Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Synthetic, structural, NMR and catalytic study of phosphinic amide-phosphoryl chalcogenides (chalcogen = O, S, Se) as mixed-donor bidentate ligands in zinc chemistry

Miguel A. del Águila-Sánchez,^{*a*} Neidemar M. Santos-Bastos,^{*b*} Maria C. Ramalho-Freitas,^{*c*} Jesús García López,^{*a*} Marcos Costa de Souza,^{*b*} Jackson A. L. Camargos-Resende,^{*c*} María Casimiro,^{*a*} Gilberto Alves-Romeiro,^{*b*} María José Iglesias^{*a*} and Fernando López Ortiz^{**a*}

(diphenylphosphorothioyl)-Ortho substituted (diphenylphosphoryl)-, and (diphenylphosphoroselenoyl)-phosphinic amides $o-C_6H_4(P(X)Ph_2)(P(O)N'Pr_2)$ (X = O (20a), S (20b), Se (20c)) have been synthesized through ortho directed lithiation of N,N-diisopropyl-*P*,*P*-diphenylphosphinic amide $(Ph_2P(O)N^iPr_2)$ followed by trapping with Ph_2PCl and subsequent oxidation of the o-(diphenylphosphine)phosphinic amide (19) with H₂O₂, S₈ and Se. The reaction of the new mixed-donor bidentate ligands with zinc dichloride afforded the corresponding complexes $[ZnCl_2(P(X)Ph_2)o-C_6H_4(P(O)N^iPr_2)]$ (21a-c). The new compounds were structurally characterized in solution by nuclear magnetic resonance spectroscopy and in the solid-state by X-ray diffraction analysis of ligand (20b) and the three complexes (21a-c). The X-ray crystal structure of (20b) suggests the existence of a $P=O\rightarrow P(S)-C$ intramolecular nonbonded interaction. The natural bond orbital (NBO) analysis using DFT methods showed that the stabilization effect provided by a $n_0 \rightarrow \sigma^*_{P-C}$ orbital interaction was negligible. The molecular structure of the complexes consisted of seven-membered chelates formed by O,Xcoordination of the ligands to the zinc cation. The metal is four-coordinated by binding to the two chlorine atoms showing a distorted tetrahedral geometry. Applications in catalysis revealed that hemilabile ligands 20a-c act as significant promoters of the addition of diethylzinc to aldehydes, with **20a** showing the highest activity. Chelation of Et_2Zn by **20a** was evidenced through NMR spectroscopy.

Introduction

Zinc(II) compounds are the focus of great attention owing to the diversity of applications they show in fields as different as food additives, electroluminescent and polymeric materials, biological fluorescent probes, etc.¹ The inexpensive and environmentally benign nature of zinc makes their complexes attractive catalysts in organic synthesis.² Although organophosphorus ligands are ubiquitous in transition metal coordination chemistry, the use of P=X (X = N, O, S, Se) based ligands for the construction of coordination complexes with zinc dihalides is an area that remains under-explored.

The reaction of neutral monophosphazenes such as MePh₂P=NSiMe₃ **1** with ZnCl₂ furnishes the dimer [ClZn(μ -Cl)(MePh₂P=NSiMe₃)]₂ in which the monomeric units are connected through μ_2 -chloro bridges.³ Functionalised phosphazenes provide access to alternative coordination modes. Thus, the coordinating behaviour of dibenzofuranylphosphazenes **2** (Fig. 1) towards ZnCl₂ can be tuned to act as N-

monodentate or N,O-bidentate ligand through the bulkiness of the N-aryl substituents giving rise to dimeric ($R^1 = R^2 = Me$) and monomeric ($R^1 = {}^iPr$, $R^2 = H$) complexes, respectively.⁴ Bis(phosphazenyl)methane 3^5 and imine-phosphazene 4^6 contain two nitrogen atoms in a scaffold that favours the formation of tetracoordinated N,N-chelates with ZnCl₂ and ZnI₂.

Phosphine oxide ligands coordinate to zinc dihalides to afford complexes with two P=O groups bound to a Zn(II) ion with a tetrahedral geometry. The halide atoms occupy the two remaining tetrahedral sites and the architecture of the complexes depends on the spacer connecting the P=O linkages. The simplest structures are obtained by assembling monodentate triphenylphosphine oxide with ZnX₂ (X = Cl, Br, I).⁷ The analogous reaction of 1,2-bis(diphenylphosphino ethane) dioxide **5** (dppeO₂) containing two P=O groups linked by an ethylene bridge furnishes 1D polymers [ZnX₂(μ -dppeO₂)]_n with alternative dppeO₂ and ZnX₂ repeating units where the P=O groups exist in an anti conformation.⁸ In

RSCPublishing

1,1'-bis(diphenylphosphino)ferrocene dioxide contrast. 6 (dppfO₂) with the P=O groups appended to the more rigid Cp rings of a ferrocenyl system behaves as a chelating ligand in the reaction with ZnCl₂ yielding the 1:1 adduct [ZnCl₂(dppfO₂)].⁹ Interestingly, although the usefulness of the rigid bidentate 1,2phenylenebis(diphenylphosphine oxide), $o-C_6H_4(P(O)Ph_2)_2$, as a ligand for the main group, d^n and f^n cations is well-known¹⁰ and the X-ray crystal structure of the free ligand has been described,11 the complexation behaviour of this ligand with group 12 metals seems to have not been investigated to date.

Zinc complexes of phosphinic amides have been much less studied. Oxygen co-ordination of the P(O)N linkage to metal salts including zinc(II) cations has been proposed based on solution spectroscopic studies and X-ray powder spectra.¹² The only X-ray structure available of a zinc complex with a phosphinic amide ligand is the 1D helical chain formed in the of N-(4-methyl-2-pyrimidinyl)-P,P-diphenylreaction phosphinic amide 7 with $ZnCl_2$, $[Zn(7)Cl_2]_n$.¹³ In this complex, the ligand bridges the zinc atoms through the coordination of the oxygen atom of the phosphinic amide group and the less hindered nitrogen atom of the pyrimidyl moiety. The two Cl atoms complete the distorted tetrahedral geometry of the zinc cation. Regarding the donor properties of diphenylphosphinic acid derivatives, it has been shown that bis(phosphinic amides) and mixed phosphinic amide-phosphine oxides connected through a trimethylene bridge act as templates for the hydrogen bond-based formation of [2]rotaxanes.¹⁴ The corresponding solid-state structures showed remarkable differences in the hydrogen bonds networks. No rotaxane was detected when the corresponding bis(phosphine oxide) was used as template.

Fig. 1 Examples of P=X-based bidentate ligands used in the complexation of zinc dihalides.

vein, zinc co-ordination to softer In the same triorganophosphane chalcogenides such as phosphine sulphides and selenides has received scarce attention. Coordination of ZnCl₂ and ZnI₂ to the sulphur and selenium donor atoms of $Ph_3P=X$, $(p-tolyl)_3P=X$ and $(CH_2)_3(Ph_2P=X)_2$ (X = S, Se) has been established by the decrease observed in the IR spectrum of the frequency of the P=X absorption with respect to the free ligand.¹⁵ To the best of our knowledge, only two molecular structures of zinc dihalide complexes have been characterised so far. The (phosphanyl)phosphine selenide 8 and the bis(phosphine selenide) 9 chelate to $ZnCl_2^{16}$ and ZnI_2^{17} respectively, to give the corresponding metallocycles with a tetrahedral geometry about the zinc cation. Zinc tends to form stable complexes with N- and S-donors, a feature emphasized by the dominance of the ZnN_2S_2 structural motif in zinc metalloenzymes and zinc fingers.¹⁸ In line with this, in a study aimed at developing new organozinc catalysts for hydroamination reactions, Roesky and co-workers reported very recently the first examples of zinc complexes of the hybrid P=N/P=S ligand 10 with ZnCl₂ and ZnI₂.

Scheme 1 Synthesis of P-containing bi- and tri-dentate ligands using directed ortho lithiation methods

Williams et al. reported the synthesis of ortho-(phosphanyl)phoshinic amides 12 via ortho-lithiation of phosphinic amides 11 with s-BuLi followed by electrophilic quench with diphenylphosphine chloride (Scheme 1).²⁰ Compounds 12 proved to be efficient ligands in the palladium catalyzed Suzuki-Miyaura cross-coupling reaction of activated aryl chlorides and strongly deactivated aryl bromides with phenylboronic acid. Moreover, oxidation of 12 with elemental selenium afforded the corresponding (phosphoroselenoyl)phosphinic amides 13. Recently, we achieved the enantioselective synthesis of 12 via ortho deprotonation of N-dialkyl-P,Pdiphenylphosphinic amides using the complex [n-BuLi·(-)sparteine] as a base.21

As part of our interest in the development of methodologies of ortho-lithiations directed by P-based functional groups 14 for accessing to bi- and tridentate hemilabile ligands, e.g., 15-17 (Scheme 1),²² we describe herein the synthesis and structural characterisation of ortho substituted (diphenylphosphoryl)-, (diphenylphosphorothioyl)- and (diphenylphosphoroselenoyl)phosphinic amides, and of their zinc(II) complexes. The difference in the electronic properties between the donor atoms of the polar P=X groups makes these compounds interesting ligands for applications in catalysis. Carbon-carbon bondforming reactions mediated by zinc represent an area of great interest.² It can be viewed from two perspectives: zinc salts applied as Lewis acid catalysts and the use of organozinc compounds as reagents for transferring an organic moiety. The results shown here connect both approaches. The potential usefulness of the new ligands has been ascertained by investigating the addition of diethylzinc to aldehydes catalysed by 19 and 20a-c. No solvent other than the hexane of the Et_2Zn solution is used. Ligand 20a produced a significant enhancement of the rates of formation of ethynylated compounds while minimizing the amount of the reduction byproducts generated. The participation of a diethylzinc chelate analogue to the $ZnCl_2$ complexes 21a as active catalysts is supported by solution NMR measurements.

Results and discussion

Synthesis and solution structure of ligands 20 and zinc complexes 21

Iton Transactions Accepted Man

Journal Name

Bidentate P(O)N/P(X) (X= O; S; Se) ligands 20 were synthesized through ortho deprotonation of N,N-diisopropyl-P,P-diphenylphosphinic amide 18 by treatment with n-BuLi in toluene in the presence of N,N,N',N'tetramethylethylenediamine (TMEDA) at -78 °C. Similar results were obtained when t-BuLi in THF was used as a base. The ortho-lithium derivative formed was reacted with Ph₂PCl to give the o-(diphenylphosphanyl)phenylphosphinic amide $19^{20,21}$ in a yield of 85%. Subsequent oxidation of 19 with hydrogen peroxide, elemental sulphur and selenium²⁰ afforded ligands 20a-c quantitatively (Scheme 2). The synthesis of ligands 20 can be performed in a one-pot manner by in situ oxidation of 19, albeit in a slightly lower yield (79% for 20a, 85% for 20b and 83% for 20c). Treating ligands 20 with ZnCl₂ in a mixture of acetonitrile:dichloromethane (1:1) at room temperature furnished the respective complexes 21 in quantitative yields.

