This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Table of contents entry

A family of novel Mn$_3$Ln$_4$ clusters: single-molecular magnets and first structurally characterized 3d/4f clusters containing 3-Methyloxysalicylaldoximate ligand
Family of Novel Mn$_3$Ln$_4$ Clusters Displaying Single-Molecular Magnet Behavior

Hui Chena,b, Cheng-Bing Maa, Ming-Qiang Hua, Hui-Min Wena and Chang-Neng Chen2*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

By using 3-Methyloxysalicylaldoxime (mosaoH$_2$) and N-methyl diethanolamine (N-mdeaH$_2$) as coligands, a family of heptanuclear Mn/Ln heterometallic compounds [Mn$^{II}_{4}$Ln$^{III}_{3}$]$_m$(mosao)$_l$(N-mdea)$_f$·xMeCN [Ln = Dy (1), Tb(2) and Y(3), pivH = pivalic acid] have been prepared. The crystal structures of 1–3 were obtained, and their core consists of two Mn$^{II}_{4}$Ln$_3$(µ$_3$-OR)$_2$(RO$_2$ = N-mdea$^-$) triangles linked to a central MnII atom. DC magnetic susceptibility study reveals that single-ion effects of the Ln ions are dominant in compounds 1 and 2. As for compound 3, which contains diamagnetic Y ions, the magnetic interactions between Mn ions via oximate NO bridges are revealed to be ferromagnetic. Fitting of the ac susceptibility data to an Arrhenius law gives energy barrier $U_{eff} = 9.27/13.83$ K for 1 and 3, respectively.

Introduction

Single-molecule-magnets (SMMs) have drawn intense and continuing interests in recent years for their unique magnetic properties and potential applications in information storage or quantum computing.1 SMMs are characterized as having a significant energy barrier to reversal of the magnetization vector, which originates from the combination of a large ground-state spin and a significant uniaxial (Ising) magnetic anisotropy, and thus can function as nanoscale magnets below a certain blocking temperature (T_B).2 Since the discovery of the first SMM of [Mn$_2$O$_2$(O$_2$CMe)$_2$(H$_2$O)$_4$] in 1993,3 the search for SMMs has been mainly focused on polynuclear 3d clusters,4 and the majority of SMMs found are homometallic Mn clusters containing MnIII atoms.5 Recently, the incorporation of lanthanide ions into such molecules as a promising route for probing new SMMs has attracted great interest owing to the significant single-ion anisotropy and a large ground-state spin of the lanthanide ions. An explosion of synthetic efforts has been devoted to 3d/4f clusters,4 and several of them have been revealed to behave as SMMs.$^{4c-6}$ Among 3d/4f clusters, Mn/Ln based clusters are of particular interests due to the key role played by MnIII ions as found in most of SMMs, and it is expected that combination of this two different high-spin and anisotropic metal ions will lead to SMMs with novel structures and desired magnetic properties, such as enhanced energy barriers. An increasing number of Mn/Ln heterometallic complexes with various nuclearities have been reported in recent years.4a,4d However, due to the synthetic difficulties in preparing Mn/Ln compounds that efforts toward mixed Mn/Ln compounds often resulted in all Mn or all Ln coordination compounds, the number of Mn/Ln based clusters is still limited. Thus, further examples of Mn/Ln clusters will provide valuable insights into the magnetic interactions, magnetostructural correlations and the favorable conditions for producing SMMs.

