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We demonstrate the use of silk based proteins to control the particle/crystallite size during GeO2 formation, using a 
bio-mimetic approach at circumneutral pH and ambient temperature. Multicrystalline GeO2 was prepared from 
germanium tetraethoxide (TEOG) in the presence of different silk-based proteins: Bombyx mori silk (native silk) and 
two chimeric proteins prepared by linking a germania binding peptide (Ge28: HATGTHGLSLSH) with Bombyx 
mori silk via chemical coupling at different peptide loadings (silk-Ge28 10% and silk-Ge28 50%). The mineralisation 10 

activity of the silk-based proteins was compared with that of peptide Ge28 as a control system. GeO2 mineralisation 
was investigated in water and in citric acid/bis-tris propane buffer at pH 6. Morphology, particle size, crystallinity, 
water and organic content of the materials obtained were analysed to study the effect of added biomolecules and 
mineralisation environment on material properties. In the presence of silk additives well-defined cube-shape hybrid 
materials composed of hexagonal germania and up to ca. 5 wt% organic content were obtained. The cubic particles 15 

ranged from 0.4 to 1.4 m in size and were composed of crystalline domains in the range 35-106 nm depending on 
the additive used and synthesis conditions. The organic material incorporated in the mineral did not appear to affect 
the unit cell dimensions. The silk and chimeric proteins in water promote material formation and crystal growth, 
possibly via an effective ion-channelling mechanism, however further studies are needed to assert to what extent the 
presence of the silk impacts on nucleation and growth stages. The germania binding peptide alone did not have any 20 

significant effect on reaction rate, yield or the material’s properties compared to the blank. Interestingly, the peptide 
content in the silk chimeras tested did not affect mineralisation. The presence of buffer inhibited mineral 
condensation rate and yield. The use of silk-based biomolecules allows control of crystallite/particle size of hybrid 
materials opening up opportunities for bio-inspired approaches to be applied for the synthesis of functional germania 
based devices and materials.   25 

Introduction  
The development of organic-inorganic composites with superior 
functional properties is an important aspect of modern materials 
research. In the design and preparation of such materials we can 
take inspiration from biominerals where the biomolecule (e.g. a 30 

protein) acts as a template or guides mineral formation, often 
controlling the mineral’s growth, resulting in materials with 
superior properties.1-3 The bottom-up biomimetic approach to the 
formation of materials is a promising method, that achieves high 
level of control under mild synthetic conditions and has been 35 

successfully applied to silica and other minerals,4-7 using peptides 
and macromolecules to promote/ template the formation of 
specific nanostructures. 
 Germanium dioxide, or germania (GeO2), is a chemical 
analogue of silica with two main polymorphs: hexagonal 40 

(trigonal) quartz-like structure; and tetragonal (cubic) rutile-like 
structure.8 GeO2 nanostructures have unique and attractive 
physicochemical and optical properties for applications in optical,  
electronic and optoelectronic devices.9-11 Hexagonal GeO2 is 
commonly prepared by high temperature synthetic routes using 45 

germanium alkoxides12,13 or Ge powder14 as precursors, or under 

milder conditions (room temperature), from GeCl4
15 and 

germanium tetraethoxide16 precursors by using a reverse micelle 
system. The discovery that marine organisms, such as diatoms 
and sponges, have the ability to incorporate inorganic Ge into 50 

their skeleton has reinitiated an interest in its potential role in 
biomineralisation processes.17  

     GeO2 mineralisation from an alkoxide precursor has been 
previously studied in the presence of several bio-additives. GeO2 
mineralisation in the presence of self-assembled synthetic 55 

diacetylene phospholipids18 and poly (allylamine 
hydrochloride)19 gave amorphous GeO2 nanostructures. An 
amphiphilic peptide able to form micelles in solution was used to 
template amorphous GeO2 hollow spheres up to 600 nm in 
diameter.2 Basic amino acids such as lysine were shown to yield 60 

crystalline hexagonal germania,20 while peptides identified by 
biopanning against crystalline germania, have been shown to 
promote formation of amorphous germania.21,22 Although the 
interaction between the anionic germanate species resulting from 
the hydrolysis of precursor and the cationic groups from the 65 

additives were proposed to be responsible for mineralisation, the 
exact role of the additives in the hydrolysis/condensation 
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GeO2 particles using a bio-mimetic approach at room temperature 
using silk based proteins and adjustment of the composition of 
the mineralisation system. This approach can be used to rationally 
design a bio-catalytic synthesis of germania materials with 
defined particle and crystallite size with potentially tuneable 5 

functional properties. Further detailed experimental and 
computational studies are needed to elucidate how the silk based 
materials interact with the growing crystal surfaces. 