Scheme 2 Synthesis of ortho P=O/P=X (X = O, S, Se) ligands 20 and their zinc(II) complexes 21.

Compound **20c** has been previously synthesized by Williams *et al.*²⁰ The ESI-HRMS spectra of **20a-b** show the quasimolecular ion peaks $[M + H]^+$ corresponding to the incorporation into **19** of one atom of oxygen (m/z 502.2064), and sulphur (m/z 518.1838). Concerning complexes **21a-c**, the high resolution mass spectra revealed the peaks arising from the loss of one atom of chlorine $[M - CI]^+$ (**21a** m/z 600.0978, **21b** m/z 616.0741 and **21c** m/z 664.0169). Oxidation of the ortho phosphino moiety of **19** is readily ascertained through NMR spectroscopy. Table 1 shows the ³¹P NMR data of compounds **20** and **21**. The corresponding NMR parameters of **19** and **20c** have been included for comparison.^{20,21} The transformation of the P(III) group of **19** into the P(V) of **20** is evidenced by the large ³¹P deshielding, $\Delta \delta_{PX}(19-20) = 44.31$ to 61.02 ppm.

Table 1 ³¹P data of compounds **19** - **21**, δ in ppm, *J* in Hz.

Entry	Comp	δ_{PON}	δ_{PX}	$^{3}J_{\rm PP}$
1	19	33.36	-10.95	6.1
2	20a	28.91	33.36	5.4
3	20b	28.11	50.07	4.5
4	20c	27.86	41.74	4.0^{a}
5	21a	37.47	41.27	8.2
6	21b	34.53	48.76	5.2
7	21c	34.15	37.24	4.3 ^b

a) ${}^{1}J_{\text{SeP}}$ 722 Hz. Reported ${}^{1}J_{\text{SeP}}$ 718.3 Hz. 20,26 b) ${}^{1}J_{\text{SeP}}$ 650 Hz. 26

The δ_{PX} values of **20** are in a range typical of phosphine chalcogenides.²³ On the contrary, the phosphorus of the phosphinic amide linkage undergoes a small shielding effect

with limiting values of $\Delta \delta_{PON}(19-20) = -4.45$ and -5.5 ppm, that increases in the series O < S < Se. P(III) oxidation is also accompanied by a decrease in the magnitude of the vicinal ³¹P, ³¹P coupling constant ($\Delta^3 J_{PP}(19-20) = 0.7$ to 2.1 Hz).

On complex formations, the infrared spectra of 21 show all the v(P=X) stretching frequencies to lower values than the parent compounds. The downward shifts are 40 - 96 cm⁻¹ for v(NP=O),¹³ 39 cm⁻¹ for v(P=O),⁸ 72 cm⁻¹ for v(P=S)¹⁵ and 5 cm⁻¹ for $\nu(P=Se)$.^{15c} The decrease of $\nu(P=X)$ observed is consistent with bidentate coordination of **20** to $ZnCl_2$ either as chelate or bridge ligands.^{8,15} The variation of the decrease of Δv (NP=O), in the series 21a < 21b < 21c suggests that P=O interaction of the phosphinic amide linkage with the metal increases with decreasing hardness of the chalcogen of the P=X group.²⁴ Bidentate binding to zinc is also supported by ³¹P NMR spectroscopy. Compared to 20, the phosphorus atoms of all NP=O moieties appear deshielded (average $\Delta \delta_{PON}(21-20) \approx$ ppm), whereas those of the phosphorothioyl and phosphoroselenoyl groups of 21b and 21c suffer a shielding of 1.31 and 4.5 ppm, respectively.^{24b,25} Regarding the ³¹P,³¹P coupling constants, the magnitude is notably greater for 21a and remains unchanged for 21b,c. Expectedly, in complex 21c a significant decrease of the ⁷⁷Se, ³¹P coupling constant ${}^{1}J_{SeP}$ is observed with respect to the free ligand $(\Delta^{I} J_{SeP}(20c-21c) = 72)$ Hz) due to the increase of the P=Se bond length upon complex formation.²⁶ Full assignment of the ¹H and ¹³C NMR spectra of compounds 20 and 21 was achieved based on the analysis of the standard set of ¹H, ¹H{³¹P}, ¹³C{¹H}, dept135, gCOSY45, ¹H,¹³C-gHSQC, ¹H,¹³C-gHMBC and ¹H,³¹P-gHMQC spectra. In addition, 1D gTOCSY, gNOESY and ${}^{13}C{}^{1}H,{}^{31}P{}$ experiments were performed to complete the structural assignment. A detailed discussion of the assignment of the ¹H and ¹³C NMR spectra of complex **21a** is given in the electronic supporting information (see Table S1).

Compounds **21b** and **21c** proved to be poorly soluble in acetone, methanol, acetonitrile and THF. NMR spectra, except ¹H, ¹³C-gHMBC, could be measured in a reasonable spectrometer time from very diluted chloroform solutions. Due to the lack of information about long-range ¹H, ¹³C correlations, some carbons were assigned by their similarity with those of **21a** (see experimental section). The analysis of ¹H and ¹³C NMR spectra of **20** and **21** revealed some trends. The principal interest is on the quaternary carbons. They all undergo a shielding on complex formation. The largest decreases of δ are found for C7 (average $\Delta \delta_{C7}$ (**20-21**) \approx 3.9 ppm), C13 (average $\Delta \delta_{C13}$ (**20-21**) \approx 10.2 ppm) and C19 (average $\Delta \delta_{C19}$ (**20-21**) \approx 4.2 ppm) (Table S1).

Concerning ³¹P, ¹³C coupling constants, the greatest changes occur for C1 and C19. In both cases, ¹ J_{PC} increases in the series **21a** < **21b** < **21c**, with average values ($\Delta^{l} J_{PC}$ (**20-21**)) of -4.4 Hz and -7.4 Hz, respectively. This fact suggests that zinc coordination to the oxygen of the phosphinic amide group shortens the P-C_{*ipso*} distances and the effect becomes larger the softer the chalcogen of the P=X linkage, i.e., assuming similar geometry of the metallacycles, the tentative indication is that zinc interaction with the oxygen atom of the NP(O) group seems to strengthen when the zinc…X=P interaction weakens.

Solid-state characterizations

Single crystals of ligand **20b** and zinc complexes **21a-c** were obtained through diffusion with an atmosphere of Et_2O into dichloromethane: acetonitrile (1:1) solutions of the compounds. The crystal structure of **20b** is shown in Fig 2, and selected data are summarized in Tables 2 and S2. The

Page 4 of 12

(phosphorothioyl)phosphinic amide 20b crystalizes in the triclinic space group P-1 together with a molecule of acetonitrile. The solid-state structure is similar to that of bis(diphenylphosphine oxide) $o-C_{6}H_{4}(P(O)Ph_{2})_{2}$.¹¹ The phosphorus atoms are almost coplanar with the ortho substituted ring (torsion angle P1-C1-C2-P2 of -5.6(4)°) with the O1 and S1 oriented to the ortho-space and allocated in opposite faces out of the plane defined by the ortho-phenyl ring (torsion angles O1-P1-C1-C2 and S1-P2-C2-C1 of -36.6(3)° and $-49.8(3)^{\circ}$, respectively).²⁷ The O1 atom lies in anti with respect to a P2-phenyl ring (O1...P2-C7 angle of 169.5(1)°) and the non-covalent separation O1…P2 (3.179 Å) is 0.141 Å shorter than the sum of van der Waals (vdW) radii of the corresponding atoms (3.32 Å). This proximity may be indicative of a weak donor-acceptor intramolecular interaction from a lone pair on O1 into a σ^* orbital of the P-C7 bond. This effect would be absent for S1…P1. The separation of 3.693 Å is above the sum of S and P vdW radii (3.6 Å). In order to gain insight into a possible O1...P2-C7 intramolecular hypervalent interaction, DFT calculations at the M06-2X/6-311+G(d,p) level of theory and their NBO analysis²⁸ were carried out. The results show that the $n_{O1}{\rightarrow}\sigma^*{}_{P2\text{-}C7}$ orbital interaction provides a stabilization of only 0.73 kcal/mol, too weak (<2kT) to be of significance for conformational lock in a thermally fluctuating environment at room temperature.²⁹ The elongation of P2-C7 as compared with P2-C13 is explained by the difference in the orbital interactions between the S lone pairs with the corresponding antibonding orbitals (stabilization of 16.84/13.88 kcal/mol for $\sigma^*_{P2-C7}/\sigma^*_{P2-C13}$).³⁰

Fig 2 Molecular structure of **20b** (depicted with 50% probability ellipsoids) including atom labels relevant to the structural discussion (see text) and solvent of crystallisation.

Table 2 Selected bond	lengths (À	A) and angles	(°) for 201
-----------------------	------------	---------------	-------------

Table 2 Sciected Solid lengths (1) and angles () for 200					
P1-O1	1.473(2)	O1-P1-C1	108.2(1)		
P1-N1	1.648(3)	O1-P1-C19	114.5(1)		
P1-C1	1.838(3)	N1-P1-C1	109.1(1)		
P1-C19	1.802(3)	S1-P2-C2	116.7(1)		
P2-S1	1.951(1)	S1-P2-C7	108.9(1)		
P2-C2	1.847(3)	S1-P2-C13	115.9(1)		
P2-C7	1.827(3)	O1-P1-C1-C2	-36.6(3)		
P2-C13	1.813(3)	P1-C1-C2-P2	-5.6(4)		
01-P1-N1	113.1(1)	S1-P2-C2-C1	-49.8(3)		

The O1 \cdots P2 contact does not seem to produce a noticeable distortion of the expected tetrahedral geometry of P1 and P2, except for a slight increase of the phosphorus-to-carbon bond length of the carbon atom anti to O1 (distance P2-C7 1.827(3) Å) as compared with P2-C13 (1.813(3) Å). The bond angles of

P1 and P2 are in the appropriate range for a sp³ hybridization: $114.5(1)^{\circ} - 104.8(1)^{\circ}$ for P1 and $116.7(1)^{\circ} - 104.1(1)^{\circ}$ for P2. Bond distances in the P=S linkage and the N-P=O moiety are unremarkable (Table 3), with values close to the average distances reported for phosphine sulphides³¹ (1.97 Å) and analogue phosphinic amides [P-N (1.662 Å) and P-O (1.484 Å)].^{21,22b,32}

The X-ray crystallographic study of complexes 21a-c revealed that they are monomers which crystallize in the monoclinic space group (P2 $_1/c$). The molecular structures are presented in Fig 3. Selected crystal data and bond lengths and angles are given in Tables S2 and 3. In compounds 21a-c, the zinc atom is bonded to the chelating ligands 20a-c through the chalcogen atom of the P=X linkage (X = O, S, Se) and the oxygen atom of the phosphinic amide group. The sevenmembered metallacycles thus formed adopt a twits-boat conformation in which the zinc atom is at the center of a distorted tetrahedron defined by the X,O heteroatoms of the ligands and the two chlorine atoms. Bonding parameters in complexes 21a-c are similar to those of structurally analogue compounds. Chelation produces a slight increase of the P=O/P=X bond distances (P1-O1 range 1.495(2) - 1.497(3) Å; P2-O2 1.504(3) Å; P2-S1 1.9987(9) Å; P2-Se1 2.158(1) Å) with respect to the free ligand (Table 3), as observed in related phosphinic amide^{13,22c,33} phosphinic amide^{13,22c,33} and phosphoryl chalcogenide complexes (chalcogen = O,^{7,8,9,10,11} S^{31d,34} and Se^{16,17,26,31d,35})^{24b}. However, it is worth mentioning that the Zn1-S1 bond distance (2.3620(7) Å) observed in 21b, is significantly shorter than that found in $[ZnX_2(Ph_2P=NSiMe_3)(Ph_2P=S)CH_2]$ (X = Cl, I, average 2.4141 Å).¹⁹ Interestingly, P1-C1 and P1-C19 bond distances are shorter in the complexes than in the free ligands, with P1-C19 being the most affected. These features support the observed increase of ${}^{1}J_{PC}$ for C1 and C19 in the ${}^{13}C$ -NMR spectra on complex formation.