Phenolic oximes, such as salicylaldoxime (saoH$_2$) and its derivatives with their aldehydic hydrogen substituted by Me, Et, or Ph groups (R-saoH$_2$), have been widely employed in preparing polynuclear 3d complexes, especially Mn complexes, and is proved to be remarkably successful in mediation of ferromagnetic interactions between metal ions.6 Recently, a few Mn/Ln clusters containing these ligands have been documented,4e which exhibit fascinating magnetic properties, with a Mn$_9$Tb$_2$ cluster showing a high energy barrier of 103 K.4f It is therefore of interest to extend families of Mn/Ln clusters of phenolic oximes and further examine the magnetostructural correlations within the families. 3-Methyloxysalicylaldoxime (mosaoH$_2$), as one kind of phenolic oxide which contains a methoxy group on 3–site of the aromatic ring in addition to the phenolic group and oximate group, has been less explored though. To the best of our knowledge, few polynuclear complexes with this ligand have been reported to date, except a tridecanuclear Co(II) cluster and two isoostructural trinuclear Dy and Tb clusters.8 Having the weakly coordinating methoxy group which may specifically bind to the LnIII ions, as well as the phenolic group and oximate group, this multifunctional ligand can potentially coordinate to both 3d and
experimental section

Syntheses

All reagents are of commercially available analytical reagent grade and were used without further purification. \([\text{Mn} \text{O(piv)}_2 \text{py}]_3 \) and \(\text{mosaoH}_2 \) were prepared according to the literature method. \cite{10, 9}

\[\text{Mn}^{n+} \text{Mn}^{n+} \text{Ln}^{n+} \text{(mosao)}_2 \text{(mosaoH)}_2 \text{(Piv)}_4 \text{(N-mdea)}_2 \] \(\times \text{MeCN} \). To a stirred colorless solution of \(\text{mosaoH}_2\) (0.023g, 0.125mmol), \([\text{Mn} \text{O(piv)}_2 \text{py}]_3\) (0.026g, 0.025mmol) and \(\text{Ln(NO}_3)_3 \cdot 6\text{H}_2\text{O}\) (0.125mmol) in MeCN (10mL) was added \(\text{N-mdeaH}_2\) (0.16g, 0.13mmol) and \(\text{NEt}_3\) (0.21mL, 1.5mmol). The resulting brown solution was stirred for 5 minutes and filtered.

The filtrate was left undisturbed at room temperature for three days to deposit little prismatic black crystals in \(\sim 30\% \) yield (based on \(\text{Ln}\)).

Anal. Calcd for \(\text{C}_{1220} \text{H}_{1219} \text{O}_{1220} \text{N}_{41} \text{S}_{1220} \cdot 6\text{MeCN}\). To a stirred colorless solution of \(\text{mosaoH}_2\) (0.023g, 0.125mmol), \([\text{Mn} \text{O(piv)}_2 \text{py}]_3\) (0.026g, 0.025mmol) and \(\text{Ln(NO}_3)_3 \cdot 6\text{H}_2\text{O}\) (0.125mmol) in MeCN (10mL) was added \(\text{N-mdeaH}_2\) (0.16g, 0.13mmol) and \(\text{NEt}_3\) (0.21mL, 1.5mmol). The resulting brown solution was stirred for 5 minutes and filtered.

The filtrate was left undisturbed at room temperature for three days to deposit little prismatic black crystals in \(\sim 30\% \) yield (based on \(\text{Ln}\)).

Anal. Calcd for \(\text{C}_{1220} \text{H}_{1219} \text{O}_{1220} \text{N}_{41} \text{S}_{1220} \cdot 6\text{MeCN}\). To a stirred colorless solution of \(\text{mosaoH}_2\) (0.023g, 0.125mmol), \([\text{Mn} \text{O(piv)}_2 \text{py}]_3\) (0.026g, 0.025mmol) and \(\text{Ln(NO}_3)_3 \cdot 6\text{H}_2\text{O}\) (0.125mmol) in MeCN (10mL) was added \(\text{N-mdeaH}_2\) (0.16g, 0.13mmol) and \(\text{NEt}_3\) (0.21mL, 1.5mmol). The resulting brown solution was stirred for 5 minutes and filtered.

Physical measurements

Elemental analyses were carried out on a Vario EL III Elemental Analyzer. IR spectra were recorded on a Magna-75 FT-IR spectrometer using KBr pellets in the range of 400 – 4000 cm\(^{-1}\). XRPD spectra were recorded on a MiniFlex II diffractometer at room temperature. Variable-temperature dc and ac susceptibility magnetic data for complexes 1–3 were measured on a PPMS-9T superconducting magnetometer employing the dried and finely ground polycrystalline samples kept in a capsule. Diamagnetic corrections were made with Pascal’s constants for all the constituent atoms of the complexes.

