Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of $Sc_3(\mu_3-C_2)(\mu_3-CN)@I_h-C_{80}$

Taishan Wang,^a* Jingyi Wu,^b* Yongqiang Feng,^a

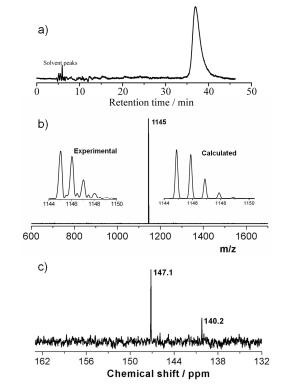
Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X

s First published on the web Xth XXXXXXXX 200X

DOI: 10.1039/b000000x

A new Sc₃(C₂)(CN)@ I_h -C₈₀ metallofullerene encaging a scandium carbide/cyanide alloyed cluster was prepared and investigated. Sc₃(C₂)(CN)@ I_h -C₈₀ was synthesized by arc-discharging method and isolated by HPLC. Its experimental ¹³C NMR spectrum with two signals clearly confirms an icosahedral C₈₀ cage, and theoretically calculated ¹³C NMR peaks agree well with experimental results. Further theoretical ¹⁰ calculations disclosed that the endohedral μ_3 -C₂ and μ_3 -CN moieties are respectively situated on each side of triangular shape of Sc₃ unit to form a scandium carbide/cyanide alloyed cluster. Kohn-Sham molecular orbitals reveals its electronic structure of (Sc³⁺)₃(C₂)²⁻(CN)⁻@C₈₀⁶⁻, in which

a scandium carolide/cyanide alloyed cluster. Konn-Snam molecular orbitals reveals its electronic structure of (Sc⁻)₃(C₂)⁻ (CN) ($@C_{80}^{\circ}$, in which two anions, μ_3 -C₂²⁻ and μ_3 -(CN)⁻, construct and stabilize this special molecule together. The FTIR and Raman spectra of Sc₃(C₂)(CN)($@I_h$ -C₈₀ were analyzed by comparison of experimental and calculated results to further confirm its structure and to uncover cluster-based vibrational modes.

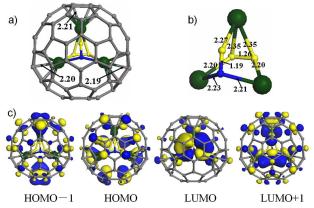

15 Introduction

Metallofullerenes have attracted broaden interests due to their nesting structures and unique properties.¹⁻⁶ The endohedral metal species include Ca, Sc, Ti, Y, La, Gd, Ho, Er, and many other lanthanide elements, which exhibit lots of ²⁰ chemical/physical/biomedical properties, such as paramagnetism, organic semiconductors, cancer drugs, etc.⁷⁻¹⁴ In the course of development for metallofullerenes, the introduction of non-metal moieties, i.e., N, C₂, O, S, CN, to endohedral clusters dramatically enhance the yield of metallofullerenes and ²⁵ enormously expand their structures. The extensive endohedrals

- contain metal nitride (M₃N), metal carbide (M₂C₂, M₃C₂, M₄C₂), metal oxide (M₄O₂, M₄O₃, M₂O), metal sulfide (M₂S), and metal cyanide (M₃CN, MCN).¹⁵⁻²⁴ Among these endohedral clusters, the non-metal moieties of N, O, S, all have fixed valence states,
- ³⁰ there are N³⁻, O²⁻, and S²⁻. However, the C₂ and CN moieties both have variable valance. For example, C₂ moiety exhibits divalent C₂²⁻ in Sc₂C₂@C₈₄, trivalent C₂³⁻ in Sc₃C₂@I_h-C₈₀, and even hexavalent C₂⁶⁻ in Sc₄C₂@I_h-C₈₀. ¹⁶⁻¹⁸ Whereas the CN moiety are determined to show trivalent (CN)³⁻ in Sc₃CN@I_h-C₈₀,
- ³⁵ monovalent (CN)⁻ in YCN@C₈₂.²³⁻²⁵ Such varied valence states bring about many novel clusterfullerenes entrapping multicomponent, various chemical bonds, and complex structures. Herein, we report the synthesis, isolation, and characterization of Sc₃(C₂)(CN)@*I_h*-C₈₀ that has a scandium carbide/cyanide alloyed
- ⁴⁰ cluster by means of ¹³C NMR spectroscopy, DFT calculations, and IR/Raman spectroscopy. Further theoretical analyses disclosed its valence state of $(Sc^{3+})_3(C_2)^{2-}(CN)^-@(I_h-C_{80})^{6-}$, where the carbide moiety $(C_2)^{2-}$ and cyanide moiety $(CN)^$ together construct this unprecedented metallofullerene.