Major differences among the structures of complexes 21a-c are concerned with the geometry of the metallacycle. Bond angles around Zn vary in the range 90.4(1)° - 114.92(8)° for 21a, 94.29(5)° - 115.26(5)° for 21b and 93.83(9)° - 115.8(1)°) for 21c, with the bite angle O1-Zn1-Xn of the ligand in 21a (Xn = O2, 90.4(1)°) being lower than that in **21b** (Xn = S1, $94.29(5)^{\circ}$) and **21c** (Xn = Se1, $93.83(9)^{\circ}$). These values are similar to the bite angle found in the five-membered ring of the complex [ZnCl₂(Ph₂P=Se)CH₂(Ph₂P)], (Se-Zn-P2 94.78(5)°),¹⁶ which illustrates the level of twisting occurring in the metallacycle framework of 21a-c. Bite angles notably larger than those of **21a-c** are observed in the related complexes [HgX₂(Ph₂P=S)CH₂CH₂(Ph₂P=S)], (S-Zn-S for $X = I^{34a}$ $118.85(8)^{\circ}$ and X = Cl³⁶ 122.3(1)^o) and formed between ZnCl₂ and [ZnCl₂(dppfO₂)], (O-Zn-O 102.07(15)°).⁹ The more flexible ligand in the former compound and the larger ring size in the latter allows for a better adaptation of the metallacycle to the steric requirements of the molecule. Bite angles close to those of 21a-c have been found in the complex of 1,2phenylenebis(diphenylphosphine oxide) with LiOH, [Li(o- $C_6H_4(Ph_2P=O)_2)_2^+OH^-$, where two ligands chelate a tetrahedral lithium cation with O-Li-O angles of 96.1(6)° and 98.6(6)°. The changes in the bite angle in the series $21a < 21b \approx 21c$ also affect other bond angles. For instance, Cl1-Zn1-Cl2 and Cl2-Zn1-O2 are larger in **21a** than in **21b-21c** (Table S3).

Similar to the free ligand **20b**, the phosphorus atoms of **21ac** are almost coplanar with the ortho phenyl ring (range of torsion angles P1-C1-C2-P2 -5.9(5)° to -4.7(6)°). The phosphinic amide fragment shows essentially the same pattern in the three complexes (range of torsion angles O1-P1-C1-C2 Journal Name

Dalton Transactions Accepted Manuscr

of $-23.5(4)^{\circ}$ to $-21.9(4)^{\circ}$) with the bulky NⁱPr₂ substituent in a pseudo-equatorial position and the pseudo-axial P-phenyl ring oriented almost parallel to one of the phenyl substituents of the Ph₂P=X moiety. This latter group is rotated counter-clockwise around the P2-C2 bond with respect to the plane of the P1-O1 bond and the degree of rotation increases by increasing the size of the chalcogenide. This is clearly seen in the variation of the dihedral angle O1-P1···P2-Xn in the series 21a (X = O2, $24.9(1)^{\circ}$) < **21b** (X = S1, 32.19(8)^{\circ}) < **21c** (X = Se1, 33.9(1)^{\circ}) (see also O2-P2-C2-C1, Table S3). The phenyl rings of the Ph₂P=X group move accordingly as shown by the increase of the dihedral angles C3-C2-P2-C7 (from 0.0(4)° in 21a to 11.3(2)° in 21b and 11.8(4)° in 21c) and C19-P1…P2-C13 (21a 12.1(2)°, 21b 17.5(1)° and 21c 18.1(2)°). This rotation of the Ph₂P=X group brings the pseudo-equatorial phenyl ring closer to a right angle with H3, thus supporting the view of the increasing shielding of H3 observed in the ¹H-NMR spectra of **21a-c** as originated by ring current effects (Table S2).

Table 3 Selected bond lengths (Å) and angles (°) for complexes 21a-c

21a		21b		21c	
P1-O1	1.496(3)	P1-O1	1.495(2)	P1-O1	1.497(3)
P1-N1	1.647(3)	P1-N1	1.641(2)	P1-N1	1.647(4)
P1-C1	1.831(4)	P1-C1	1.833(2)	P1-C1	1.833(4)
P1-C19	1.792(4)	P1-C19	1.796(2)	P1-C19	1.798(5)
P2-O2	1.504(3)	P2-S1	1.9987(9)	P2-Se1	2.158(1)
P2-C2	1.832(4)	P2-C2	1.828(2)	P2-C2	1.833(4)
P2-C7	1.801(3)	P2-C7	1.821(3)	P2-C7	1.831(5)
P2-C13	1.794(4)	P2-C13	1.799(2)	P2-C13	1.793(5)
Zn1-O1	1.972(3)	Zn1-O1	1.967(2)	Zn1-O1	1.975(3)
Zn1-O2	1.977(2)	Zn1-S1	2.3620(7)	Zn1-Se1	2.4638(9)
Zn1-Cl1	2.215(1)	Zn1-Cl1	2.2188(7)	Zn1-Cl1	2.224(1)
Zn1-Cl2	2.202(1)	Zn1-Cl2	2.2220(8)	Zn1-Cl2	2.230(2)
Zn1-O1-P1	159.1(2)	Zn1-O1-P1	166.4(1)	Zn1-O1-P1	166.6(2)
Zn1-O2-P2	129.9(1)	Zn1-S1-P2	104.21(3)	Zn1-Se1-P2	99.88(4)
O2-Zn1-O1	90.4(1)	S1-Zn1-O1	94.29(5)	O1-Zn1-Se1	93.83(9)

(c) C_{19} C_{10} C_{13} C_{13} C_{13} C_{14} P_{1} C_{13} C_{13} P_{1} C_{13} C_{14} P_{2} C_{13} C_{12} C_{14} C_{14}

Fig 3 Crystal structures of **21a** (a), **21b** (b) and **21c** (c) (depicted with 50% probability ellipsoids) including atom labels relevant to the structural discussion (see text).

The extent of the twist in the metallacycle is determined by the relative position that the Zn atom adopts. This is characterised by the dihedral angles C1-P1-O1-Zn1 and C2-P2-O2-Zn1. Both become more negative in the series 21a < 21b <**21c** (Table S3). The twist around the zinc atom causes an almost linear arrangement of the metal with the P1-O1 bond (bond angles P1-O1-Zn1 in the range 159.2(2)° - 166.6(2)°) and a significant variation of the bond angle P2-Xn-Zn1 from almost trigonal in **21a** (X = O2, 129.9(1)°), to approximately tetrahedral in **21b** (X = S1, 104.21(3)°) and **21c** (X = Se1, 99.88(4)°). For comparison, the P-O-Zn bond angles in complex [ZnCl₂(dppfO₂)] containing a larger metallacycle are 158.8(2) and 142.9(2).⁹

Dalton Transactions

ARTICLE

Et₂Zn catalyzed addition studies

Having ascertained the feasibility of phosphinic amidephosphoryl chalcogenides 20 to act as mixed bidentate ligands towards zinc dichloride, we undertook a study of their behaviour as catalysts in a reaction in which O,X-chelation of zinc may promote a rate acceleration. It has been recently shown that the use of $o-C_6H_4(P(O)Ph_2)_2$ in the catalytic asymmetric addition of allyl cyanide to ketones38 and the Mukaiyama aldol reaction with ketones³⁷ produces a significant acceleration of the reaction rate. Both transformations take place in the presence of alkaline metal phenolates. The activation induced by the bis(phosphine) oxide ligand was assigned to enhanced Lewis basicity of the phenolate by formation of chelates with alkaline cations based on NMR³⁸ and X-ray diffraction studies.³⁷ Other P-based compounds such 3,3'-diphosphoryl-BINOLs and bifunctional chiral as phosphinic amides are very efficient ligands in the highly enantioselective addition of organozinc reagents to aldehydes and ketones.39

The phosphinic amide-phosphoryl chalcogenides 20a-c are hemilabile ligands structurally similar to the bis(diphenylphosphine oxide) $\mathit{o}\text{-}C_6H_4(P(O)Ph_2)_2$ and the chiral phosphinic amides mentioned above. They provide the opportunity of checking the effect of the mixed donor sites in catalysis. Moreover, they are P-stereogenic compounds that can synthesized in enantiomerically pure form be via desymmetrization of Ph₂P moieties.^{21,22h} As a proof of concept, we have investigated the addition of diethylzinc to benzaldehyde in the presence of substoichiometric amounts of ligands 20a-c to give 22a (Table 4). For the sake of completeness, the catalytic activity of ligand 19 was also evaluated. A procedure analogue to that reported by Ishihara et *al.* has been applied.^{39b} Yields of alcohol **22a** were determined through quantitative NMR techniques using 1,5-cyclooctadiene (COD) as internal standard (see Figs. S30 - S32).⁴⁰ Complex formation was achieved by treating 3 equiv of Et₂Zn (1.0 M solution in hexanes) with 10 mol% of compounds 19 and 20a-c at -78 °C for 30 min. Then benzaldehyde was added and the reaction was allowed to reach room temperature for 1 h. After aqueous workup, 1-phenylpropan-1-ol 22a was obtained in a yield of 86% for 20a, 57% for 20b and 59% for 20c (Table 4, entries 3-5). In the absence of ligand only 3% of alcohol 22a is formed, together with 10% of benzylic alcohol arising from the reduction of benzaldehyde (entry 1).^{41,42} Interestingly, ligand 19 with a phosphine substituent at the ortho position of the phosphinic amide proved to be notably less efficient (yield of 28%, entry 2) than the chalcogenophosphoryl derivatives **20a-c**. After some experimentation we found that optimal reaction conditions were achieved when the time of contact between aldehyde and Et₂Zn was increased to 90 min. In this way, alcohol 22a was obtained quantitatively in the presence of 20a (entry 7), whereas the yield decreased to 73% when the phosphinothioic amide-phosphine oxide 20b was used as catalyst (entry 8, see Figs. S30-32).

