This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Structural Diversity and Magnetic Properties of Six Metal-Organic Polymers Based on Semirigid Tricarboxylate Ligand of 3,5-Bi(4-carboxyphenoxy)benzoic Acid

Liming Fan, a,b Weiliu Fan, a Weikuo Song,b Liming Sun,a Xian Zhao, a Xiutang Zhang a,b

ABSTRACT: Solvothermal reactions of the semirigid 3,5-bi(4-carboxyphenoxy)benzoic acid (H₃BCP) and transitional metal cations with the help of three ancillary bridging imidazole linkers afford six coordination polymers, namely, [Co(HBCP)(1,4-bib)₆]₀ (1), [{Co₃(HBCP)(1,4-bib)(μ₂-H₂O)(H₂O)₂}₃(1,4-bib)₆]₁₈ (2), [{Mn₃(H₃-bib)(H₂O)}₆(H₂BCP)]₉ (3), [{Fe₃(HCOO)(1,4-bib)]₆(2H₂O)₉ (4), [{Ni₂(HBCP)(H₂BCP)(4,4'-bib)₂(μ₂-H₂O)(H₂O)₂}₆ (5), and [Ni(HBCP)(1,4-bib)₂]₁₈(H₂O)₉ (6). (1,4-bib = 1,4-bis(1-imidazolyl)-2,5-dimethyl benzene, 4,4'-bib = 4,4'-bis(imidazol-1-yl)biphenyl). Their structures and properties have been determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses, thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS). Complex 1 displays an unusual 2D→2D parallel entangled networks consisting of (3,4)-connected 3,4,1,4.83 sheets. Complex 2 exhibits a 2-fold interpenetrated framework with the trinodal (4,4,6)-connected (3·4·5·6·7·8)₂(3·6·7·9)₂(3·4·5·2·6·7·9·10) topology. The host network of complex 3 is a 2D 4-connected (4·6·5)-sq1 sheet. Complex 4 affords a unprecedented 3D (4,6,6)-coordinated framework with point symbol of (4·6·3)(4·6·6)(4·6·3·8), in which the 1D helix water chains occupy the void channels. Complex 5 can be regarded as a novel self-penetrating (4,4,4,5)-coordinated framework with point symbol of (4·5·4·6·5·6·7·8)₂(5·6·7·8)₂(5·6·7·9), which contains two interpenetrated (3,4,4,5)-coordinated (4·5·6·5·6·7·8)₂(5·6·7·9) subnets linked by μ₂-H₂O. Complex 6 shows a 1D ladder chain, which are further assembled into a 3D supramolecular structure via O⋯H⋯O and π⋯π interactions. Besides, magnetic studies indicate both complex 2 and 4 showing antiferromagnetic properties.

Introduction

The functional coordination polymers (CPs), as a class of novel solid materials, have been attracted thousands of coordination chemists and engineers for their interesting structures as well as potential applications in gas separation and storage, catalysis, magnetism, optical properties, and microelectronics sensing. The architectures and functions of these materials can be tailored by altering the same factors as the metal cations, solvent media, templating agent, pH value, counteranion, and the chemical structure of organic ligands. Stratically design or select featured organic ligand according to their length, rigidity, coordination modes, and functional groups or substituent was proved to be one efficient route for achieving expected CPs.

Quite recently, semirigid multicarboxylate ligands with two or more aromatic rings separated by the nonmetallic atoms (C, N, O, Si, S atom) were employed to build interesting coordination frameworks, especially some flexible networks with breathing. The flexibility of the organic semirigid multicarboxylate ligands endowed the constructed functional CPs tunable structures, which further have influence on the properties. Owing to the valence electron configuration of those nonmetallic atoms, the semirigid linkers have a trend to coordinate inorganic nodes with characteristic shapes. Besides, when the ancillary ligands were introduce to build the networks, the final packing architectures have greater tunability. Recent study shows that ancillary bridging imidazole linkers holding different lengths and flexibilities have great effects on the final packing supramolecular and topology as well as coordination modes and molecular conformations of host aromatic multicarboxylate acids. As we all known, the mixed ligand strategy added the scope of the functional CPs, giving diversified polymeric structures with interesting structures and unusual properties. Therefore, it is worth trying to prepare novel functional metal-organic hybrid complexes by using such kind of semirigid multicarboxylate and ancillary bridging imidazole linkers.

ARTICLE

Dynamic Article Links
Thus, the aforementioned points inspired us to assembly novel coordination frameworks with semirigid 3,5-bis(4-carboxyphenoxy)benzoic acid (H$_2$BCP) and three ancillary bridging imidazole linkers (1,4-bib, 1,4-bidb, and 4,4'-bibp, Scheme 1). Herein, six novel CPs, with the structures ranged from 1D ladder chain (6), 2D sheet (3), 2D→2D parallel entangled network (1), 3D intriguing (4,6,6)-connected framework (4), 3D self-penetrating framework (5), to 3D→3D parallel entangled framework (2) (Scheme 2), were obtained through the mix ligand strategy under similar solvothermal reactions. Besides, magnetic studies indicate both complex 2 and 4 showing antiferromagnetic properties.