45 Results and discussion

The target molecule was synthesized by the Krätschmer-Huffman arc-discharging method and isolated by high performance liquid chromatography (HPLC). Briefly, the graphite tubular was first filled with Sc alloy and then evaporated $_{50}$ in the arc-discharging generator under the atmosphere of He/N₂. The soot was Soxhlet-extracted with toluene and mixtures of fullerenes and metallofullerenes were collected. Two columns, known as Buckyprep and Buckyprep-M, were employed to isolate and purify the sample (see ESI).


It should be noted that the retention time of $Sc_3C_{83}N$ is three minutes later that that of reported $Sc_3CN@I_h-C_{80}$ in Buckyprep column, see Fig. S3. The purity of the sample was confirmed by both HPLC analysis and the matrix assisted laser desorption s ionization-time of flight (MALDI-TOF) mass spectrum, see Fig.

1a and 1b. The mass spectrum exhibits a strong molecular ion peak at m/z 1145, accounting for the composition of Sc₃C₈₃N.

The purified $Sc_3C_{83}N$ was first characterized by ${}^{13}C$ NMR spectroscopy. Fig. 1c presents the experimental ${}^{13}C$ NMR spectroscopy. Fig. 1c presents the experimental ${}^{13}C$ NMR spectrum of $Sc_3C_{83}N$ in CS_2 at 293 K. Two signals at 140.1 and 147.5 ppm in a 1: 3 intensity ratio can be clearly observed. This ${}^{13}C$ NMR spectrum is a characteristic pattern of an I_h - C_{80} cage, which has two types of carbon atoms, i.e., the triphenylenic sites (hexagon-hexagon-hexagon junctions, 20 carbons) and 1s corannulenic sites (hexagon-pentagon-hexagon junctions, 60 carbons). 15,17,18,23 Thus, this molecule can be denoted as $Sc_3C_3N@I_h$ - C_{80} , an I_h - C_{80} cage encaging seven-numbered Sc_3C_3N cluster. In addition, this ${}^{13}C$ NMR pattern also suggests a constant rotation of endohedral Sc_3C_3N cluster inside fullerene cage at

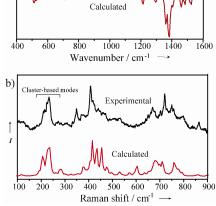
²⁰ room temperature, which is also found in $Sc_3N@I_h-C_{80}$, $Sc_4O_2@I_h-C_{80}$, $Sc_4C_2@I_h-C_{80}$, $Sc_3CN@I_h-C_{80}$, etc. ^{14,17,18,23,26} Moreover, the ⁴⁵Sc NMR spectrum for $Sc_3C_3N@I_h-C_{80}$ exhibits only one signal at 195 ppm under room temperature (see ESI). This result not only discloses a constant rotation of inner cluster,

²⁵ but also reveals a high symmetry for Sc₃C₃N cluster that has three equivalent Sc nuclei.

Fig. 2 a) Optimized structure of $Sc_3(C_2)(CN)@I_h-C_{80}$. The shortest distances of Sc-cage are denoted. b) The geometry of $Sc_3(C_2)(CN)$ cluster in $Sc_3(C_2)(CN)@I_h-C_{80}$. The bond lengths of Sc-C and Sc-N are labeled. c) DFT-calculated isodensity surface plots for the HOMO-1, HOMO, LUMO, and LUMO+1 of $Sc_3(C_2)(CN)@I_h-C_{80}$. Green balls represent the Sc atoms, yellow balls the carbon atoms and blue balls the nitride atoms of the I_h-C_{80} cage are represented by gray balls.