These results indicate that ligands 20a-c accelerate the addition of diethylzinc to benzaldeyde by a factor of 18 - 25 and virtually suppresses the carbonyl reduction side reaction. Importantly, the hybrid phosphine oxide-phosphinic amide ligand 20a, i.e., an O,O-chelating ligand featuring subtle

RSCPublishing

differences between the two oxygen atoms, showed the best performance. It is worth noting that in the reaction with 20c an equimolecular mixture of 19:20a was formed. This means that, even under the mild reaction conditions used, ligand 20c undergoes complete deselenation leading to the (phosphanyl)phosphinic amide 19 that is partially oxidized to 20a during the workup of the reaction. This side-reaction may be favored by the large excess of Et₂Zn used (30 equiv) with respect to the catalytic amount of ligand employed. The comparison of entries 2 and 5 in Table 4 indicates that deselenation 20c is not immediate. The yield of 59% obtained for 22a can be explained by considering that ligand 20c is acting as a catalyst during a given period of time. Deselenation of 20c leads to the formation of 19, the least efficient catalyst, so the rate of the reaction decreases notably. Table 4 Ethylation of benzaldehyde with Et₂Zn catalyzed by

ligands 19 and 20a-c.

	1) 3 equiv 10 mol -78 °C 2) NH ₄ C	r Et ₂ Zn % 19 or 20a-c to rt 1	OH 22a
Entry	Ligand	Time (h)	Yield (%) ^a
1	None	1	3 (10)
2	19	1	28
3	20a	1	86
4	20b	1	57
5	20c	1	59
6	None	1.5	4 (14)
7	20a	1.5	99
8	20b	1.5	73

a) Numbers in parenthesis indicate the yield of benzylic alcohol formed.

The only solvent used in the synthesis of 22a is the hexane of the Et₂Zn solution. Even under vigorous stirring, the reactions in the presence of ligands 20 are heterogeneous due to the poor solubility of the phosphinic amide-phosphoryl chalcogenides in this non-polar solvent. The ¹H-NMR spectrum of a saturated solution of 20a in hexanes using a capillary of CDCl₃ for lock purposes, showed the signals of the ligand after vertically scaling the full spectrum by a factor of 1024 (Fig. S33).⁴³ The solubility of **20a** in hexane increases in the presence of Et₂Zn due to complexation. The region of aromatic protons of the ¹H-NMR spectrum of a saturated sample of **20a** in a 1.0 M solution of Et₂Zn in hexanes revealed the existence of a single species (vertical scaling factor of 256, Fig. S33). Accordingly, the ³¹P{¹H}-NMR spectrum consisted of only two signals, a doublet at δ 35.01 ppm (${}^{3}J_{PP} = 7.3$ Hz) and a very broad signal at δ 34.15 ppm assigned to the PO and NP(O) groups, respectively (Fig. S34). The deshielding undergone by both ³¹P signals and the increase of ³ J_{PP} as compared with **20a** are analogue to the changes in the ³¹P NMR parameters observed upon formation of 21a. These features indicate that **20a** acts as a mixed *O*,*O*-chelate ligand towards Et₂Zn leading to a complex $Et_2Zn \cdot 20a$ similar to 21a.

With this information in hand, we extended the addition of Et₂Zn catalyzed by **20a** to other aldehydes. The results obtained are given in Table 5. For aromatic aldehydes bearing electron-

(2,4-dichlorobenzaldehyde attracting groups and furfuraldehyde) and α,β -unsaturated aldehydes ((E)cinnamaldehyde), the catalyzed ethylation proceeded smoothly to give the corresponding alcohols 22b-d in high yields in 60 -90 min (entries 2, 3 and 4, Figs. S36, S38 and S40, respectively). Electron-donating groups in aromatic aldehydes such as in 4-(dimethylamino)benzaldehyde slowdown the progress of the reaction. Almost quantitative formation of alcohol 22e is achieved by increasing the reaction time to 20 h (entry 5, Fig. S42). The ethylation of aliphatic aldehydes takes place less efficiently. Hydrocinnamaldehyde and cyclohexanecarbaldehyde underwent addition of the ethyl group to the carbonyl group in the presence of 20a leading to the respective alcohols 22f (41%) and 22g (58%) in moderate yields even after relatively large reaction times (4.5 - 24 h, entries 6-7, Figs. S44-S46). In these reactions, small amounts (12% -13%) of the reduction products of the C=O linkage were also observed. The performance of these reactions, though modest, is clearly superior to the uncatalyzed transformations. Particularly in the case of cyclohexanecarbaldehyde, where a large amount (34%) of the product of hydride transfer from Et_2Zn was formed.

Table 5 Ethylation of aldehydes with Et_2Zn catalyzed by 20a.

	1)3equ O 10mo ∐78℃	iiv Et₂Z ol % 20 C to rt	in Ha	OH ↓ ∕	
	R ¹ H 2) NI	H₄CI	R	1- \	
				22	
Entry	\mathbb{R}^1	22	Time	Yield	Blank
			(h)	$(\%)^{a}$	$(\%)^{a}$
1	C ₆ H ₅	a	1.5	99	4(14)
2	$2,4-Cl_2C_6H_3$	b	1	100	9(23)
3	2-Furyl	с	1	85	20
4	$(E)-C_6H_5CH=CH$	d	1.5	97	28(37)
5	$4 - Me_2NC_6H_4$	e	20	99	8
6	C ₆ H ₅ CH ₂ CH ₂	f	4.5	41(12)	6(10)
7	$C_{6}H_{11}$	g	24	58(13)	38(34)

a) Numbers in parenthesis indicate the yield of reduction by-product formed.

Conclusions

We have developed a straightforward synthesis of a new type of mixed bidentate ligands **20a-c** containing phosphinic amide and chalcogenophosphoryl (chalcogen = oxygen, sulphur, selenium) donor sites via directed ortho lithiation methods and of their complexes with zinc dichloride **21a-c**. The new compounds were characterised by nuclear magnetic resonance spectroscopy in solution. The molecular structure of **20b** and all zinc(II) complexes **21a-c** was established by X-ray diffraction analysis. The structure of **20b** revealed a P=O···P=S contact. However, NBO analysis showed a negligible stabilisation energy of 0.73 kcal/mol for the $n_{O1} \rightarrow \sigma^*_{P-C7}$ orbital interaction, insignificant for conformational control in solution at room temperature.

Ligands **20a-c** give rise to seven-membered chelate complexes **21a-c** upon reaction with ZnCl₂. Metal coordination takes place between the oxygen of the phosphinic amide and the chalcogen of the ortho Ph₂P=X (X = O, S, Se) substituent. The formation of complexes indicates that compounds **20a-c** having mixed-donor groups have potential significance as hemilabile ligands in coordination chemistry. Applications in catalysis support the feasibility of this hypothesis. Compounds **20a-c** act as potent promoters of the addition of diethylzinc to benzaldehyde. The mixed phosphine oxide-phosphinic amide ligand **20a** proved to be the most efficient activator of the three ligands. The extension of the catalysis to other aldehydes showed that high yields of ethylated products are obtained for aromatic, heteroaromatic and α , β -unsaturated aldehydes at room temperature in the presence of 10 mol% of **20a**. For

aliphatic aldehydes, ethylalcohols are formed in 41% - 58% yield together with small amounts of the alcohol arising from the reduction of the starting aldehyde. Further studies on the applications of the new ligands in coordination chemistry and the zinc salt complexes in catalysis² are in progress. They include the extension to other transition metals and the use of *P*-stereogenic mixed ligands in asymmetric catalysis. Bidentate ligands **20** extend the family of mixed phosphinic amide-phosphine oxide ligands **16** (Scheme 1) The potential applications of this type of ligand might be expanded by tuning the donor properties of the phosphinic amide oxygen through stereoelectronic effects produced by the substituents linked to the nitrogen atom.

Experimental

Materials and methods

All reactions and manipulations were carried out in a dry N_2 gas atmosphere using standard Schlenk procedures. THF was distilled from sodium/benzophenone immediately prior to use. Commercial reagents were distilled prior to their use, except alkyllithiums. TLC was performed on Merck plates with aluminum backing and silica gel 60 F_{254} . For column chromatography silica gel 60 (40-63 μm) from Scharlau was used. Phosphinamide 18 was prepared as described previously.^{22b}

NMR spectra were measured in a Bruker Avance 300 (¹H, 300.13 MHz; ¹³C, 75.47 MHz; ³¹P, 121.49 MHz) and a Bruker Avance 500 spectrometer equipped with a third radiofrequency channel (¹H, 500.13 MHz; ¹³C, 125.76 MHz and ³¹P, 202.45 MHz) using a 5 mm QNP ¹H/¹³C/¹⁹F/³¹P probe and a direct 5 mm TBO ¹H/³¹P/BB triple probe, respectively. The spectral references used were internal tetramethylsilane for ¹H and ¹³C and external 85% H₃PO₄ for ³¹P. Infrared spectra were recorded in a Bruker Alpha FTIR spectrophotometer. High resolution mass spectra were recorded on Agilent Technologies LC/MSD TOF and HP 1100 MSD instrument using electrospray ionization. Melting points were recorded on a Büchi B-540 capillary melting point apparatus and are not corrected.

X-ray crystallography

The crystallographic data for ligand 20b were collected on an Enraf Nonius Bruker KAPPA CCD diffractometer, using graphite monochromatic MoK α radiation ($\lambda = 0.71073$ Å) at room temperature. Final unit cell parameters were based on the fitting of all reflections positions using DIRAX.44 Collected reflections were integrated using the EVALCCD program.44 Empirical multiscan absorption corrections using equivalent reflections were performed with the SADABS program.⁴⁶ Data collection of crystals of complexes 21a and 21b was performed on an Agilent Gemini Ultra difractometer, using graphite monochromatic MoKa radiation at 150 K. Data processing (including integration, scaling and absorption correction) was performed using CrysAlisPro software.⁴⁷ The crystal data of complex 21c were measured at 100 K on a Bruker Smart 1000 CCD diffractometer with MoKα radiation. The cell refinement and data reduction were performed using Saint⁴⁸ software and empirical multiscan absorption corrections were realized with the SADABS program. The structures were solved using Charge Flipping implemented in Superflip.⁴⁹ The least-squares refinements were performed with the SHELXL-2013.50 All atoms except hydrogen were refined anisotropically. Hydrogen atoms were treated by a constrained refinement. Crystallographic data (excluding structure factors) for compounds 20b and 21a-c have been deposited in the Cambridge Crystallographic Data Centre no. CCDC: 989179 (20b), 989180 (21a), 989181 (21b), and 989182 (21c). These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/products/csd/request/.

Page 8 of 12

Computational Methods

Geometry optimization of **20b** was performed with the metahybrid density functional M06-2X⁵¹ and a 6-311+G(d,p) basis set. Solvation by chloroform (CHCl₃) was taken into account by the SMD solvent model,⁵² which was applied to both optimization as well as frequency calculation. This stationary point was characterized as minimum and confirmed by vibrational analysis. Orbital interactions were analyzed by using the natural bond orbital (NBO)²⁸ method at the M06-2X/6-311+G(d,p) level using the NBO program (version 3.1)⁵³ implemented in Gaussian 09. The calculations were performed with Gaussian 09.⁵⁴ The 3D structure of molecules was generated using CYLView (<u>http://www.cylview.org</u>).