Experimental Section

Materials and Methods. All the chemical reagents were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification. IR spectra were measured on a NEXUS 670 FTIR spectrometer. Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. X-ray powder diffractions were measured on a Panalytical X-Pert pro diffractometer with Cu-Kα radiation. Thermogravimetric analyses (TGA) were performed under air condition on Perkin-Elmer TGA-7 thermogravimetric analyzer. The variable-temperature magnetic susceptibility measurements were performed on the Quantum Design SQUID MPMS XL-7 instruments. The XPS measurements were performed using a VG 220i XL system with 12.5 eV as pass energy and monochromatic AlKα X-ray excitation.

General Synthesis and Characterization. All the titled complexes are synthesized under similar conditions with the mixture of H$_2$BCP, ancillary imidazole linkers (1,4-bib, 1,4-bidb, or 4,4'-bibp), and transitional metal salts added in H$_2$O or mixed solvents. The NaOH was added to eliminate the protons of H$_2$BCP. After 170 °C heated for 3 days, the suitable crystals were obtained. Besides, the formate anion in complex 4 were derived from the decarboxylation of H$_2$BCP under high temperature and high pressure conditions. To check the phase purity of 1–6, PXRD has been introduced, the comparisons of measured and simulated PXRD patterns shows the main peaks are aligned with each other, which indicated the high purity of the complex (Fig. S1 and S2, see Supporting Information). For 1–6, the IR absorption bands in the range of 3400–3500 cm$^{-1}$ can be attributed to the characteristic peaks of O–H vibrations. The vibrations at ca. 1530 and 1620 cm$^{-1}$ correspond to the asymmetric and symmetric stretching vibrations of the carboxyl groups, respectively (Fig. S3).

Synthesis of [Co(HBCP)(1,4-bib)$_6$]$_n$ (1). A mixture of H$_2$BCP (0.15 mmol, 0.059 g), 1,4-bib (0.30 mmol, 0.063 g), CoCl$_2$·6H$_2$O (0.30 mmol, 0.071 g), NaOH (0.40 mmol, 0.016 g) and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=6.7), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Violet block crystals of 1 were obtained. Yield of 48% (based on Co). Anal. (%) calcd. for C$_{48}$H$_{42}$CoN$_{13}$O$_{9}$: C, 58.29; H, 3.08; N, 5.04. Found: C, 58.31; H, 3.11; N, 4.96. IR (KBr pellet, cm$^{-1}$): 3401 (w), 3126 (m), 1696 (w), 1577 (vs), 1417 (s), 1287 (m), 1217 (s), 1167 (m), 1009 (s), 917 (s), 857 (m), 771 (m).

Synthesis of [[Mn$_{1.5}$(HBCP)(1,4-bib)$_6$](H$_2$O)]$_n$·(H$_2$O)$_2$ (2). A mixture of H$_2$BCP (0.15 mmol, 0.059 g), 1,4-bib (0.30 mmol, 0.063 g), MnSO$_4$·H$_2$O (0.30 mmol, 0.051 g), NaOH (0.40 mmol, 0.016 g) and 12 mL H$_2$O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=7.2), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Colourless block crystals of 2 were obtained. Yield of 53% (based on Mn). Anal. (%) calcd. for C$_{66}$H$_{52}$Mn$_{3}$N$_{18}$O$_{20}$: C, 53.63; H, 3.82; N, 7.58. Found: C, 53.51; H, 3.87; N, 7.76. IR (KBr pellet, cm$^{-1}$): 3114 (m), 1689 (vs), 1587 (s), 1490 (m), 1376 (s), 1215 (s), 1167 (m), 1087 (s), 1009 (s), 917 (s), 841 (m), 781 (m), 744 (w), 728 (m).

Synthesis of [[Mn$_2$(1,4-bib)(H$_2$O)]$_n$(H$_2$BCP)]$_n$ (3). A mixture of H$_2$BCP (0.20 mmol, 0.079 g), 1,4-bib (0.30 mmol, 0.063 g), MnSO$_4$·H$_2$O (0.30 mmol, 0.051 g), NaOH (0.10 mmol, 0.004 g), 9 mL H$_2$O, and 3 mL EtOH was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=6.1), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Colourless block crystals of 3 were obtained. Yield of 68% (based on Mn). Anal. (%) calcd. for C$_{66}$H$_{52}$Mn$_{3}$N$_{18}$O$_{20}$·8H$_2$O: C, 61.07; H, 3.88; N, 8.63. Found: C, 60.92; H, 3.90; N, 8.74. IR (KBr pellet, cm$^{-1}$): 3109 (m), 1689 (s), 1587 (m), 1509 (s), 1417 (w), 1417 (s), 1287 (m), 1217 (s), 1167 (m), 857 (m), 771 (m).