The structure of $Sc_3C_3N@I_h-C_{80}$ was further investigated by means of density functional theoretical calculations. All of the calculations were performed using the DMol³ code with the ⁴⁰ generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE).²⁷⁻²⁹ Double numerical plus polarization (DNP) basis sets without frozen core were employed for all atoms. Among various possible isomers of $Sc_3C_3N@I_h-C_{80}$ we have concerned (see ESI), one isomer with the lowest relative ⁴⁵ energy and reasonable HOMO-LUMO gap (0.95 eV) has been assigned as the ground-state structure, see Fig. 2a. In optimized structure, the C₂ and CN moieties are respectively located on both sides of Sc₃ triangle and coordinated to three Sc atoms. Therefore, the formula of Sc₃(μ_3 -C₂)(μ_3 -CN)@ I_h -C₈₀ can well describe this ⁵⁰ unique molecule instead. As far as we know, it is the first time to demonstrate a scandium carbide/cyanide alloyed endohedral cluster.

The calculated C-C and C-N bond lengths of endohedral C2 and CN moieties are 1.26 and 1.19 Å, respectively. The nearest 55 Sc-C_{cage} distances for three Sc are 2.19, 2.20, and 2.21 Å, indicating covalent bonds between Sc and C_{80} cage and their relatively weak interactions. This is the reason for the constant rotation of endohedral Sc₃C₃N cluster inside C₈₀ cage to make it homogenous. Moreover, the Sc-Ccvanide distance is 2.27 Å, little 60 longer than those of Sc-N_{cvanide} (2.21 and 2.23 Å), as show in Fig. 2b. Interestingly, these bond lengths of Sc-CN are longer than those of Sc₃CN@I_h-C₈₀, in which the Sc-C_{cyanide} and Sc-N_{cyanide} distances are 2.08 and 2.10 Å, respectively.25 In addition, the Sc-C_{carbide} distances are 2.20 and 2.35 Å, which are much longer 65 than Sc-C_{carbide} distances in Sc₄C₂@ I_h -C₈₀ (the nearest Sc-C_{carbide}) is 1.96 Å).²⁶ It can be seen that the bond lengths of $Sc-C_2$ and Sc-CN are relatively longer and are similar to those of Sc-Ccage. These results reveal that, like the flexibility between Sc and C_{80} cage, the Sc atoms and C₂/CN moieties may also have weak 70 interactions.


The electronic structure of $Sc_3(C_2)(CN)@I_h-C_{80}$ was also calculated. Detailed analysis of its Kohn-Sham molecular orbtials reveals that it has a valence state of $(Sc^{3+})_3(C_2)^{2-}(CN)^{-}(C_{80})^{6-}$. The $(C_2)^{2-}$ divalent anion is well known as an important moiety to 75 construct metal carbide clusterfullerenes M2C2@C2n, such as $Sc_2C_2(a)C_{84}$, $Sc_2C_2(a)C_{82}$, $Sc_2C_2(a)C_{80}$, $Gd_2C_2(a)C_{92}$, etc.^{16,31-33} The (CN)⁻ monoanion is found in metal cyanide clusterfullerene $YCN@C_{82}$.²⁰ However, in $Sc_3(C_2)(CN)@I_h-C_{80}$, both of the carbide and cyanide units are exiting to build up a complex 80 molecule for the first time. As shown in Fig. 2c, for $Sc_3(C_2)(CN)@I_h-C_{80}$, the two highest occupied molecular orbitals (HOMO and HOMO-1) are mainly localized on the carbon cage. Its HOMO is a hybrid of the 3d orbitals of Sc³⁺ and orbitals of C_{80}^{6-} cage, which predicates the existence of the $_{85}$ covalent bonds between the Sc³⁺ cations and C₈₀⁶⁻ cage. The lowest unoccupied molecular orbitals (LUMO) are attributed to the covalent dative bondings between the $3d_{\pi}$ atomic orbitals of Sc^{3+} cations and π^* orbitals of C₂/CN moieties.