X-ray Crystallography

X-ray single-crystal data of complexes 1–3 were collected on a Supernova diffractometer with Cu Kα radiation (\(\lambda = 1.5418\) Å) using an o-scan mode. Empirical absorption correction has been done using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structures were solved by direct methods and refined by full-matrix least-squares techniques using the SHELXTL-97 program package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were determined with geometrical calculations riding on the related atoms, and their positions and thermal parameters were fixed during structure refinement. The solvent molecules of complexes 1–3 are disordered and treated using the SQUEEZE option in PLATON. Selected crystallographic data and refinement details for complexes 1–3 are displayed in Table 1.

Results and discussion

Synthesis

The use of performed small nuclearity species such as \([\text{Mn} \text{O}_2]\)\(^{n-}\), \([\text{Mn} \text{O}_2]\)\(^{n+}\) as starting materials in preparing Mn/Ln clusters has been proven to be successful.\(^{44, 4b, 4c, 5a, 5b}\) Trinuclear clusters \([\text{Mn} \text{O}_2]\)\(^{n+}\) have been widely employed in preparing multinuclear Mn complexes and yielded fruitful products. However, there are only a few Mn/Ln clusters prepared from these compounds.\(^{4b, 4c, 12, 13}\) It is therefore of significance to further explore the potential of \([\text{Mn} \text{O}_2]\)\(^{n+}\) clusters as starting materials in Mn/Ln chemistry. In this work, we successfully obtained a family of novel \(\text{Mn}_n \text{Ln}_4\) complexes by reaction of \([\text{Mn} \text{O(piv)}_2 \text{py}]_3\) with \(\text{Ln(NO}_3)_3 \cdot 6\text{H}_2\text{O}\), \(\text{mosaoH}_2\) and \(\text{N-mdeaH}_2\) in MeCN in the presence of \(\text{NEt}_3\). The flexible multifunctional ligand \(\text{N-mdeaH}_2\) was selected as an ancillary ligand considering the rigidity of the mosaH₂ ligand. The first obtained compounds are 1 and 2. As is known that an analogue containing a diamagnetic or an isotropic Ln ion will be of great help for the analysis of the magnetic behavior of families of isosstructural 3d/4f complexes, \(\text{Y}^{III}\) and \(\text{Gd}^{III}\) analogues were attempted to prepare. However, only the \(\text{Y}^{III}\) analogue was obtained while the \(\text{Gd}^{III}\) analogue was failed to prepare despite the great efforts made for screening the suitable conditions. To find out if this reaction system could produce more complexes with various structures, a variety of reaction conditions concerning different solvent media and reagent ratios have also been explored. The slight modification of reagent ratios gave the same product with varying yields. However,
replacing the solvent of MeCN by MeOH or DMF didn’t afford any crystalline product, which is speculated that the generation of the complexes may be related with the polarity of the solvent.

Description of the crystal structures

The elemental analyses, IR spectra and XRPD data (Figure S1) indicate that the three complexes are isostructural. Crystal structures of 1–3 were pursued, and the structure of complex 1 is described here in detail as a representative.