Synthesis of phosphinic amide (19). The synthesis of 19 has been described previously.^{20,21} A slightly modified procedure has been used. To a solution of phosphinic amide 18 (0.7 g, 2.31 mmol) in 20 mL of toluene and TMEDA (0.49 mL, 2.54 mmol) a solution of n-BuLi (1.6 mL of a 1.6 M solution in hexane, 2.54 mmol) was added at -78 °C (acetone/CO₂). After one hour of metallation, chlorodiphenylphosphine (0.46 g, 2.54 mmol) was added. The reaction was stirred at room temperature for 2 hours and then was poured out into ice-water, extracted with dichloromethane (3x15 mL), washed with sodium thiosulphate (2x15 mL), dried over anhydrous sodium sulphate and evaporated to dryness under vacuum to give a white solid. Purification through column chromatography (AcOEt:hexanes 1:3) afforded 19 in a yield of 85%. NMR data are in agreement with those reported in the literature.^{20,21} Similar results were obtained when the ortho-lithiation was performed with t-BuLi (1.5 mL of a 1.7 M solution in hexane, 2.54 mmol) in THF as solvent at -78 °C during 2 h.

General procedure for the synthesis of 0chalcogenophosphoryl-phosphinic amide mixed ligands (20). Method A (stepwise). To a solution of 19 (0.5 g, 1 mmol) in toluene (15 mL) at -10 °C was added 1.1 mmol of the oxidant (0.12 mL of H₂O₂ 30% for 20a, 35 mg of S₈ for 20b, 87 mg of Se powder for 20c). The reaction was allowed to warm up to ambient and stirred during 30 min at room temperature for 20a, 12 h for 20b and 12 h under reflux for 20c. The solvent was evaporated (in the case of 20c the slight excess of unreacted selenium was filtered off) and the product extracted with following standard dichloromethane aqueous workup procedures. The crude reaction mixtures consisted of white solids, which ³¹P-NMR spectra showed that compounds 20a-c were formed quantitatively. The products were filtered and washed with Et₂O providing **20a-c** as a white solid that was used further in complexation reactions.

Method B (one-pot). To the solution of **19** in toluene (or THF) at -10 °C generated as indicated above (assumed 2.31 mmol) was added in situ the oxidant (0.28 mL of H_2O_2 30% for **20a**, 81 mg of S₈ for **20b**, 0.2 g of Se powder for **20c**). From here, the same procedure as described in method A was applied. Products **20a-c** were purified through column chromatography. (ethyl acetate:hexanes 4:1). See Table 2 for the numbering scheme used.

Compound 20a. Yield 79%. White solid. Mp: 195-196 °C. ¹H-NMR (CDCl₃, 500.13 MHz) δ 1.05 (d, 6H, ³J_{HH} 6.8 Hz, H26/27), 1.12 (d, 6H, ³J_{HH} 6.8 Hz, H26/27), 3.44 (dh, 2H, ³J_{HH} 6.8, ³J_{PH} 15.1Hz, H25), 7.01 (m, 2H, H15), 7.10 (m, 2H, H21), 7.18 (m, 1H, H16), 7.22 (m, 2H, H20), 7.28 (m, 1H, H22), 7.36 (m, 2H, H14), 7.37 (m, 2H, H9), 7.45 (m, 1H, H10), 7.73 (m, 1H, H4) 7.74 (m, 1H, H5), 7.80 (m, 2H, H8), 8.18 (m, 1H, H6), 8.58 (m, 1H, H3). ¹³C NMR (CDCl₃, 125.76 MHz) δ 23.10 (d, ³J_{PC} 2.6 Hz, C27/26), 23.42 (d, ³J_{PC} 2.9 Hz, C26/27), 47.66 (d, ²J_{PC} 1.1 Hz, C25), 127.26 (d, ³J_{PC} 12.9 Hz, C15), 127.47 (d, ³J_{PC} 2.8 Hz, C21), 127.50 (d, ³J_{PC} 2.8 Hz, C16), 130.69 (dd, ³J_{PC} 11.0, ⁴J_{PC} 2.6 Hz, C5), 130.83 (d, ⁴J_{PC} 2.8 Hz, C10), 131.03 (dd, ³J_{PC} 11.0, ⁴J_{PC} 2.5 Hz, C4), 131.61 (d, ²J_{PC} 10.2

Hz, C14), 132.29 (d, ${}^{2}J_{PC}$ 9.7 Hz, C20), 132.42 (d, ${}^{2}J_{PC}$ 9.8 Hz, C8), 132.86 (d, ${}^{1}J_{PC}$ 123.4 Hz, C19), 134.07 (d, ${}^{1}J_{PC}$ 111.4 Hz, C7), 134.22 (t, ${}^{2}J_{PC}$ = ${}^{3}J_{PC}$ 9.3 Hz, C6), 134.34 (d, ${}^{1}J_{PC}$ 111.7 Hz, C13), 136.11 (dd, ${}^{1}J_{PC}$ 96.4, ${}^{2}J_{PC}$ 12.0 Hz, C2), 137.23 (dd, ${}^{2}J_{PC}$ 9.1, ${}^{3}J_{PC}$ 10.9 Hz, C3), 138.0 (dd, ${}^{1}J_{PC}$ 127.6, ${}^{2}J_{PC}$ 9.2 Hz, C1) ppm. ${}^{31}P$ NMR (CDCl₃, 121.49 MHz) δ 28.91 (d, ${}^{3}J_{PP}$ 5.4 Hz, NP=O), 33.36 (d, ${}^{3}J_{PP}$ 5.4 Hz, P=O) ppm. IR (KBr) v 1157 (P=O, s), 1215 (NP=O, s) cm⁻¹. HRMS (ESI) calcd. for C₃₀H₃₄NO₂P₂: 502.2065 (MH⁺), found: 502.2066.

Compound 20b. Yield 85%. White solid. Mp: 177-178 °C. ¹H-NMR (CDCl₃, 500.13 MHz) δ 1.05 (d, 6H, ³J_{HH} 6.8 Hz, H26/27), 1.13 (d, 6H, ³J_{HH} 6.8 Hz, H27/H26), 3.42 (dh, 2H, ³J_{HH} 6.8, ³J_{PH} 14.9 Hz, H25), 7.13 (m, 2H, H15), 7.2 (m, 2H, H21), 7.23 (m, 1H, H16), 7.26 (m, 2H, H9), 7.34 (m, 1H, H22), 7.36 (m, 1H, H10), 7.38 (m, 2H, H20), 7.57 (m, 1H, H4), 7.58 (m, 2H, H14), 7.7 (m, 1H, H5), 7.71 (m, 2H, H8), 8.18 (bm, 1H, H3), 8.23 (m, 1H, H6) ppm. ¹³C NMR (CDCl₃, 125.76 MHz) δ 22.96 (d, ${}^{3}J_{PC}$ 2.8 Hz, C27/C26), 23.47 (d, ${}^{3}J_{PC}$ 2.6 Hz, C26/C27), 47.65 (d, ²J_{PC} 4.0 Hz, C25), 127,44 (d, ³J_{PC} 12.7 Hz, C15 and C21), 127.56 (d, ${}^{3}J_{PC}$ 13.0 Hz, C9), 129.97 (d, ${}^{4}J_{PC}$ 3.1 Hz, C16), 130.15 (d, ${}^{4}J_{PC}$ 3.1 Hz, C10), 130.22 (dd, ${}^{3}J_{PC}$ 11.1, Hz, C16), 130.15 (d, J_{PC} 3.1 Hz, C10), 150.22 (uu, J_{PC} 11.1, ${}^{4}J_{PC}$ 2.9 Hz, C5), 130.7 (d, ${}^{4}J_{PC}$ 2.7 Hz, C22), 130.78 (dd, ${}^{3}J_{PC}$ 12.5, ${}^{4}J_{PC}$ 2.5 Hz, C4), 131.48 (d, ${}^{2}J_{PC}$ 10.5 Hz, C14), 131.85 (d, ${}^{2}J_{PC}$ 10.6 Hz, C8), 132.65 (d, ${}^{2}J_{PC}$ 9.6 Hz, C20), 133.02 (d, ${}^{1}J_{PC}$ 122.4 Hz, C19), 134.87 (dd, ${}^{2}J_{PC}$ 8.9, ${}^{3}J_{PC}$ 9.4 Hz, C6), ${}^{1}J_{PC}$ 12.5 Hz, C12 Hz, C7), 125.7 (d, ${}^{1}J_{PC}$ 8.9 Hz, C13) 135.07 (d, ¹J_{PC} 90.3 Hz, C7), 135.7 (d, ¹J_{PC} 89.9 Hz, C13), 136.97 (dd, ${}^{2}J_{PC}$ 11.1, ${}^{1}J_{PC}$ 79.3 Hz, C2), 137.22 (dd, ${}^{2}J_{PC}$ 13.4, ${}^{3}J_{PC}$ 11.4 Hz, C3), 137.51 (dd, ${}^{2}J_{PC}$ 9.1, ${}^{1}J_{PC}$ 127.5 Hz, C1) ppm. ³¹P NMR (CDCl₃, 202.45 MHz) δ 28.11 (d, ³J_{PP} 4.5 Hz, P=O), 50.07 (d, ${}^{3}J_{PP}$ 4.5 Hz, P=S) ppm. IR (KBr) v 605 (P=S, s), 1215 (NP=O, s) cm⁻¹. HR-MS (ESI) calcd. for C₃₀H₃₄NOP₂S: 518.1836 (MH⁺), found: 518.1838.

General procedure for the synthesis of complexes (21). To a solution containing 0.10 mmol of the appropriate ligand 20a-c in 5 mL of a mixture dichloromethane:acetonitrile (1:1) were added 0.10 mmol of $ZnCl_2$ (0.1 mL of a 1.0 M solution in diethyl ether) and the reaction was stirred at room temperature overnight. Then, the solvent was evaporated under reduced pressure affording pale yellow powders. The ³¹P-NMR spectra of the solids obtained showed that complexes 21a-c were formed quantitatively. Crystals suitable for X-ray analysis were obtained through slow vapour diffusion of diethyl ether into a solution containing the complex in dichloromethane:acetonitrile (1:1).