The ¹³C NMR chemical shielding tensors of $Sc_3(C_2)(CN)@I_h$ - $_{\rm 90}$ C $_{\rm 80}$ were computed with the hybrid density functional theory at B3LYP level using gauge-independent atomic orbital (GIAO) method.34-37 Considering the intramolecular dynamics, $Sc_3(C_2)(CN)@I_h-C_{80}$ would show two ¹³C NMR signals arising from I_h -C₈₀ cage at room temperature. The calculated NMR peaks 95 locate at 138.7 and 148.5 ppm, which agree well with experimental results, i.e. 140.1 and 147.5 ppm. The ¹³C NMR chemical shifts of the inner C2 and CN units were calculated to appear at 223.2 and 174.7 ppm, which were not detected because of the spin-rotation interaction and low signal-to-noise ratio. ¹⁰⁰ Table 1 lists the experimental and calculated ¹³C NMR chemical shifts of several clusterfullerenes with I_h -C₈₀ cage. It can be seen that the ¹³C NMR signals of $Sc_3(C_2)(CN)@I_h-C_{80}$ shift to low field compared to those of Sc₄C₂@I_h-C₈₀ and Sc₃CN@I_h-C₈₀.^{18,23}

This particularity may be caused by the special $Sc_3(C_2)(CN)$ endohedral cluster.

Table 1. Experimental and calculated 13 C NMR chemical shifts of several clusterfullerenes with I_{h} -C₈₀ cage.

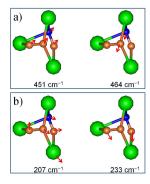

clusterfullerene	Experimental	Calculated
	(ppm)	(ppm)
$Sc_3(C_2)(CN)@I_h-C_{80}$	140.1/147.5	138.7/148.5
$Sc_4C_2@I_h-C_{80}^{14}$	137.8/144.7	137.7/143.7
$Sc_3CN@I_h-C_{80}^{19}$	137.7/144.9	137.3/144.1
a)		

Fig. 3 Experimental and calculated FTIR (a) and Raman (b) spectra of $Sc_3(C_2)(CN)@I_h-C_{80}$. Raman laser wavelength: 633 nm.

Experimental and calculated FTIR spectra of $Sc_3(C_2)(CN)@I_{h}$ -¹⁰ C_{80} are shown in Figure 3a. The tangential cage modes ranging from 1200 cm⁻¹ to 1500 cm⁻¹ for $Sc_3(C_2)(CN)@I_h$ - C_{80} exhibit a high resemblance to those of clusterfullerenes with I_h - C_{80} , such as $Sc_3N@I_h$ - C_{80} , $Sc_3C_2@I_h$ - C_{80} , $Sc_4C_2@I_h$ - C_{80} , and $Sc_3CN@I_h$ - C_{80} (see ESI).^{18,23,38} However, different from the strong vibrations of ¹⁵ asymmetric $v_{as}(Sc$ -N) modes at 594 cm⁻¹ in $Sc_3N@I_h$ - C_{80} , ³⁸ $Sc_3(C_2)(CN)@I_h$ - C_{80} does not present $v_{as}(Sc$ -N) or $v_{as}(Sc$ -C)modes due to low symmetry of its complex cluster. Instead of that, a number of vibrations based on $Sc_3(C_2)(CN)$ cluster emerge at ca. 449 and 467 cm⁻¹ in experiment. DFT-calculations reveal that ²⁰ these signals ranging from 400 to 500 cm⁻¹ can be assigned as C_2

and CN displacements, mostly at 451 and 464 cm^{-1} in theory, see Figure 4a.

Fig. 4 Selected vibrational modes of calculated FTIR (a) and ²⁵ Raman (b) signals with cluster contribution in $Sc_3(C_2)(CN)@I_h-C_{80}$. The numbers below are computed vibrational frequencies.