Synthesis of [Fe(BCP)$_{0.5}$(HCOO)$_{0.5}$(4,4'-bibp)$_6$]$_n$·2H$_2$O (4). A mixture of H$_2$BCP (0.20 mmol, 0.079 g,
placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=6.4), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Black green block crystals of 4 were obtained. Yield of 43% (based on Fe). Anal. (%) calcd. for C_{20}H_{15}FeN_{3}O_{6}: C, 55.20; H, 3.47; N, 6.43. Found: C, 54.83; H, 3.67; N, 6.302. IR (KBr pellet, cm\(^{-1}\)): 3119 (m), 1595 (s), 1515 (vs), 1398 (s), 1307 (s), 1277 (m), 1060 (s), 878 (w), 783 (m), 749 (w).

Synthesis of [Ni(HBCP)(1,4-bibb)]\(\text{H}_2\text{O} \)\(\text{Ni} \)(5). A mixture of HBCP (0.20 mmol, 0.079 g), HBCP (0.20 mmol, 0.079 g), NaOH (0.20 mmol, 0.008 g) and 12 mL H_{2}O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=6.4), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Green block crystals of 5 were obtained. Yield of 81% (based on Ni). Anal. (%) calcd. for C_{15}H_{12}N_2O_{3}: C, 60.17; H, 3.69; N, 7.20. Found: C, 59.80; H, 3.71; N, 10.18. IR (KBr pellet, cm\(^{-1}\)): 3188 (w), 3061 (w), 1711 (m), 1560 (s), 1520 (vs), 1398 (vs), 1220 (s), 816 (m), 784 (m), 744 (w).

Synthesis of [Ni(HBCP)(1,4-bibb)]\(\text{H}_2\text{O} \)\(\text{Ni} \)(6). A mixture of HBCP (0.20 mmol, 0.079 g), HBCP (0.20 mmol, 0.048 g), NaOH (0.20 mmol, 0.008 g) and 12 mL H_{2}O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days (After reaction, the pH=6.6), followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Green block crystals of 6 were obtained. Yield of 56% (based on Ni). Anal. (%) calcd. for C_{14}H_{12}N_{2}O_{3}: C, 59.74; H, 4.42; N, 9.95. Found: C, 60.13; H, 4.28; N, 9.31. IR (KBr pellet, cm\(^{-1}\)): 3317 (s), 3139 (s), 1668 (m), 1595 (vs), 1317 (vs), 1381 (s), 1069 (s), 830 (m), 753 (m), 707 (w).

X-ray Crystallography. The crystal data was collected with a Siemens SMART diffractometer using Mo-Kα radiation (λ=0.71073 Å) at room temperature. The structures of these tilled complexes were solved by direct methods, with the non-hydrogen atoms refined anisotropically by using the SHELXLX package with F2 values based full-matrix least-squares procedure. All the hydrogen atoms except those for water molecules were generated geometrically with fixed isotropic thermal parameters, and included in the structure factor calculations. For 1–6, crystallographic data and the selected bond lengths and angles are given in Table 1 and Table S1. Further details of crystal structure can be obtained from the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, CAMBRIDGE CB2 1EZ, UK, [Telephone: +44-(0)1223-762-910, Fax: +44-(0)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk/deposit], on quoting the depository number CCDC-986462 for 1, 986460 for 2, 986461 for 3, 1006437 for 4, 986464 for 5, and 986463 for 6. Topological analysis was performed by using TOPOS program.

Result and Discussion

Structural Description of [Co(HBCP)(1,4-bibb)]\(\text{Ni} \)(1). Structure analysis reveals complex 1 crystallizes in the monoclinic system, space group P2\(_1\)/c. The asymmetric unit consists of one Co\(^{II}\) ion, one HBCP\(^{-}\) ligand, and a half of 1,4-bibb ligand (Fig. 1a). Each Co\(^{II}\) center is tetra-coordinated by three oxygen atoms from three different HBCP\(^{-}\) linkers [Co(1)–O(1) = 1.969(5), Co(1)–O(5) = 1.983(7), and Co(1)–O(7) = 1.983(0) Å], and one nitrogen atom from 1,4-bibb ligand [Co(1)–N(1) = 1.992(4) Å]. The HBCP ligand is partially deprotonated and twisted with the dihedral angle between three phenyl rings are 71.7(5), 87.4(0), and 42.4(7)°, respectively. The three carbonyl groups coordinated with three Co\(^{II}\) ions with μ-η\(^3\)-η\(^1\) coordination modes (Mode I, Scheme 3), leaving a 1D [Co(HBCP)]\(\text{Ni} \) ladder chain with the Co⋯Co distance is 10.696(7) Å (Fig. 1b). Then, 1,4-bibb ligand linked the 1D ladder chains,
forming an interestingly 2D sheet with the 60-membered large macrocycle (13.45(5) × 18.65(5) Å²) (Fig. 1c).

Each sheet can be defined as a (3,4)-connected (4.2.6.8)(4.2.6)-3,4L83 layer with the CoII ion and HBCP II ligand regarded as four and three nodes, respectively. The large macrocycle within each sheet and the 1D [Co(HBCP)]n ladder chain make the neighboring layers possible to interpenetrate with each other. Each sheet simultaneously penetrated with two another adjacent ones, finally formed a rarely reported 3-fold 2D→2D entangled network (Fig. 1d).