Complex 21a. Yield after recrystallization 61% (39 mg). White solid. Mp: 285 - 286 °C. ¹H NMR δ (CDCl₃, 500.13 MHz) δ 1.02 (d, 6H, ${}^{3}J_{\text{HH}}$ 6.8 Hz, H26/27), 1.25 (d, 6H, ${}^{3}J_{\text{HH}}$ 6.8 Hz, H27/26), 3.56 (dh, 2H, ³J_{HH} 6.8, ³J_{PH} 17.3 Hz, H25), 6.99 (m, 2H, H21), 7.04 (m, 2H, H15), 7.18 (m, 2H, H14), 7.25 (m, 1H, H22), 7.28 (m, 2H, H20), 7.29 (m, 1H, H16), 7.33 (m, 1H, H3), 7.39 (m, 2H, H9), 7.53 (m, 1H, H10), 7,57 (m, 2H, H8), 7.64 (m, 1H, H4), 7.91 (m, 1H, H5), 8.37 (m, 1H, H6) ppm. ¹³C NMR (CDCl₃, 125.76 MHz) δ 22.98 (d, ${}^{3}J_{PC}$ 1.5 Hz, C26/27), 23.30 (d, ${}^{3}J_{PC}$ 2.7 Hz, C27/26), 48.10 (d, ${}^{2}J_{PC}$ 4.4 Hz, C25), 126.49 (d, ${}^{1}J_{PC}$ 108.1 Hz, C13), 127.88 (d, ${}^{3}J_{PC}$ 13.3 Hz, C21), 128.28 (d, ${}^{3}J_{PC}$ 13.0 Hz, C15), 128.36 (d, ${}^{1}J_{PC}$ 126.7 Hz, C19), 128.65 (d, ${}^{3}J_{PC}$ 12.9 Hz, C9), 129.87 (d, ${}^{1}J_{PC}$ 115.3 Hz, C7), 131.11 (d, ${}^{2}J_{PC}$ 10.6 Hz, C14), 132.02 (dd, ${}^{3}J_{PC}$ 12.7, ${}^{4}J_{PC}$ 2.7 Hz, C4), 132.15 (d, ${}^{2}J_{PC}$ 110 Hz, C20), 132 26 (d, ${}^{4}J_{PC}$ 2.9 Hz Hz, C4), 132.15 (d, ${}^{2}J_{PC}$ 11.0 Hz, C20), 132.26 (d, ${}^{4}J_{PC}$ 2.9 Hz, C22), 132.4 (dd, ${}^{3}J_{PC}$ 11.4, ${}^{4}J_{PC}$ 2.7 Hz, C5), 132.58 (d, ${}^{4}J_{PC}$ 3.1 Hz, C16), 132.66 (d, ${}^{2}J_{PC}$ 10.5 Hz, C8), 132.8 (d, ${}^{4}J_{PC}$ 2.8 Hz, C10), 133.73 (dd, ${}^{2}J_{PC}$ 13.3, ${}^{1}J_{PC}$ 97.9 Hz, C2), 135.89 (dd, ${}^{1}J_{PC}$ 127.5, ${}^{2}J_{PC}$ 9.5 Hz, C1), 136.02 (t, ${}^{2}J_{PC}$ = ${}^{3}J_{PC}$ 9.7 Hz, C6), 137.71 (dd, ${}^{2}J_{PC}$ 11.8, ${}^{3}J_{PC}$ 14.7 Hz, C3) ppm. ${}^{31}P$ NMR (CDCl₃, 121.49 MHz) δ 37.47 (d, ³J_{PP} 8.2 Hz, NP=O), 41.27 (d, ³*J*_{PP} 8.2 Hz, P=O) ppm. IR (KBr) v 1118 (P=O, s), 1175 (NP=O, s) cm⁻¹. HRMS (ESI) calcd. for $C_{30}H_{33}CINO_2P_2Zn$: 600.0967 (M⁺ - Cl), found: 600.0978.

Journal Name

standard.

Complex 21b. Yield after recrystallization 51% (34 mg). White solid. Mp: 273-275 °C, ¹H-NMR (CDCl₃, 500.13 MHz) δ 1.09 (d, 6H, ${}^{3}J_{HH}$ 6.8 Hz, H26/27), 1.28 (d, 6H, ${}^{3}J_{HH}$ 6.8 Hz, H27/H26), 3.61 (dh, 2H, ${}^{3}J_{HH}$ 6.8, ${}^{3}J_{PH}$ 16.1 Hz, H25), 6.98 (m, 2H, H15), 7.21 (m, 2H, H21), 7.27 (m, 1H, H16), 7.30 (m, 1H, H3), 7.36 (m, 2H, H20), 7.42 (m, 4H, H8 and H14), 7.43 (m, 1H, H22), 7.45 (m, 2H, H9), 7.55 (m, 1H, H10), 7.59 (m, 1H, H4), 7.86 (m, 1H, H5), 8.43 (m, 1H, H6) ppm. $^{13}\mathrm{C}$ NMR $(\text{CDCl}_3, 125.76 \text{ MHz}) \delta 23.12 \text{ (d, } {}^3J_{\text{PC}} 2.2 \text{ Hz}, \tilde{\text{C26}}/27), 24.1 \text{ (d, }$ (CDCl₃, 125.76 MHz) δ 23.12 (d, ${}^{3}J_{PC}$ 2.2 Hz, C26/27), 24.1 (d, ${}^{3}J_{PC}$ 2.8 Hz, C27/26), 48.7 (d, ${}^{2}J_{PC}$ 3.6 Hz, C25), 124.6 (d, ${}^{1}J_{PC}$ 86.0 Hz, C13), 128.16 (d, ${}^{3}J_{PC}$ 13.6 Hz, C15), 128.49 (d, ${}^{3}J_{PC}$ 13.4 Hz, C21), 128.96 (d, ${}^{1}J_{PC}$ 130.9 Hz, C19), 129.02 (d, ${}^{3}J_{PC}$ 12.7 Hz, C9), 130.93 (d, ${}^{1}J_{PC}$ 90.8 Hz, C7), 131.64 (dd, ${}^{3}J_{PC}$ 11.3, ${}^{4}J_{PC}$ 2.9 Hz, C5), 132.3 (dd, ${}^{3}J_{PC}$ 12.7, ${}^{4}J_{PC}$ 3.5 Hz, C4), 132.39 (d, ${}^{4}J_{PC}$ 3.1 Hz, C10), 132.41 (d, ${}^{4}J_{PC}$ 2.9 Hz, C22), 132.54 (d, ${}^{2}J_{PC}$ 11.3 Hz, C8), 132.72 (d, ${}^{2}J_{PC}$ 10.7 Hz, C14/C20), 132.75 (d, ${}^{2}J_{PC}$ 9.8 Hz, C20/C14), 132.95 (d, ${}^{4}J_{PC}$ 3.3 Hz, C16), 135.24 (dd, ${}^{1}J_{PC}$ 133.4, ${}^{2}J_{PC}$ 9.7 Hz, C1), 135.65 (dd, ${}^{1}J_{PC}$ 80.7, ${}^{2}J_{PC}$ 12.7 Hz, C2), 137.11 (t, ${}^{2}J_{PC}$ = ${}^{3}J_{PC}$ 9.7 Hz, C6), 138.04 (t, ${}^{2}J_{PC}$ = ${}^{3}J_{PC}$ 11.8 Hz, C3) ppm. 31 P NMR (CDCl₃, 202.45 MHz) δ 34.53 (d, ${}^{3}J_{PF}$ 5.2 Hz, P=O), 48.76 (d, ${}^{3}J_{PF}$ 5.2 Hz, P=S). IR v 533 (P=S, s), 1125 (NP=O, s) cm⁻¹. HRMS Hz, P=S). IR v 533 (P=S, s), 1125 (NP=O, s) cm⁻¹. HRMS (ESI) calcd. for $C_{30}H_{33}CINOP_2SZn$: 616.0738 (M⁺ - Cl), found: 616.0741.

Complex 21c. Yield after recrystallization 70% (43 mg). Pale brown solid. Mp: 273-275 °C. ¹H NMR (CDCl₃, 500.13 MHz) δ 1.09 (d, 6H, ${}^{3}J_{\rm HH}$ 6.8 Hz, H26/27), 1.31 (d, 6H, ${}^{3}J_{\rm HH}$ 6.8 Hz, H27/H26), 3.60 (dh, 2H, ${}^{3}J_{\rm HH}$ 6.8, ${}^{3}J_{\rm PH}$ 15.6 Hz, H25), 6.99 (m, 2H, H15), 7.23 (m, 5H, H3, H10 and H21), 7.28 (m, 1H, H16), 7.40 (m, 2H, H14), 7.42 (m, 2H, H20), 7.44 (m, 2H, H9), 7.45 (m, 1H, H22), 7.53 (m, 2H, H8), 7.58 (m, 1H, H4), 7.86 (m, (m, 1H, H22), 7.53 (m, 2H, H8), 7.58 (m, 1H, H4), 7.86 (m, 1H, H5), 8.44 (m, 1H, H6) ppm. ¹³C NMR (CDCl₃, 125.76 MHz) δ 23.18 (d, ³J_{PC} 2.7 Hz, C26/27), 24.02 (d, ³J_{PC} 3.1 Hz, C27/26), 48.85 (d, ²J_{PC} 3.4 Hz, C25), 123.23 (d, ¹J_{PC} 79.1 Hz, C13), 128.35 (d, ³J_{PC} 13.6 Hz, C15), 128.57 (d, ³J_{PC} 13.6 Hz, C21), 129.06 (d, ³J_{PC} 12.3 Hz, C9), 129.22 (d, ¹J_{PC} 132.9 Hz, C19), 130.71 (d, ¹J_{PC} 80.7 Hz, C7), 131.13 (d, ²J_{PC} 11.6 Hz, C14/20), 131.62 (d, ³J_{PC} 12.1, ⁴J_{PC} 3.6 Hz, C5), 132.33 (dd, ³J_{PC} 12.2 ⁴H = 3.0 Hz, C4) C14/20), 151.02 (dd, J_{PC} 12.1, J_{PC} 5.6 Hz, C5), 152.55 (dd, ${}^{3}J_{PC}$ 12.2, ${}^{4}J_{PC}$ 3.0 Hz, C4), 132.34 (d, ${}^{4}J_{PC}$ 2.8 Hz, C22), 132.44 (d, ${}^{4}J_{PC}$ 3.0 Hz, C10), 132.88 (d, ${}^{2}J_{PC}$ 10.8 Hz, C8), 132.97 (d, ${}^{4}J_{PC}$ 3.4 Hz, C16), 133.17 (d, ${}^{2}J_{PC}$ 9.7 Hz, C20/14), 134.55 (dd, ${}^{2}J_{PC}$ 10.9, ${}^{1}J_{PC}$ 71.1 Hz, C2), 135.38 (dd, ${}^{2}J_{PC}$ 9.3, ${}^{1}J_{PC}$ 135.1 Hz, C1) 137.08 (t, ${}^{2}J_{PC}$ 9.7 Hz, C6), 137.55 (t, ${}^{2}J_{PC}$ = ${}^{3}J_{PC}$ 12.0 Hz, C3), ppm. ³¹P NMR (CDC1₃, 121.49 MHz) 5.24 15 (d, ${}^{3}J_{PC}$ 4.4 Hz, P=O), 27.24 (d, ${}^{3}J_{PC}$ 4.4 Hz, P=S), ppm. δ 34.15 (d, ${}^{3}J_{PP}$ 4.4 Hz, P=O), 37.24 (d, ${}^{3}J_{PP}$ 4.4 Hz, P=Se) ppm; ${}^{1}J_{\text{SeP}}$ 650 Hz. IR v 536 (P=Se, s), 1118 (NP=O, s) cm⁻¹. HRMS (ESI) calcd. for $C_{30}H_{33}CINOP_2SeZn$: 664.0178 (M⁺ - Cl), found: 664.0169.