The Raman spectrum of $Sc_3(C_2)(CN)@I_h-C_{80}$ are shown in Figure 3b. Their C_{80} - I_h cage modes between 1000 cm⁻¹ to 1600 cm⁻¹ show resemblance with those of $Sc_3N@I_h-C_{80}$, $Sc_3C_2@I_h-C_{80}$

- ³⁰ C₈₀, Sc₄C₂@*I_h*-C₈₀, and Sc₃CN@*I_h*-C₈₀ (see ESI).^{18,23,38} In the low-frequency range (100 to 300 cm⁻¹), the experimental and calculated spectra show high similarity of peaks corresponding to the vibrations form endohedral Sc₃(C₂)(CN) cluster. Theoretical results disclose that these modes are mainly attributed to the
- frustrated translations of the cluster (calculated at 202, 207, 222 cm⁻¹), and displacements of C₂ and CN moieties (calculated at 228, 233, 237, 277 cm⁻¹), see Figure 4b. The cage breathing modes mixed with cluster vibrations are found ranging from 350 to 500 cm⁻¹.
- ⁴⁰ The redox properties of Sc₃(C₂)(CN)@ I_h -C₈₀ were investigated by cyclic voltammetry (CV) (see SEI). For Sc₃(C₂)(CN)@ I_h -C₈₀, the first oxidation potential $_{ox}E_1$ was observed at 0.51 V; while two reduction potentials, $_{red}E_1$ and $_{red}E_2$, appear at -0.91 and -1.37 V, respectively. Differently, the Sc₃NC@ I_h -C₈₀ has its $_{ox}E_1$,

$_{45}$ $_{red}E_1$ and $_{red}E_2$ at 0.6 eV, -1.05 and -1.68 V, respectively.²³

Conclusions

In summary, a new metallofullerene $Sc_3(C_2)(CN)@I_h-C_{80}$ encaging a scandium carbide/cyanide alloyed cluster was synthesized and investigated. The experimental ¹³C NMR 50 spectrum with two signals clearly confirms its icosahedral C₈₀ cage. The calculated NMR peaks agree well with experimental results. Further theoretical calculations disclosed that the μ_3 -C₂ and μ_3 -CN moieties are respectively situated on both sides of triangular shape of Sc₃ unit to form a scandium carbide/cyanide 55 alloyed endohedral cluster. The electronic structure of $(\mathrm{Sc}^{3+})_3(\mathrm{C}_2)^{2-}(\mathrm{CN})^- @(I_h - \mathrm{C}_{80})^{6-}$ was also concluded, in which two anions of μ_3 -(C₂)²⁻ and μ_3 -(CN)⁻ play an important role in constructing this special molecule. The FTIR and Raman spectra of Sc₃(C₂)(CN)@I_h-C₈₀ were also analyzed by comparison of 60 experimental and calculated results to further confirm its structure and also to disclose cluster-based vibrational modes. Due to lack of sample, the attempt to culture its single crystal is not successful. However, these present studies on $Sc_3(C_2)(CN)@I_h$ - C_{80} can provide essential inspirations to scientists so as to expand 65 the view of metallofullerene structures and properties.

Acknowledgements

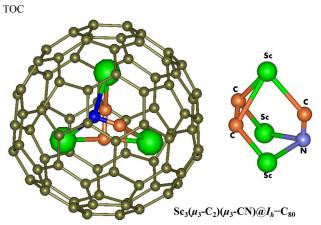
We thank the National Natural Science Foundation (NNSF, 21203205). We also thank Prof. Chunru Wang for his valuable suggestions.

70 Notes and references

^a Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. Tel: 86-10-82624962; E-mail: wangtais@iccas.ac.cn 105