Structural Description of [Mn1.5(BCP)(1,4-bib)0.5(H2O)(H2O)2]·(1,4-bib)0.5(2). When using MnII instead of the CoII as centre metal ions, complex 2 with unusual 2-fold 3D→3D polycatenation was obtained. X-ray analysis reveals complex 2 crystallized in monoclinic system P21/n. As depicted in Fig. 2a, complex 2 consists of one and a half crystallographically independent MnII ions, one BCP II ligand, three coordinated water molecules, and half of 1,4-bib ligands. Mn(1) is hexa-coordinated by one N atom from 1,4-bib ligand, five O atoms from two different BCP II ligands, two mono-coordinated water molecules, and one bridging µ2-H2O, forming an octahedral coordination geometry with slightly distorted. Mn(2) is located in a distorted [MnO6] octahedral environment, completed by four carboxyl O atoms from four BCP II ligands and two O from µ2-H2O. The Mn–N distance is 2.178(3) Å, and the Mn–O lengths are 2.106(2)–2.268(2) Å.

The H2BCP ligand in complex 2 is completely deprotonated and coordinates with four MnII ions by using two µ1-η1 carboxyl groups and one µ2-η1 carboxyl group (Mode II, Scheme 3). The dihedral angle between two side phenyl rings and central phenyl ring in BCP II are 54.2(1) and 80.7(0)°, respectively. And the one between two side phenyl rings is 58.8(5)°. It is worthy to note that three MnII ions are linking into one trinuclear [Mn3(COO)4]5+ cluster by sharing six µ2-η1:η1 carboxyl groups, with the Mn···Mn distance is 3.830(9) Å. And the trinuclear SBUs are further expanded to a 2D [Mn3(BCP)2]n sheet (Fig. 2b). The 1,4-bib bridging linker act as pillars to support the 2D sheets, finally resulting in a 3D network (Fig. 2c). It is noteworthy that the guest molecules (1,4-bib, H2O) occupied the channels via hydrogen bonds, which may be one important factor to stabilize the whole framework.

Topology analysis shows the whole network of complex 2 can be rationalized to a 2-fold 3D→3D interpenetrated (4,4,6)-connected networks with the point symbol of (3·4·5·6·7)2(3·6·7·9)2(3·2·4·5·6·7·9) topology by denoting both Mn ions as 4-connected nodes, the BCP II ligand as 6-connected nodes, respectively (Fig. 2d).

Figure 1. (a) The asymmetric unit of 1 (Symmetry codes: A: 1-x, -0.5+y, 0.5-z; B: 1-x, 0.5+y, 0.5-z; C: 1-x, 1-y, 2-z). (b) The 1D [Co(HBCP)]n ladder chain. (c) View of the 2D [Co(HBCP)(1,4-bib)]n sheet constructed from the 1,4-bib bridged 1D ladder chains. (d) Schematic view of the 2D→2D (3,4)-connected 3,4L83 net with the Point Schläfli symbol of (4.2.6.8)(4.2.6) in 1.
Figure 2. (a) The asymmetric unit of 2 (Symmetry codes: A: 0.5+x, 1.5+y, 0.5+z; B: 0.5-x, 0.5+y, 0.5-z; C: 0.5-x, 0.5+y, 0.5-z; D: 0.5+x, 0.5-y, 0.5+z; E: 1-x, 1-y, 1-z; F: 2-x, 1-y, 1-z; G: 1-x, 2-y, 1-z). (b) The [Mn(CO)]₆ cluster based 2D [Mn₂(BCP)]₄ sheet view along c axis. (c) The 3D→3D parallel entangled networks view along b axis. (d) The 2-fold 3D→3D (4,4,6)→(3·4·5·6·7·9) topology in 2.

Figure 3. (a) The asymmetric unit of 3 (Symmetry codes: B: 2-x, 1-y, 1-z; C: 1-x, -y, 1-z). (b) The 4-connected [Mn(1,4-bib)₃]²⁻ networks. (c) The 2D 4-connected (4₄⁶)ₖ topology. (d) The 3D supramolecular of complex 3 connected through O-H···O hydrogen bonds.
Figure 4. (a) The asymmetric unit of 4 (Symmetry codes: A: -x, y, 0.5-z; B: 0.5-x, y, -0.5+z; C: 0.5-x, 1-y, z; D: x, 1-y, -0.5+z; E: 1-x, 2-y, 1-z; F: -x, y, 0.5-z). (b) The unprecedented 1D $[\text{Fe(COO)}_3(\text{HCOO})_2]_n$ chain. (c) View of the 3D frameworks in which the 1D helix water chains occupied the void channels. (d) Schematic view of the novel (4,6,6)-coordinated framework with Point Schläfli symbol of $(4^2\cdot6\cdot6^8\cdot8^3)$.