General procedure for the addition of Et₂Zn to aldehydes catalyzed by ligands 19 and 20a-c. A procedure similar to that reported by Ishihara and co-workers was used.^{39b} A well-dried Schlenk tube was charged with the ligand 19 or 20a-c (0.05 mmol) under nitrogen atmosphere and cooled to -78 °C. Et₂Zn (1.5 mL of 1.0 M solution in hexanes, 1.5 mmol) was added and the suspension was stirred at -78 °C for 30 min. To this suspension, the aldehyde (0.5 mmol) was added and the reaction mixture was stirred at -78 °C for 10 min. After this time, the reaction was allowed to gradually reach room temperature and stirred for 1 - 24 h (see Table 5). When the reaction was finished (see Table 5), it was quenched with 10 mL of sat. NH₄Cl aqueous solution and extracted with dichloromethane (10 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and concentrated in the rotavapor. The reaction yield was determined through ¹H-NMR spectroscopy by integration of the signals of the final products and the signal at δ 5.57 corresponding to four olefinic protons of COD (0.06 mL, 0.5 mmol).

The NMR sample for determining the coordination of ligand 20a to Et₂Zn was prepared using half amounts of

413; (b) V. Nishal, A. Kumar, P. S. Kadyan, D. Singh, R. Srivastava, I. Singh and M. N. Kamalasanan, J. Electron. Mater., 2013, 42, 973-978;

1

(c) D. V. Aleksanyan, V. A. Kozlov, B. I. Petrov, T. V. Balashova, A. P. Pushkarev, A. O. Dmitrienko, G. K. Fukin, A. V. Cherkasov, M. N. Bochkarev, N. M. Lazarev, Y. A. Bessonova and G. A. Abakumov, RSC Adv., 2013, 3, 24484-24491; (d) B. Gao, R. Duan, X. Pang, X. Li, Z. Qu, H. Shao, X. Wang and X. Chen, Dalton Trans., 2013, 42, 16334-16342; (e) R. Petrus and P. Sobota, Dalton Trans., 2013, 42, 13838-13844; (f) C. Nie, Q. Zhang, H. Ding, B. Huang, X. Wang, X. Zhao, S.; Li, H. Zhou, J. Wu and Y. Tian, Dalton Trans., 2014, 43, 599-608.

(a) M. Mézes, M. Erdélyi and K. Balogh, Eur. Chem. Bull., 2012, 1, 410-

Reviews: (a) C. A. Wheaton, P. G. Hayes and B. J. Ireland, Dalton Trans., 2009, 4832-4846; (b) S. S. Das, Zhou, D. Addis, S. Enthaler, K. Junge and M. Beller, Top. Catal., 2010, 53, 979-984; (c) X.-F. Wu Chem. Asian J., 2012, 7, 2502-2509; (d) X.-F. Wu and H. Neumann, Adv. Synth. Catal., 2012, 354, 3141-3160; (e) S. Enthaler, ACS Catal., 2013, 3, 150-158.

reagents as compared with laboratory scale reactions under otherwise the same conditions. Saturated solutions of 20a in hexanes were obtained by adding 0.75 mL of hexanes to a Schlenk charged with 12.5 mg of 20a. In both cases heterogeneous solutions were obtained. After vigorous stirring for 10 min, 0.5 mL of the supernatant solution were placed into a 5 mm NMR tube containing a homemade capillary of CDCl₃ (outer diameter of ca. 1.5 mm) for lock purposes. ¹H-, ¹H{³¹P}and ³¹P-NMR spectra were acquired at room temperature on a Bruker Avance 500 spectrometer (Fig. S33 and S34). The ¹H NMR spectrum of the complex 20a Et₂Zn revealed that the amount of ligand present in solution was 5 mg. In this case, the integral of the methylene protons of Et₂Zn were used as internal Acknowledgements We thank the MICINN, MEC, FEDER program and CAPES for their financial support (projects: CTQ2011-27705, PHB2011-0158 and CAPES/DGU 268/12). The authors would

like to thank thank LabCri (UFMG) for measuring the X-ray diffraction data of complexes 21a and 21b and the Centro de Supercomputación of the University of Granada (UGRGRID, Spain) for allocating computational time. MAAS and MC thank MICINN for the Ph.D. contract and fellowship, respectively.

Notes and references

Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.

^b Departamento de Química Orgânica, Universidade Federal Fluminense, Instituto de Química, Rio de Janeiro, Brazil.

Departamento de Química Inorgânica, Universidade Federal Fluminense, Instituto de Química, Rio de Janeiro, Brazil.

Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

Electronic Supplementary Information (ESI) available: NMR spectra of the reported compounds, ORTEP diagrams of 20b and 21a-c, are available in the ESI. CCDC 989179-989182. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b00000x/

- 3 C. Valerio-Cárdenas, M.-A. M. Hernández and J.-M. Grévy, *Dalton Trans.*, 2010, **39**, 6441-6448.
- 4 C. A. Wheaton, B. J. Ireland and P. G Hayes, Z. Anorg. Allg. Chem., 2011, 637, 2111-2119
- 5 S. Marks, T. K. Panda and P. W. Roesky, *Dalton Trans.*, 2010, **39**, 7230-7235.
- 6 C. J. Wallis, I. L. Kraft, B. O'Patrick and P. Mehrkhodavandi, *Dalton Trans.*, 2010, **39**, 541.
- 7 (a) C. A. Kosky, J.-P. Gayda, J. F. Gibson, S. F. Jones and D. J. Williams, *Inorg. Chem.*, 1982, 21, 3173-3179; (b) T. S. Lobana in *The Chemistry of Organophosphorus Compounds*, F. R. Hartley, Ed., Wiley: New York, 1992, Vol. 2, Chap. 5, pp 409-566; (c) A. Zeller, E. Herdtweck and T. Strassner, *Acta Crystallogr., Sect E*, 2001, 57, m480-m482; (d) Y. Nie, H. Pritzkow, H. Wadepohl and W. Siebert, *J. Organomet. Chem.*, 2005, 690, 4531-4536.
- 8 (a) X. Liu, X.-J. Yang, P. Yang, Y. Liu and B. Wu, *Inorg. Chem. Commun.*, 2009, **12**, 481-483; (b) X.-J. Yang, X. Liu, Y. Liu, Y. Hao and B. Wu, *Polyhedron*, 2010, **29**, 934-940.
- 9 W. Zhang and T. S. A. Hor, *Dalton Trans.*, 2011, 40, 10725-10730.
- (a) A. R. J. Genge, W. Levason and G. Reid, *Inorg. Chim. Acta*, 1999, 288, 142-149; (b) A. R. J. Genge, N. J. Hill, W. Levason and G. Reid, *J. Chem. Soc., Dalton Trans.*, 2001, 1007-1012; (c) N. J. Hill, W. Levason, M. C. Popham, G. Reid and M. Webster, *Polyhedron*, 2002, 21, 445-455; (d) M. B. Hursthouse, W. Levason, R. Ratnani and G. Reid, *Polyhedron*, 2004, 23, 1915-1921; (e) M. B. Hursthouse, W. Levason, R. Ratnani, G. Reid, H. Stainer and M. Webster, *Polyhedron*, 2005, 24, 121-128; (f) K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Shozo and Y. Wada, *J. Alloys. Copmds.*, 2006, 408-412, 771-775; (g) M. F. Davis, W. Levason, R. Ratnani, G. Reid and M. Webster, *New J. Chem.*, 2006, 30, 782-790; (h) K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, Y. Shozo and Y. Wada, *J. Phys. Chem. A*, 2007, 111, 3029-3037.
- 11 M. F. Davis, W. Levason, G. Reid and M. Webster, *Polyhedron*, 2006, **25**, 930-936.
- 12 M. W. G. de Bolster and W. L. Groeneveld, Z. Naturforsch. B, 1972, 27, 759-763.
- 13 C.-W. Yeh and J.-D. Chen, Inorg. Chem. Commun., 2011, 14, 1212– 1216.
- 14 R. Ahmed, A. Altieri, D. M. D'Souza, D. A. Leigh, K. M. Mullen, M. Papmeyer, A. M. Z. Slawin, J. K. Y Wong and J. D. Woollins, *J. Am. Chem. Soc.*, 2011, **133**, 12304-12310.
- 15 (a) K. C. Malhotra, G. Mehrotra and S. C. Chaudhry, *Indian J. Chem. A*, 1978, **16**, 905-906; (b) T. S. Lobana, S. S. Sandhu and T. R. Gupta, *J. Indian Chem. Soc.*, 1981, **58**, 80-82; (c) T. S. Lobana, T. R. Gupta and S. S. Sandhu, *Polyhedron*, 1982, **1**, 781-783.
- 16 P. G. Jones and B. Ahrens, private communication, 2006, CCDC 615020.
- 17 T. S. Lobana, R. Hundal and P. Turner, J. Coord. Chem., 2001, 53, 301-309.
- 18 H. Vahrenkamp, Dalton Trans., 2007, 4751-4759.
- 19 M. Kuzdrowska, B. Murugesapandian, L. Hartenstein, M. T. Gamer, N. Arleth, S. Blechert and P. W. Roesky, *Eur. J. Inorg. Chem.*, 2013, 4851-4857.
- 20 D. B. G. Williams, S. J. Evans, H. de Bod, M.S. Mokhadinyana and T. Hughes, *Synthesis*, 2009, 3106-3112.
- 21 C. Popovici, P. Oña-Burgos, I. Fernández, L. Roces, S. García-Granda, M. J. Iglesias and F. López-Ortiz, Org. Lett., 2010, 12, 428-431.
- 22 (a) J. García-López, I. Fernández, M. Serrano-Ruiz and F. López-Ortiz, *Chem. Commun.*, 2007, 4674-4676; (b) I. Fernández, P. Oña-Burgos, G. Ruiz Gómez, C. Bled, S. García-Granda and F. López-Ortiz, *Synlett*, 2007, 611-614; (c) P. Oña-Burgos, I. Fernández, L. Roces, L. Torre-Fernández, S. García-Granda and F. López-Ortiz, *Organometallics*, 2009, **28**, 1739-1747; (d) J. García-López, V. Yáñez-Rodriguez, L. Roces, S. García-Granda, A. Martínez, A. Guevara-García, G. R. Castro,

F. Jiménez-Villacorta, M. J. Iglesias and F. López-Ortiz, J. Am. Chem. Soc., 2010, 132, 10665-10667; (e) C. Popovici, I. Fernández, P. Oña-Burgos, L. Roces, S. García-Granda and F. López-Ortiz, Dalton Trans., 2011, 40, 6691-6703; (f) H. el Hajjouji, E. Belmonte, J. García-López, I. Fernández, M. J. Iglesias, L. Roces, S. García-Granda, A. El Laghdach and F. López-Ortiz, Org. Biomol. Chem., 2012, 10, 5647-5658; (g) F. J. Sainz-Gonzalo, M. Casimiro, C. Popovici, A. Rodríguez-Diéguez, J. F. Fernández-Sánchez, I. Fernández, F. López-Ortiz and A. Fernández-Gutiérrez, Dalton Trans., 2012, 41, 6735-6748; (h) M. Casimiro, L. Roces, S. García-Granda, M. J. Iglesias and F. López-Ortiz, Org. Lett., 2013, 15, 2378-2381; (i) M. Casimiro, J. García-López, M. J. Iglesias and F. López-Ortiz, Dalton Trans., 2014, DOI: 10.1039/c4dt00927d.