The structure of complex 1 is presented in Figure 1 and selected interatomic distances and angles are listed in Table 2. Complex 1·3MeCN crystallizes in the triclinic space group P-1. Central Mn1 is located on a crystallographic inversion center. Charge consideration, bond-valence-sum (BVS) calculation and the detection of MnIII Jahn-Teller elongation axes indicate that Mn2 is trivalent, while Mn1 is in +2 oxidation state. The core consists of three Mn atoms and four Dy atoms arranged as two MnDy2(µ3-OR)3 triangles linked to a central Mn1 atom through another pair of alkoxide O atoms of N-mdea ligands. The metal atoms are additionally bridged by a pair of NO- oximate groups of doubly deprotonated mosao- ligands, two phenoxy O atoms of monodeprotonated mosaoH ligands and two alkoxide O atoms of N-mdea2- to give a complete [MnIII2MnIIDyIII3(µ4-OR)3(µ-NO)2(µ-OR)3(µ-OR)2]18+ core (RO- = mosaoHH). Peripheral ligation is completed by two η3:µ3 pivL ligands which bridge central Mn1 with adjacent Dy1 atoms, two monodentate coordinated pivL ligands and two chelating mosaoH ligands on Dy2 atoms. As shown in Scheme 1, the mosaoL ligands bridge in a η3:η2:µ3 fashion and the mosaoH ligands in a η3:η2:µ2 fashion. The N-mdea2- ligands bridge in two different ways: two in a η3:η2:µ4 ligation mode, two in a η3:η2:µ3 ligation mode. All metal atoms are nearly located in one plane, with the largest deviation of 0.0351 Å provided by Mn2 and Mn2a atoms. The Mn-N-O-Dy torsion angle is 6.405°, and the Mn-N-O-Mn torsion angle is 5.081°. Each Mn atom is six coordinated with distorted octahedral geometry, and the MnIII ions (Mn2 and Mn2a) exhibit John-Teller elongation with the axial bond distances of 2.1684 Å (Mn2-O15) and 2.2777 Å (Mn2-N3). The Dy atoms are eight coordinated to an O\textsubscript{2}N\textsubscript{2} (Dy1) or O\textsubscript{2}N\textsubscript{2} (Dy2) donor sets with a slightly distorted square-antiprismatic geometry. The distances between metal atoms within the MnDy2(µ3-OR)3 triangle range from 3.1907 Å to 3.5817 Å, and the distances between the central Mn1 atom and the adjacent atoms within triangle are 5.0511 Å (Mn1···Mn2) and 3.5491 Å (Mn1···Dy1). The structure of compounds 2 and 3 is very similar to that of 1, except that DyIII ions are replaced by TbIII ions in 2 and YIII ions in 3. For compound 3, the Mn-N-O-Mn torsion angle is 6.632°, and the distances between Mn ions are 5.0492 Å (Mn1···Mn2) and 10.9893 Å (Mn2···Mn2a).

To date, only a few heptanuclear Mn/Ln clusters have been reported, including the planar disc-like [Mn\textsubscript{6}Ln\textsubscript{4}]5- the bitetrahedral-to-triangle [Mn\textsubscript{3}Dy\textsubscript{3}]6- and the [Mn\textsubscript{5}Ln\textsubscript{14}]14- clusters with a coaxial double-screw-propeller topology. Obviously, the core topology of compounds 1–3 is quite distinct from those of the above clusters. And compounds 1–3 represent the first structurally characterized 3d/4f clusters containing 3-methyloxysalicylaldoximate ligand.