Figure 5. (a) The asymmetric unit of 5 (Symmetry codes: C: 1+x, -1+y, -1+z; D: 2-x, 1-y, 1-z; E: x, y, 1+z; F: -x, y, 3+z; G: 1+x, 1+y, 1+z; H: 1-x, 2-y, 2-z). (b) The 3D $[\text{Ni}_{2.5}(\text{HBCP})(\text{BCP})]_n$ network. (c) View of the 3D network along bc plane. (d) Schematic view of the novel self-penetrating (4,4,4,5)-coordinated network with Point Schläfli symbol of $(4^2\cdot5^2\cdot6\cdot6^2\cdot8^3\cdot9^2)$, which contains two interpenetrated $(3,4,4,5)$-coordinated $(4^2\cdot5^2\cdot6\cdot6^2\cdot8^3\cdot9^2)$ subnets linked by μ_2-H$_2$O.
Structural Description of \{[\text{Mn}_{5n}n(1,4-bib)(H_2O)](H_2BCP)\}_n (3). Similar reaction environment to 2, except for the \(\text{H}_2\text{O}\) was replaced by \(\text{H}_2\text{O}E\text{O}\text{t}_{3}\) system, the 3D→3D parallel entangled network degrade to a 2D sqf sheet. Complex 3 crystallizes in triclinic space group P-1. The asymmetric unit contains a half of crystallographically independent Mn\(^{n}\) ions, one 1,4-bib ligand, one protonated HBCP\(^{+}\) ion, and one lattice water (Fig. 3a). Crystal structure analysis shows that the Mn\(^{n}\) center is located in a hexacoordinated slightly distorted octahedron, surrounded by four nitrogen atoms from four 1,4-bib ligands and two \(\text{O}_{\text{water}}\). The Mn–N distances are 2.133(3)/2.211(7) Å, and Mn–O bond length is 2.088(9) Å.

The HBCP\(^{n}\) ligands in complex 3 are partly deprotonated and act as anions, instead of participating in coordination to metal ions. Mn\(^{n}\) ions are connected by 1,4-bib ligands resulting in a 4-connected 2D \([\text{Mn}(1,4\text{bib})]_{2n}\) layer with the opening area is about 13.554(1)×14.099(0) Å², exhibiting a \((4^{2}-6^{2})\)-sqf topology (Fig. 3b and 3c). Furthermore, with the help of O–H···O interactions (\(\text{O}5···\text{H}5\text{A}···\text{O}3 = 2.438(3)\text{ Å}\)), the coordination environment of \(\text{Ni}^{2+}\) ions, one and a half of 1,4-bibd, and two coordinated HCOO\(^{-}\) anions, one nitrogen atom from the 4,4'-bib, and one lattice water (Fig. 3a). Crystal structure analysis shows that the \(\text{Ni}^{2+}\) center is located in a distorted octahedral coordination geometry. While the coordination environment of \(\text{Ni}(2)\) located in a centrosymmetric NiO\(_6\) octahedral geometry, completed by two \(\text{O}\) atoms from BCP\(^{2-}\) ligands and two water molecules, and two \(\text{N}\) atoms from two 4,4'-bibb ligands. Ni(3) exhibits similar coordination geometry, hexacoordinated by two N atoms from the imidazole of 4,4'-bib ligands, and four O atoms from two BCP\(^{2-}\) ligand and two water molecules. The Ni-N and Ni–O bond lengths are in the range of 2.058(5)–2.070(6) Å and 2.012(5)–2.112(8) Å, respectively.

The ligand of BCP\(^{2-}\) acts as one \(\mu_2\) node to coordinate with four \(\text{Ni}^{2+}\) ions, in which three carboxyl groups adopt \(\mu_2-\eta^1\eta^2\), \(\mu_2-\eta^2\eta^1\), and \(\mu_2-\eta^1\eta^1\) coordination mode, respectively (Mode IV, Scheme 3), and the dihedral angles among the three phenyl rings being 86.5(6), 85.6(3), and 18.1(8)°, respectively. While the partly deprotonated HBCP\(^{2-}\) acts as bridging linker to link with two \(\text{Ni}^{2+}\), with the two deprotonated carboxyl groups adopt \(\mu_2-\eta^1\eta^1\) and \(\mu_2-\eta^1\eta^1\) coordination mode, respectively (Mode V, Scheme 3), and the dihedral angles in BCP\(^{2-}\) are 71.0(9), 76.7(2), and 11.3(7)°, respectively. \(\text{Ni}^{2+}\) ions are linked by BCP\(^{2-}\) and HBCP\(^{2-}\) ligands, successfully constructed a 2D layer, which was further expanded by \(\mu_2\text{H}_2\text{O}\) to give a 3D \([\text{Ni}_{2.5}(\text{HBCCP})(\text{BCP})_{\text{H}_2\text{O}}]_{\text{n}}\) network (Fig. 5b). Interestingly, the linear 4,4'-bibp linkers which act as pillars to coordinate \(\text{Ni}^{2+}\) ions of the layers, as well as the monodentate 4,4'-bibp linkers, both contribute to the stable of final structure (Fig. 5c).