- 23 G. Davidson in *The Chemistry of Organophosphorus Compounds*, F. R. Hartley, Ed., Wiley: New York, 1992, Vol. 2, Chap. 5, pp 169-193.
- (a) N. Burford, *Coord. Chem. Rev.*, 1992, **112**, 1-18; (b) J. B. Cook, B. K. Nicholson and D. W. Smith, *J. Organomet. Chem.*, 2004, **689**, 860–869.
- 25 S. Ahmad, A. A. Isab, H. P. Perzanowski, M. S.Hussain and M. N. Akhtar, *Transition Met. Chem.*, 2002, 27, 177-183;
- 26 Measured from the ⁷⁷Se satellites in the ³¹P NMR spectrum. (a) H. Duddeck, Progr. NMR Spectrosc., 1995, **27**, 1-323; (b) H. Duddeck, Annu. Rep. NMR Spectrosc., 2004, **52**, 105-166; (c) A. Pop, A. Silvestru, M. Concepción-Gimeno, A. Laguna, M. Kulcsar, M. Arca, V. Lippolis and A. Pintus, Dalton Trans., 2011, **40**, 12490-12479.
- 27 This arrangement is commonly found in sterically constrained 1,8disubstituted (phosphino)naphthalene dioxides and disulphides: (a) A. Karaçar, M. Freytag, H. Thönnessen, J. Omelanczuk, P. G. Jones, R. Bartsch and R. Schmutzler, *Heteroatom Chem.*, 2001, **12**, 102-113; (b) J. Omelanczuk, A. Karacar, M. Freytag, P. G. Jones, R. Bartsch, M. Mikolajczyk, and R. Schmutzler, *Inorg. Chim. Acta*, 2003, **350**, 583-591.
- (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066-4073;
 (b) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899-926.
- 29 N. E. Jackson, B. M. Savoie, K. L. Kohlstedt, M. Olvera de la Cruz, G. C. Schatz, L. X. Chen and M. A. Ratner, *J. Am. Chem. Soc.*, 2013, 135, 10475-10483.
- 30 (a) A. E. Reed and P. v. R.Schleyer, J. Am. Chem. Soc., 1990, 112, 1434-1435; (b) J. A. Dobado, H. Martínez-García, J. Molina-Molina and M. R. Sundberg, J. Am. Chem. Soc., 1998, 120, 8461-8471; (c) S. Noury and B. Silvi, Inorg. Chem., 2002, 41, 2164–2172.
- (a) W. W. Schweikert and E. A. Meyers, J. Phys. Chem., 1968, 72, 1561-1565; (b) P. W. Codding and K. A. Kerr, Acta Crystallogr., Sect. B, 1978, 34, 3785-3787; (c) F. R. Knight, A. L. Fuller, A. M. Z. Slawin and J. D. Woollins, Polyhedron, 2010, 29, 1849-1853; (d) F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin and J. D. Woollins, Chem. Eur. J., 2010, 16, 7617-7634; (e) V. Y. Aleksenko, E. V. Sharova, O. I. Artyushin, D. V. Aleksanyan, Z. S. Klemenkova, Y. V. Nelyubina, P. V. Petrovskii, V. A. Kozlov and I. L. Odinets, Polyhedron, 2013,51, 168-179.
- 32 (a) M.-ul-Haque and C. N. Caughlan, J. Chem. Soc., Perkin Trans. 2, 1976, 1101-1104; (b) F. Cameron and F. D. Duncanson, Acta Crystallogr., Sect.. B, 1981, 37, 1604-1608; (c) B. Davidowitz, T. A. Modro and M. L. Niven, Phosphorus Sulfur, 1985, 22, 255-263; (d) I. Fernández, A. Forcén-Acebal, S. García-Granda and F. López-Ortiz, J. Org. Chem. 2003, 68, 4472-4485; (e) H. De Bod, D. B. G. Williams, A. Roodt and A. Muller, Acta Crystallogr., Sect. E, 2004, 60, o1241-o1243.
- 33 (a) L.-C. Liang, W.-Y. Lee, T.-L. Tsai, Y.-L. Hsu and T.-Y. Lee, *Dalton Trans.*, 2010, **39**, 8748-8758; (b) B. Bichler, L. F. Veiros, Ö. Öztopcu, M. Puchberger, K. Mereiter, K. Matsubara and K. A. Kirchner, *Organometallics*, 2011, **30**, 5928-5942; (c) C. Holzhacker, C. M. Standfest-Hauser, M. Puchberger, K. Mereiter, L. F. Veiros, M. J. Calhorda, M. D. Carvalho, L. P. Ferreira, M. Godinho, F. Hartl and K. Kirchner, *Organometallics*, 2011, **30**, 6587-6601; (d) C.-W. Yeh, K.-H.

Chang, C.-Y. Hu, W. Hsu and J.-D. Chen, *Polyhedron*, 2012, **31**, 657-664.

- 34 (a) T. S. Lobana, M. K. Sandhu, M. J. Liddell and E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., 1990, 691-694; (b) O. Crespo, M. C. Gimeno, P. G. Jones and A. Laguna, Inorg. Chem., 1994, 33, 6128-6131; (c) G. J. Depree, N. D. Childerhouse and B. K. Nicholson, J. Organomet. Chem., 1997, 533, 143-151; (d) A. Karaçar, M. Freytag, H. Thönnessen, J. Omelanczuk, P. G. Jones, R. Bartsch and R. Schmutzler, Z. Anorg. Allg. Chem., 2000, 626, 2361-2372; (e) K. Saikia, B. Deb, B. J. Borah, P. P. Sarmah and D. K. Dutta, J. Organomet. Chem., 2012, 696, 4293-4297.
- 35 (a) T. S. Lobana, R. A. Castineiras and P. Turner, *Inorg. Chem.* 2003, 42, 4731-4737; (b) K. J. Kilpin, W. Henderson and B. K. Nicholson *Dalton Trans.*, 2010, 39, 1855-1864; (c) G. S. Ananthnaga, N. Edukondalua, J. T. Mague and M. S. Balakrishna, *Polyhedron*, 2013, 62, 203-207.
- 36 T. S. Lobana, R. Verma, A. Singh, M. Shikha and A. Castineiras, *Polyhedron* 2002, **21**, 205-209.
- 37 M. Hatano, E. Takagi and K. Ishihara, Org. Lett., 2007, 9, 4527-4530.
- 38 R. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc., 2010, 132, 5522-5531.
- (a) M. Hatano, T. Miyamoto and K. Ishihara, Synlett, 2006, 1762-1764;
 (b) M. Hatano, T. Miyamoto and K. Ishihara, Org. Lett., 2007, 9, 4535-4538;
 (c) M. Hatano and K. Ishihara, Chem. Rec., 2008, 8, 143-155;
 (d) M. Hatano, T. Mizuno and K. Ishihara, Synlett, 2010, 2024-2028;
 (e) M. Hatano, T. Mizuno and K. Ishihara, Chem. Commun., 2010, 46, 5443-5445;
 (f) M. Hatano, R. Gouzu, T. Mizuno, H. Abe, T. Yamada and K. Ishihara, Catal. Sci. Technol., 2011, 1, 1149-1158;
 (g) H. Huang, H. Zong, G. Bian and L. Song, Chirality, 2013, 25, 561-566;
 (i) H. Zong, H. Huang, G. Bian and L. Song, Tetrahedron Lett., 2013, 54, 2722-2725.
- 40 T. R. Hoye, B. M. Eklov, and M. Voloshin, Org. Lett., 2004, 6, 2567–2570.
- 41 It has been reported that benzaldehyde undergo reduction to benzylalcohol upon treatment with Et₂Zn at 0 °C in toluene in the presence of (-)-3-exo-(dimethylamino)isoborneol (equimolecular ratio of reagents). No ethylation was observed. M. Kitamura, S. Suga, K. Kawai and R. Noyori, J. Am. Chem. Soc., 1986, **108**, 6071.
- 42 It has been suggested that reduction of aldehydes and ketones by Et_2Zn takes place through β -hydride elimination from the organozinc reagent with release of ethylene. (*a*) G. E. Coates and D. Ridley, *J. Chem. Soc. A*, 1966, 1064–1069; (*b*) G. Arnott and R. Hunter, *Tetrahedron*, 2006, **62**, 992–1000.
- 43 Strong magnetic susceptibility χ effects were observed. The residual signal of CHCl₃ (of the CDCl₃ capillary) appears at δ 6.7 ppm. The signal of the methylene protons at δ 1.3 ppm was used as reference. This value was obtained from the ¹H NMR spectrum of a sample of the same solvent (hexanes) dissolved in CDCl₃ See I. C. Jones, G. J. Sharman and J. Pidgeon, *Magn. Reson. Chem.*, 2005, **43**, 497. The reference used represents a correction of +0.54 ppm due to differences of χ . This correction was applied to the ³¹P NMR spectrum.
- 44 R.W.W. Hooft, COLLECT, Nonius Software, The Netherlands, 1998.
- 45 A. J. M. Duisenberg, J. Appl. Crystallogr., 1992, 25, 92-96.
- 46 G. M. Sheldrick, *SADABS*, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.
- 47 Agilent Technologies; CrysAlisPro Software System, version 1.171.35.21, Xcalibur CCD System; Agilent Technologies UK Ltd.: Oxford, UK, 2011.
- 48 Siemens Analytical X-ray Instruments Inc. SAINT: Area-Detector Integration Software. Siemens Industrial Automation, Inc.: Madison, WI, 1995.
- 49 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 50 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.
- 51 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

- 52 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 53 Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1. (1 ed.)
- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, 54 G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Synthetic, structural, NMR and catalytic study of phosphinic amide-phosphoryl chalcogenides (chalcogen = O, S, Se) as mixed-donor bidentate ligands in zinc chemistry

Miguel A. del Águila-Sánchez,^a Neidemar M. Santos-Bastos,^b Maria C. Ramalho-Freitas,^c Jesús García López,^a Marcos Costa de Souza,^b Jackson A. L. Camargos-Resende,^c María Casimiro,^a Gilberto Alves-Romeiro,^b María José Iglesias^a and Fernando López Ortiz^{*a}

^aÁrea de Química Orgánica, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain. E-mail: <u>flortiz@ual.es</u> ^b Departamento de Química Orgânica, Universidade Federal Fluminense, Instituto de Química, Rio de Janeiro, Brazil. ^cDepartamento de Química Inorgânica, Universidade Federal Fluminense, Instituto de Química, Rio de Janeiro, Brazil.

Submitted for publication in Dalton Transactions as an article.

Graphical Content Entry

The synthesis and structural characterisation of hemilabile chalcogenophosphoryl/phosphinic amide bidentate ligands, their ZnCl₂ complexes and their catalytic activity in the ethylation of aldehydes with Et₂Zn are reported.

