\Delta E_{94} = ((\Delta L')^2 + (\Delta a')^2 + (\Delta b')^2 / k_{S2}(S/S_0)^{1/3}$, where $S_2 = 1$, $S_0 = 1 + 0.045 / \Delta C_{ab,1}$. In the formula, the k_S are the parameters of externally imposed conditions, such as conditions specific to a certain application or conditions different to standard. The most widely this formula is used in textile and graphic art applications, where special k_S values have been developed in order to provide the best colour match. Generally, under the standard conditions, $k_S = k_C = k_H = 1$ and this values are also satisfactory for most of applications as well. As follows from the presented formulas, the correction terms of this approach are restricted to the chroma effect only. Another approach for calculation of colour difference, namely the CMC system, which additionally takes into account the dependence on the hue angle, has been developed by CMC. [45]. The formula is stated as following: $\Delta E_{CMC} = ((\Delta L')^2 + (\Delta C_{ab})^2 + (\Delta H_{ab})^2 / k_{S1}(S/S_0)^{1/3}$, where $S_1 = 0.040975 / (1 + 0.01756 / L_1^*)$, if $L_1^* \geq 16$, or $S_1 = 0.511$, if $L_1^* < 16$; $S_0 = 0.6363 / (1 + 0.0131 / L_2^*) + 0.638$; $S_H = (F + 1 - F)S_C$, where $F = C_{ab,1} / (C_{ab,1} + 1900)^{1/3}$ and $T = 0.56 + 0.2cos(35 + h_{ab,1}^*)$, if $-90^* \leq h_{ab,1}^* \leq -164^*$, or $T = 0.56 + 0.2cos(168 + h_{ab,1}^*)$, if $164^* \leq h_{ab,1}^* \leq 345^*$. The factors $c = l = 1$ are generally acceptable as default parameters. The colour difference parameters between the non-irradiated and irradiated samples which were calculated according to the three described approaches are summarised in Table 4.

<table>
<thead>
<tr>
<th>Glaze</th>
<th>ΔE_{ab}^*</th>
<th>ΔL^*</th>
<th>ΔC_{ab}^*</th>
<th>ΔH_{ab}^*</th>
<th>ΔE_{94}^*</th>
<th>ΔE_{CMC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 050 91</td>
<td>0.59</td>
<td>-0.33</td>
<td>0.49</td>
<td>0.02</td>
<td>0.36</td>
<td>0.39</td>
</tr>
<tr>
<td>G 070 91</td>
<td>0.52</td>
<td>-0.36</td>
<td>0.35</td>
<td>0.10</td>
<td>0.36</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Generally, the total colour difference for the glaze G 050 91 is higher than for G 070 91. Detailed analysis of component contributions to the colour change (ΔL^*, ΔC_{ab}^* and ΔH_{ab}^*) for both samples shows that the colour hue h^* change the least, while at the same time, the colour became lighter and less saturated after irradiation. Comparison of the calculated values shows that the three approaches provided very close results. Although the highest colour difference provided the CIELAB system, which does not accounts the colour saturation and hue changes, the observed values are still very low and the colour change can be defined as imperceptible or just noticeable to the human eye. In conclusion, the Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ pigment can be considered as sunlight stable.

Conclusions

In the presented study we have hypothesised and confirmed the existence of new chromium (III) phosphate in NASICON family. Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ phase can be obtained by sol-gel method with employment of thermal processing at relatively low temperatures (around 800 °C). According to powder XRD analysis, Cr$_{1/3}$Zr$_2$P$_3$O$_{12}$ crystallises in the NASICON-related SW structure type, where chromium atoms occupy charge-compensating sites with a strongly distorted tetrahedral environment. The obtained phase can be considered as the first example of a phosphate compound containing chromium (III) in unusual tetrahedral coordination with oxygen.
which is energetically very disadvantageous for its d³ electronic configuration. Aroused constraints of such structural organisation result in low thermal stability and degradation of this phase above 800 °C leading to the formation of zirconium and chromium phosphates (Zr₂PO₅, Zr₃(PO₄)₂, O and Cr₃P₂O₇). The single phase product of Cr₂Zr₃P₂O₁₀ has been characterised as a ceramic pigment. The sample provides saturated green colouration of glazes, which is stable to sunlight irradiation. The presented optical spectrum of this compound can be considered as the first example of such spectrum characterising chromium (III) in a unique oxygen tetrahedral environment. The ceramic glaze with a lower content of fluxing agents provided a very low pigment-glaze interaction, which helped to avoid the pigment dissolution and unfavourable crystallisation on the enamelled surface, and, therefore, can be suggested as preferable for this application.

Acknowledgements

The Ministry of Education, Youth and Sports of the Czech Republic, Project CZ.1.07/2.3.00/30.0021 “Enhancement of R&D Pools of Excellence at the University of Pardubice”, financially supported this work.

Notes and references

a Department of Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, Doubavice 41, 532 10 Pardubice, Czech Republic.
b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 120 06 Prague, Czech Republic. c Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic and the University of Pardubice, 532 10 Pardubice, Czech Republic.

34 http://wwwchem.uwimona.edu.jm/courses/CFSE.html