From the viewpoint of topology, the final obtained 3D structure exhibits as an interestingly tetranodal (4,4,4,5)-connected 3D frameworks with the Point Schlüfi symbol of \((4^{5}-6)(4^{6}-7^{7}-8_{8})(5^{6}-7^{7}-8_{9})\) by denoting \(\text{Ni}(1), \text{Ni}(2), \text{Ni}(3), \text{BCP}^{2-}\) as 5-connected, 4-connected, 4-connected, 4-connected nodes, respectively (Fig. 5d). It is worth noting that the whole structure can be seen as a self-pententainging nets, because the final structure can be easily simplified to a 2-fold interpenetrated \((3,4,4,5)\)-connected \((4^{5}-6)(4^{6}-7^{7}-8_{8})(5^{6}-7^{7}-8_{9})\) subnets by omitting \(\mu_2\text{H}_2\text{O}-\text{Ni}\) bonds. To the best of our knowledge, the topologies of both the subnets and frameworks have never been documented up to now.

Structural Description of \([\text{Ni}(\text{HBCCP})(1,4\text{bibd})_{\text{H}_2\text{O}}]_{\text{n}}\) (6). When the long 4,4'-bibp ancillary bridging linker was replaced by the methyl group modified shorting ligand, the steric effects and supporting requirements of neighbouring ions make another trendy. Structure analysis reveals complex 6 is a 1D ladder chains, rather than 2D layers or 3D nets. Complex 6 crystallizes in monoclinic crystal system \(P2_1/c\). As can be seen in Fig. 6a, the asymmetric unit contained one crystallographically independent \(\text{Ni}^{2+}\) ion, one partly deprotonated HBCP\(^{2-}\) ligand, one and a half of 1,4-bibd, and two coordinated water molecules. Each \(\text{Ni}^{2+}\) center is located in a distorted \([\text{Ni}2\text{O}_3]\) octahedral geometry, completed by three \(\text{O}\) atoms from one BCP\(^{2-}\) ligand and two coordinated water molecules, three nitrogen atoms from different 1,4-bibd bridging ligands.

The Ni\(^{2+}\) ions are bridged by 1,4-bibd ligands to generate an infinite 1D \([\text{Ni}(1,4\text{bibd})]_{\text{n}}\) ladder structure (Fig. 6b), with the 1,4-bibd separated \(\text{Ni}--\text{Ni}\) distance is 2.778(3) Å. With the help of O–H···O hydrogen bonds (O5−H5A−O3=2.438(3) Å, O1w−H1w−O6=2.686(3) Å, and O2w−H3w−O2=2.778(3) Å).
and π·π interactions \((D\cdots A)=3.833(7)\) Å between adjacent chains, the final 3D supramolecular structure was formed (Fig. 6c).

![Figure 6](image-url)

Figure 6. (a) The asymmetric unit of 6 (Symmetry codes: A: 1–x, y, 1.5–z; B: x, 1–y, 0.5+z; C: 1–x, 1–y, 1–z). (b) The simplified 1D ladder chain of complex 6. (c) The 3D supramolecular of complex 6.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Coord. Modes</th>
<th>Ancillary Linkers/Role</th>
<th>Dihedral Angles (°)</th>
<th>Structure and Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mode I</td>
<td>1,4-bibi/bridging</td>
<td>87.4(0)/42.4(7)/71.7(5)</td>
<td>2D→2D (3,4)-connected parallel entangled ((4\cdot6\cdot8\cdot4\cdot6\cdot3)) net</td>
</tr>
<tr>
<td>2</td>
<td>Mode II</td>
<td>1,4-bibi/bridging+guest</td>
<td>54.7(7)/80.7(8)/58.4(9)</td>
<td>3D→3D (4,4,6)-connected ((3\cdot4\cdot5\cdot6\cdot7\cdot3)) net</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>1,4-bibi/bridging</td>
<td>73.8(5)/68.8(0)/23.0(8)</td>
<td>2D 4-connected ((4\cdot6\cdot3)) sheet</td>
</tr>
<tr>
<td>4</td>
<td>Mode III</td>
<td>4,4′-bibi/bridging</td>
<td>88.7(5)/88.7(5)/9.9(4)</td>
<td>3D (4,6,6)-coordinated ((4\cdot6\cdot6\cdot4\cdot6\cdot8\cdot3)) net</td>
</tr>
<tr>
<td>5</td>
<td>Mode IV</td>
<td>4,4′-bibi/bridging</td>
<td>86.5(6)/85.6(3)/18.1(8)</td>
<td>3D self-penetrating 4-nodal ((4\cdot5\cdot6\cdot4\cdot6\cdot7\cdot8\cdot3)) net</td>
</tr>
<tr>
<td>6</td>
<td>Mode V</td>
<td>4,4′-bibi/bridging</td>
<td>71.0(9)/76.7(2)/11.3(7)</td>
<td>3D self-penetrating 4-nodal ((4\cdot5\cdot6\cdot4\cdot6\cdot7\cdot8\cdot3)) net</td>
</tr>
</tbody>
</table>

Table 2 The detailed comparisons of complexes 1–6.