Direct current magnetic susceptibility studies

The variable temperature dc magnetic susceptibility data for 1–3 were collected in the temperature range 2.0–300 K in an applied field of 0.1 T. Plots of \(\chi_m^c \) vs \(T\) for compounds 1–3 are shown in Figure 2. For 1, the \(\chi_m^c\) value at 300K is 66.17 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\), close to the expected value of 67.07 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) for the uncoupled \(\text{Mn}^\text{III}_3\text{Mn}^\text{II}_3\text{Dy}^\text{III}_4\) core (\(\text{Dy}^\text{III}: S = \frac{5}{2}, L = 5, g = \frac{7}{2}\), \(\text{Mn}^\text{III}: S = 2, g = 2\), \(\text{Mn}^\text{II}: S = \frac{3}{2}, g = 2\)). On lowering the temperature, the \(\chi_m^c\) value first decreases steadily to 61.65 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) at 15K and then drops sharply to 47.09 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) at 2K. For 2, the \(\chi_m^c\) value at 300K is 54.70 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\), slightly less than the expected value of 57.64 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) for the uncoupled \(\text{Mn}^\text{III}_3\text{Mn}^\text{II}_3\text{Th}^\text{III}_4\) core (\(\text{Th}^\text{III}: S = 3, L = 7, g = \frac{7}{2}\), \(\text{Mn}^\text{III}: S = 2, g = 2\), \(\text{Mn}^\text{II}: S = \frac{3}{2}, g = 2\)). The \(\chi_m^c\) value first decreases steadily with decreasing temperature to 54.13 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) at 18K, then increases to a maximum of 51.66 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) at 14.5K, and then down to 47.09 cm\(\cdot\)K\(\cdot\)mol\(^{-1}\) at 2K. The decrease in the \(\chi_m^c\) value for compounds 1 and 2 is mainly
Due to the thermal depopulation of the Stark sublevels arising from the crystal field splitting of the $^6H_{15/2}$ state for DyIII ion and the 7F_5 state for TbIII ion, in a coupled system containing Ln ions coupled to transition–metal ions, the χ_m value is related to both single–ion effect of the Ln ion and magnetic interactions between the spin carriers. Consequently, the nature of the intramolecular global interactions for 1 and 2 could not be deduced unambiguously from the χ_mT versus T data in this case. For 3, The χ_mT value at room temperature is 10.50 cm$^{-1}$ Kmol$^{-1}$, close to the spin-only ($g = 2$) value of 10.38 cm$^{-1}$ Kmol$^{-1}$ for two $S = 2$ MnIII and one $S = \frac{5}{2}$ MnIII noninteracting ions, as YIII ions are diamagnetic. Upon lowering the temperature, the χ_mT value increases continuously to 20.07 cm$^{-1}$ Kmol$^{-1}$ at 3K and then drops to 19.58 cm$^{-1}$ Kmol$^{-1}$ at 2K, which indicates a ferromagnetic interaction within the compound. The final decrease at the lowest temperatures is assigned to Zeeman effects, zero-field splitting, and/or weak intermolecular interactions.

The complexity of magnetic interactions and the presence of strongly anisotropic DyIII and TbIII ions preclude further analysis of pairwise interactions between metal ions in 1 and 2. Thus, only susceptibility data of compound 3 containing diamagnetic YIII ions have been simulated. In the compound, the MnIII ion at each side is bridged to the central MnIII ion through an oximate NO group, thus a linear trinuclear $S = 2 - \frac{7}{2} - \frac{7}{2}$ model based on the corresponding Hamiltonian $[H = +2J(S_1S_2+S_2S_3)]$ has been used, considering that the interactions between central MnIII ion and the adjacent MnIII ions are same and the interaction between two MnIII ions is neglected (MnIII–MnIII, 10.0983 Å). In order to model the lowest temperature decrease of the χ_mT product, the mean field approximation was introduced for estimating intercluster interactions. Therefore, the following definition of susceptibility has been used:

$$\chi = \frac{X_{Mn}}{1 - \frac{Z'}{N\mu^2 g^2 H_B} X_{Mn}}$$

This model reproduces the experimental data well (Figure 2) and the best fit gives $g = 1.95(8)$, $J = 1.11(6)$ cm$^{-1}$ and $Z' = -0.01(0)$ K, affording a $S = \frac{1}{2}$ ground state. C. J. Milos, et al. have demonstrated that the exchanges within Mn$_3$ triangle through oximate groups are related with the individual Mn–O–N–Mn torsion angle and there is a “magic area” (30.4$°$–31.3$°$) for the torsion angles, less than 1$°$ wide, above and below which they can predict the pairwise exchange to be ferro– or antiferromagnetic. However, as for linear Mn$_3$ complexes via oximate bridges, several reports have revealed ferromagnetic interactions between Mn ions with the Mn–N–Mn torsion angles ranging from 2.54 to 51.3$°$. In our study, although the Mn–N–O–Mn torsion angle in compound 3 is only 6.63$°$, the pairwise interaction of Mn ions is ferromagnetic, consistent with those found in the above mentioned studies.