Experimental 

Materials 10 

N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 
(EDC) 98%; N-hydroxysuccinimide (NHS) 98%; germanium 
tetraethoxide (TEOG) (99.95%); citric acid (99.5%,) were 
obtained from Sigma Aldrich. Bis-tris propane (1,3-
Bis(tris(hydroxymethyl)methylamino)propane,99%) was 15 

obtained from  Acros Chemicals. Chemicals were used as 
received. Silk cocoons were obtained from Forest Fibers, U.K. 
and regenerated according to the method described below. All 
solutions were prepared using deionised water (conductivity <1 
μS cm-1).  20 

Synthesis of Bio-additives  

Peptide Ge28 (HATGTHGLSLSH)22 was prepared by 
microwave-assisted solid phase synthesis using the Fmoc 
chemistry by means of a Discover SPS microwave peptide 
synthesizer. Peptide purity (>85%, see Fig. S.2, ESI†) and 25 

sequence were assessed by RP-HPLC (LC20 chromatography 
enclosure, Dionex, Sunnyvale, CA), and MALDI ToF mass 
spectrometry (Bruker Daltonics Ultraflex 3 matrix-assisted laser 
desorption ionization), respectively, before use in mineralisation 
experiments.  30 

     Native silk was obtained from regeneration of Bombyx silk 
from silk cocoon including both heavy and light chain as 
previously reported. Chimeric proteins silk-Ge28 10% and silk-
Ge28 50% were prepared by a two steps chemical method as 
described elsewhere involving peptide coupling to silk active 35 

sites by diazotization and EDC/NHS coupling.33 Silk-peptide 
chimeric proteins were purified using disposable PD10 desalting 
columns (Sephadex G-25 Medium, GE Healthcare), lyophilised 
and stored at -20oC. The coupling process was followed by UV-
vis spectrophotometry (Varian Cary 50 UV-vis) (Fig.S3, ESI†). 40 

 

GeO2 mineralisation 

Germania mineralisation from 0.2 M TEOG solution was carried 
out in the presence of the different biomolecules as additives. In a 
typical experiment, 0.044 ml of TEOG was added to 0.956 ml of 45 

a 1 mg/ml solution of additive in distilled water or in buffered 
solution. The buffer was citric acid and bis tris propane at pH 6. 
The mixture was stirred for 48 hours and the precipitate isolated 
by centrifugation (10,000 rpm, 10 min), rinsed three times with 
distilled water and lyophilized prior to characterization. Solution 50 

pH was monitored during condensation in the water system using 
an InLab Micro combination glass pH meter (METTLER 
Toledo). For reactions performed in the presence of buffer, pH 
was measured at the beginning and at the end of the reaction. 

Materials characterisation 55 

Particle morphology and composition were assessed by scanning 
electron microscopy (SEM) using a JEOL JSM-840A microscope 
operated at 15 kV, equipped with an energy-dispersive X-ray 
analysis (EDX) system with light element detection (Oxford 
Inca). Samples were attached to a carbon adhesive tape on an 60 

aluminium stub and gold coated for imaging (Edwards, Sputter 
coater S150B). Particle size was measured from the SEM images 
using Image J software. 
Non-mineral content was measured by Thermogravimetric 
analysis (TGA) using a TGA 2050 analyzer (TA instruments). 65 

Samples (0.5-1.5 mg) were heated in alumina ceramic crucibles 
from 30°C to 800°C at 10°C/min under flowing air. Weight loss 
below 200 oC was used to calculate the Water content, while the 
organic content was calculated from the weight loss between 200 
and 700 oC. The % organic content and % water content are 70 

expressed as % of the precipitated material. The inorganic content 
was then calculated by difference and attributed to pure GeO2. 
The germania precipitation yield (%) was calculated from the 
amount of pure GeO2 in relation to the TEOG added (as GeO2) 
and expressed as the average of TGA analysis of samples from 75 

three separate condensation experiments. 
Fourier Transform Infrared Spectroscopy (FTIR) was performed 
by the KBr method using a Nicolet Magna IR-750, with 
absorbance measured in the range from 4000 to 440 cm-1, 

averaging 64 scans acquired at 2 cm-1 resolution.  80 

X-ray diffraction analysis (XRD) was performed on an Oxford 
Instruments (PANalytical X’Pert PRO) with a CuK radiation 
(=1.54056Å). Samples were analysed at room temperature in a 
polyethylene terephthalate (PET) holder and were scanned for 2θ 
values from 4° to 80° at 45 kV accelerating voltage, scan speed of 85 

0.02 2 s-1 and 40 mA filament current. The crystallite domain 
sizes were determined by applying the Scherrer equation44 to the 
100% relative abundance peak (101), assuming a shape factor (K) 
of 0.9. Differences in lattice constants of the hybrid materials 
from those of pure GeO2 were assessed to estimate the possible 90 

intercalation of organic matter in the hybrid material’s crystal 
structure. Lattice constants were calculated by the Rietveld 
method45 using Microstructural Analysis Using Diffraction 
(MAUD) software46 with a pure P3121 hexagonal GeO2 pattern 
(COD ref. 2300365)47 as reference.  95 
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‡ Footnotes should appear here. These might include comments relevant 
to but not central to the matter under discussion, limited experimental and 
spectral data, and crystallographic data. 
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