Structural comparisons. As shown in the Scheme 3 and Table 2, the semirigid H3BCP ligand adopted six different coordination modes and the final obtained complexes display diverse structures. In complex 1, the H3BCP is partly deprotonated but coordinated three Co\(^{III}\) ions with three \(η^1:η^1\) mode carboxyl groups (Mode I), obtained 1D ladder chains, which are expanded by the bridged 1,4-bibi ligands to a 3-fold 2D→2D interpenetrated \(3,4\)-connected networks. For complex 2, the H3BCP is completely deprotonated and adopted \((κ²:κ²)-(κ²:κ²):(κ²:κ²):µ₆\) mode (Mode II) bridged the metal centres to form 2D sheets, which are further extended by the 1,4-bibi ligands to generate a 2-fold 3D→3D interpenetrated \((4,4,6)\)-connected porous networks. At the same times, the other 1,4-bibi ligands act as guest molecules to fulfill the voids, make the whole structure more stability though weak interactions. In complex 3, the H3BCP anions act as guest molecules, linked with the 2D [Ni(1,4-bibi)]\(_n\) nets through hydrogen bonds, finally given a 3D supramolecular. It is noteworthy that in complex 4, the BCP\(^−\)- adopted \((κ²:κ²)-(κ²:κ²):(κ²:κ²):µ₆\) mode (Mode III) to connect with six 1D [Fe₆(COO)₆(HCOO)]\(_n\) chains, successfully obtained a 2D [Fe₆(BP)(HCOO)]\(_n\) sheet. And then the bridging 4,4′-bibi further expanded to a 3D network. There are two kinds coordination modes in the assembly of complex 5, one BCP\(^−\)-linked four Ni\(^{II}\) ions in a \((κ²:κ²)-(κ²:κ²):(κ²:κ²):µ₆\) mode (Mode IV), and the other linked two Ni\(^{III}\) ions by using \(η^1:η^1\)-monodentate and \(η^1:η^1\)-cheating carboxyl groups (Mode V). In those coordination modes, 3D self-penetrating \((4,4,4,5)\)-coordinated frameworks were constructed under the bridging \(4,4′\)-bibi and \(µ₆\)-H₂O help. In complex 6, the partly deprotonated HBCP\(^−\) serve as charge balance as well as the terminal ligand by using its \(η^1:η^1\)-monodentate carboxyl group (Mode VI), constructed 1D ladder chains with the help of bridging 1,4-bibi ligands.

Structural investigation of these title complexes reveals that the H3BCP based coordination polymers, varied from 1D ladder chain (6), 2D sheet (3), 2D→2D parallel entangled network (1), 3D intriguing \((4,6,6)\)-connected framework (4), 3D self-penetrating framework (5), to 3D→3D parallel entangled framework (2). Systematic comparisons between 2 and 3 revealed the pH value of reaction system plays an important factor on the deprotonation of aromatic carboxylic acids and the formation of final architectures. In additions, structures of 2 and 3 are also controlled by the reaction solvent systems. Complexes 5 and 6 are synthesis under similar conditions except the ancillary imidazole linkers, when the 1,4-bibi was replaced by 4,4′-bibi, the structure turned from the 1D ladder chains based supramolecular to 3D self-penetrating \((4,4,4,5)\)-coordinated \((4\cdot5\cdot6\cdot4\cdot6\cdot7\cdot8\cdot3)\) frameworks. Last but not least, different transition metal centres in assembly the coordination polymers also have preferences when coordinated with imidazole linkers, which can proved by the structural
comparisons of 1/2 and 4/5. All in all, the obtained final structures are the result of multiple factors.

Thermal Analyses. The experiments of thermogravimetric analysis (TG) were performed on samples of 1–6, shown in Figure S4. For complex 1, the whole structure began to collapse at about 300 °C with a result of thermal decomposition (obsd. 16.1%, calcld. 14.9%). For complex 2, the first loss at about 100 °C is consistent with the removal of coordinated water molecules (obsd. 7.0%, calcld. 7.3%). The second weight loss in the range of 170–220°C can be attributed to the loss of 1,4-bib guest molecules (obsd. 13.7%, calcld. 14.2%). Then the frameworks begin to collapse at about 410°C. For complex 3, the weight loss below 105 °C can be attributed to the release of coordinated water molecules (obsd: 3.3%; calcld: 2.8%). With the temperature increasing, the H$_2$BCP guest molecules were lost. And then, the host network begins to collapse. For 4, the weight loss of water molecules is observed at about 115 °C (obsd: 8.9% and calcld: 8.3%). The decomposition of organic ligands began from 350 °C, with a result of thermal decomposition (obsd. 19.1%, calcld. 18.4%). For complex 5, the release of coordinated water molecules (obsd: 3.9%; calcld: 3.5%) in the temperature range of 85–135 °C took place. The framework can be stable until about 380°C, finally given thermal stability unknown solid powder. For complex 6, the weight loss from 90 to 135 °C is attributed to the release of water molecules (obsd: 7.9%; calcld: 8.3%). Above 260 °C, it starts to lose its ligands, finally given a result of thermal decomposition (obsd. 9.6%, calcld. 8.8%).