To investigate the anisotropy of the compounds and confirm the ground state of compound 3, the magnetization data for compounds 1 – 3 were collected in the dc magnetic field range 0.1 – 5 T at 2.0 – 5.0 K and plotted as reduced magnetization $M(\hbar T)$ vs H/T in Figures S2, S3 and Figure 3. The data are not superimposed, indicating the presence of anisotropy and/or low-lying excited states in 1 – 3. For 3, which contains diamagnetic YIII ions, the data were fitted using program ANISOFIT 2.0 by assuming only the spin ground state of the molecule is populated.
and the spin Hamiltonian employed to fit is \(\hat{H} = D \hat{S}_x^2 + E \hat{S}_y^2 + \hat{S}_z^2 + g_{\text{iso}} \mu_B S \cdot B \). The best fits are shown as the solid lines in Figure 3 with the parameters \(S = \frac{1}{2}, g = 1.85(9) \) and \(D = -0.46(2) \text{cm}^{-1} \). Alternative fit with \(S = \frac{3}{2} \) gave unreasonable values of \(g \) and \(D \) and thus was rejected. The lower-than-expected \(g \) value may be due to the inherent uncertainties in obtaining \(g \) from fits of bulk magnetization data and other experimental errors.\(^{20}\) The \(M \) versus \(H \) curves at 2 K for 1–3 are shown in Figures S4-S6. 1 displays a hysteresis loop characteristic of a SMM, while 2 and 3 do not show sign of significant hysteretic effect.

Alternating current magnetic susceptibility studies

In order to probe the slow relaxation of magnetization, the ac magnetic susceptibility measurements were carried out on complexes 1–3 in the temperature range 2–15 K under a zero dc field and a 3.0 G ac field oscillating at five frequencies between 311 and 2311 Hz. All the three complexes display a frequency-dependent decrease in \(\chi'_{\alpha}(T) \) and concomitant appearance of out-of-phase \(\chi''_{\alpha}(T) \) signals, indicating slow magnetic relaxation and potential SMM behavior (Figures 4 and S7). Compounds 1 and 3 display out-of-phase \(\chi''_{\alpha}(T) \) peak maximum above 2.0 K, while the peaks of the \(\chi''_{\alpha}(T) \) signals of compound 2 are located at temperatures well below 2.0 K. For each temperature, the relaxation time \(\tau \) could be extracted from the fit of the corresponding out-of-phase \(\chi''_{\alpha}(T) \) vs frequency \(\omega \) data to generalized Debye model\(^{21}\). Then, the fit of the \(\tau \) versus \(T^{-1} \) data of the thermally activated region to an Arrhenius law \(\tau = \tau_0 \exp(U_{\text{eff}}/k_B T) \), where \(U_{\text{eff}} \) is the effective anisotropy energy barrier, \(\tau_0 \) is the Boltzmann constant and \(\tau_0 \) is the pre-exponential factor, gives \(\tau_0 = 7.37 \times 10^{10} / 3.50 \times 10^{-7} \text{s} \) and energy barrier \(U_{\text{eff}} = 9.27/13.83 \text{K} \) for 1 and 3, respectively. The Mydosh constants \(\varphi = (\Delta T / T_E) / (\Delta \log f) \) are 0.30 for 1 and 0.27 for 3, comparable to those of other superparamagnets, which exclude the possibility of spin glass behavior (Figure S8, S9).\(^{22}\)