XPS analysis. In order to prove the oxidation state of Mn, Co, and Fe ions in related complexes, the XPS measurements were performed using a VG 220i XL system with 12.5 eV as pass energy and monochromatic Al-Kα X-ray excitation.

As can be seen in the Fig. S5, the measured binding energy of 781.62 eV for 1 is consistent with the oxidation state of CoII. For two Mn complexes, the XPS of 2 (Mn2p3: Being energy (BE) = 641.46 eV, Mn2p1: BE = 652.07 eV) and 3 (Mn2p3: Being energy (BE) = 640.37 eV, Mn2p1: BE = 651.02 eV) is in close with the +2 oxidation state of Mn ions. For complex 4, the measured Fe2p3 and Fe2p1 binding energy are 708.92 eV, and 723.19 eV, indicated the oxidation state of Fe ions is +2. It is noteworthy that the Fe(II) based CPs under solvothermal reactions are rarely reported. All the metal ions being energy are in close with the ones in NIST X-ray Photoelectron Spectroscopy Database.

Magnetic Properties. The variable-temperature magnetic susceptibility of 2 and 4 were performed because the [Mn$_3$(COO)$_4$] SBUs in complex 2 and the [Fe$_2$(COO)$_6$(HCOO)$_3$]$_n$ chain in complex 4 may be holding good magnetic properties. The above-mentioned complexes were tested in the temperature range of 2–300 K under a field of 1000 Oe.

As can be seen in Fig. 7, the χ_MT value of 2 at 300 K is 9.87 cm3 mol$^{-1}$K, lower than the theoretical value of the spin-only value (13.12 cm3 mol$^{-1}$) of three magnetically isolated MnII ions. With the temperature decreasing, the χ_MT value decreases continuously to 9.22 cm3 mol$^{-1}$ at 40 K. Then the χ_MT value increases rapidly up to a maximum value of 9.45 cm3 mol$^{-1}$ at 34 K. With the temperature further decreasing, the χ_MT value drops rapidly to 3.03 cm3 mol$^{-1}$ at 2K. The temperature dependence χ_M followed the Curie-Weiss law $\chi_M = C/(T-\theta)$ with $C = 9.97$ cm3 K mol$^{-1}$, $\theta = -4.11$ K (Fig. S6). The negative value of θ indicates the presence of an antiferromagnetic interaction between MnII ions. The above characteristics clearly suggest overall antiferromagnetic interactions between MnII ions in compound 2.18

For compound 4, the χ_MT value is 11.02 cm3 mol$^{-1}$ at 300 K, shown in Fig. 8. The susceptibility curve (χ_MT) decreases monotonically when cooling, reaching the lowest value of 1.82 cm3 mol$^{-1}$ at 2K with the molar susceptibility χ_M shows a maximum. The temperature dependence χ_MT value is nonlinear, the χ_MT value at 300 K is 27.54 mol cm$^{-3}$, and with the temperature decreasing, the χ_MT value decreases continuously to 2.32 mol cm$^{-3}$ at 0.2 K. The temperature dependence χ_M also clearly indicated very strong antiferromagnetic coupling between FeII ions in compound 4 (Fig. S7).19

Conclusions

In summary, we have successfully designed and synthesized six coordination polymers based on 3,5-bis(4-carboxyphenoxy)benzoic acid and three rigid ancillary bridging imidazole linkers. Complexes 1–6 displayed appealing structural features varied from 1D ladder chain (6),...
2D sheet (3), 2D→2D parallel entangled network (1), 3D intriguing (4,6,6)-connected framework (4), 3D self-penetrating framework (5), to 3D→3D parallel entangled framework (2). Magnetic studies indicate that complexes 2 and 4 both show antiferromagnetic properties.

Acknowledgements

The work was supported by financial support from the Natural Science Foundation of China (Grant Nos. 21101097, 91022034 and 51172127), the Excellent Youth Foundation of Shandong Scientific Committee (Grant JQ201015).

Notes

The authors declare no competing financial interest.

References

Structural Diversity and Magnetic Properties of Six Metal-Organic Polymers Based on Semirigid Tricarboxylate Ligand of 3,5-Bi(4-carboxyphenoxy)benzoic Acid

Liming Fan, Weiliu Fan, Weikuo Song, Liming Sun, Xian Zhao and Xiutang Zhang

Six 3,5-bi(4-carboxyphenoxy)benzoic acid based coordination polymers, varied from 1D ladder chain, 2D sheet, 2D→2D entangled sheet, 3D (4,6,6)-connected framework, 3D self-penetrating framework, to 3D→3D entangled framework, have been obtained in the presence of three imidazole linkers.