Since compound 3 exhibits a SMM behavior, it is concluded that slow relaxation could originate from the Mn ions solely. And in this case, the replacement of Y\(^{III}\) by Dy\(^{III}\) ions does not enhance the energy gap, which is different from those of other families of Mn/Ln clusters described in previous reports.\(^{19,23}\) However, there are also some studies which demonstrate that the compounds with all metal ions of strong anisotropy do not achieve the highest SMM efficiency. For example, in the series of Co\(^{III}–Ln^{III}–Co^{III}\) linear trimetalllic compounds, the isotropic Gd\(^{III}\) containing compound exhibits higher energy barrier compared to the Dy\(^{III}\) and Tb\(^{III}\) analogues.\(^{24}\) And for the [Dy\(_5\)K\(_2\)] and [Dy\(_3\)]compounds, their diluted samples [Dy\(_5\)Y\(_2\)K\(_2\)] and [Dy\(_5\)Y\(_4\)], which contain only one Dy\(^{III}\) ion, exhibit more than 100K higher energy barrier than [Dy\(_5\)K\(_2\)] and [Dy\(_3\)].\(^{25}\) The \(\text{ab initio} \) calculations have been used to understand this phenomenon.\(^{25-26}\) In an exchange-coupled compound with strongly anisotropic metal ions, the magnetic blocking is very complex as it involves both exchange and intrionic mechanisms and related to the number of relaxation paths available. \(U_{\text{eff}} \) as derived from the slope of the high-temperature \(\ln(\tau) \) versus \(T^{-1} \) data is often smaller than expected from calculated energies, resulting from a “short-cut” of the thermal barrier by quantum tunnelling of the magnetization (QTM). Therefore, the suppression of the quantum relaxation within the ground-state doublet or lower energy doublet will make the relaxation via higher excited states more competitive and thus increase the effective energy barrier. Conversely, it would decrease the effective energy barrier. In the system of Co\(^{II}–Ln^{III}–Co^{II}\), the suppression of QTM in Gd\(^{III}\) compound is much stronger than in the Dy\(^{III}\) and Tb\(^{III}\) analogues due to the multilevel blocking barriers in Gd\(^{III}\) analogue. The structure of blocking barriers of Gd\(^{III}\) compound consists of several excited states owing to the higher (8-fold) degeneracy of the ground-state multiplet on the Gd site, while it involves only one excited state in Dy and Tb analogues owing to the 2-fold degenerate ground-state manifolds on the Ln sites. And in compounds [Dy\(_5\)K\(_2\)] and [Dy\(_3\)], the intramolecular interactions between neighbouring Dy ions create significant local fluctuating transverse magnetic fields, which increase the tunnel splitting and make QTM via the ground-state doublet and the first excited doublet more competitive, thus reduce the experimental energy gap. It is suggested that similar situation is present in our case. Namely, the reduced suppression of QTM in Dy\(^{III}\) compound may be responsible for the lower effective energy barrier compared to Y\(^{III}\) analogue, which could originate from the reduced excited states levels of blocking barriers and/or the stronger transverse magnetic fields derived from the intramolecular interactions between neighbouring Dy\(^{III}\) and Mn\(^{III}\) ions.

Conclusions

Inspired by the remarkable success of phenolic oxime in mediation of ferromagnetic interactions between metal ions, we employed 3-methylxosalylicaldoxime, a phenolic oxime derivatised ligand, to construct 3d/4f heterometallic clusters. A family of novel heptanuclear \([\text{Mn}_{4} \text{Ln}_{4}]\) were obtained and structurally characterized. Their core consists of two \([\text{Mn}^{III} \text{Ln}^{III}(\mu_3-\text{OR})_3]_3(\text{RO}^2^- \text{N-mdea})_2\) triangles linked to a central Mn\(^{III}\) atom. The compounds represent the first structurally characterized 3d/4f clusters containing 3-methylxosalylicaldoximinate ligand. Dc magnetic susceptibility study shows dominant single-ion effects of the Ln ions in compounds 1 and 2. As for compound 3, which contains dianionic Y\(^{IV}\) ions, the magnetic interactions between Mn ions via oximate NO bridges are revealed to be ferromagnetic. Considering that the Mn-N-O-Mn torsion angle is only 6.632° in
this work, it is suggested that the mediation of ferromagnetic or antiferromagnetic interactions via oximate groups in linear Mn₁ complex is not related with the Mn-N-O-Mn torsion angle as found in Mn₃ triangle motif. All of the three compounds exhibit frequency-dependent out-of-phase ac susceptibility signals indicative of slow magnetization relaxation and potential SMM behavior. The M versus H curve at 2 K for 1 displays a hysteresis loop.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 211713219, 21303201, 21203195 and 21101153).

Notes and references