115

125


130

140

^b Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; E-mail: wujy@ihep.ac.cn

- [†] Electronic supplementary information (ESI) available: HPLC data, ⁵ concerned possible isomers of Sc₃C₃N@*I_h*-C₈₀, selected points along the potential energy surface for the rotation of the Sc₃C₃N cluster, cartesian coordinate for ground-state structure of Sc₃(C₂)(CN)@*I_h*-C₈₀. See DOI:10.1039/b000000x/
- 10 1. H. Shinohara, Rep. Prog. Phys., 2000, 63, 843-892.
 - A. Rodriguez-Fortea, A. L. Balch and J. M. Poblet, *Chem. Soc.Rev.*, 2011, 40, 3551-3563.
 - M. Yamada, T. Akasaka and S. Nagase, Acc. Chem. Res., 2010, 43, 92-102.
- 15 4. L. Dunsch and S. Yang, Small, 2007, 3, 1298-1320.
- M. N. Chaur, F. Melin, A. L. Ortiz and L. Echegoyen, *Angew. Chem.-Int. Ed.*, 2009, 48, 7514-7538.
- X. Lu, T. Akasaka and S. Nagase, *Chem. Commun.*, 2011, 47, 5942-5957.
- A. Popov, S. Yang and L. Dunsch, *Chem. Rev.*, 2013, **113** 5989-6113.
 Zhang, S. Stevenson and H. C. Dorn, *Acc. Chem. Res.*, 2013, **46**,
- 1548-1557.
 X. Lu, T. Akasaka and S. Nagase, *Acc. Chem. Res.*, 2012, 46, 1627-
- 1635. 25 10. X. Lu, L. Feng, T. Akasaka and S. Nagase, *Chem. Soc. Rev.*, 2012, **41**,
- 7723-7760. 11. F. Hajjaj, K. Tashiro, H. Nikawa, N. Mizorogi, T. Akasaka, S. Nagase,
- K. Furukawa, T. Kato and T. Aida, J. Am. Chem. Soc., 2011, 133, 9290-9292.
- R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M.
 O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. Van Keuren, B. C. Holloway and M. Drees, *Nat. Mater.*, 2009, 8, 208-212.
- S. Sato, S. Seki, Y. Honsho, L. Wang, H. Nikawa, G. Luo, J. Lu, M. Haranaka, T. Tsuchiya, S. Nagase and T. Akasaka, *J. Am. Chem. Soc.*,
- 2011, 133, 2766-2771.
 14. X. J. Liang, H. Meng, Y. Z. Wang, H. Y. He, J. Meng, J. Lu, P. C. Wang, Y. L. Zhao, X. Y. Gao, B. Y. Sun, C. Y. Chen, G. M. Xing, D. W. Shen, M. M. Gottesman, Y. Wu, J. J. Yin and L. Jia, *Pro. Nat. Aca. Sci.*, 2010, 107, 7449-7454.
- 40 15. S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch and H. C. Dorn, *Nature*, 1999, **401**, 55-57.
- C. R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata and H. Shinohara, *Angew. Chem.-Int. Edi.*, 2001, 40, 397-399.
- Y. Liduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato, M. T. H. Liu, N. Mizorogi, K. Kobayashi and S. Nagase, *J. Am. Chem. Soc.*, 2005, **127**, 12500-12501.
- 50 18. T. S. Wang, N. Chen, J. F. Xiang, B. Li, J. Y. Wu, W. Xu, L. Jiang, K. Tan, C. Y. Shu, X. Lu and C. R. Wang, *J. Am. Chem. Soc.*, 2009, 131, 16646-16647.
- S. Stevenson, M. A. Mackey, M. A. Stuart, J. P. Phillips, M. L. Easterling, C. J. Chancellor, M. M. Olmstead and A. L. Balch, *J. Am. Chem. Soc.*, 2008, **130**, 11844-11845.
- B. Q. Mercado, M. M. Olmstead, C. M. Beavers, M. L. Easterling, S. Stevenson, M. A. Mackey, C. E. Coumbe, J. D. Phillips, J. P. Phillips, J. M. Poblet and A. L. Balch, *Chem. Commun.*, 2010, 46, 279-281.
- B. Q. Mercado, M. A. Stuart, M. A. Mackey, J. E. Pickens, B. S. Confait, S. Stevenson, M. L. Easterling, R. Valencia, A. Rodriguez-Fortea, J. M. Poblet, M. M. Olmstead and A. L. Balch, *J. Am. Chem. Soc.*, 2010, **132**, 12098-12105.
- 22. L. Dunsch, S. F. Yang, L. Zhang, A. Svitova, S. Oswald and A. A. Popov, *J. Am. Chem. Soc.*, 2010, **132**, 5413-5421.
- 65 23. T. S. Wang, L. Feng, J. Y. Wu, W. Xu, J. F. Xiang, K. Tan, Y. H. Ma, J. P. Zheng, L. Jiang, X. Lu, C. Y. Shu and C. R. Wang, *J. Am. Chem. Soc.*, 2010, **132**, 16362-16364.
- S. F. Yang, C. B. Chen, F. P. Liu, Y. P. Xie, F. Y. Li, M. Z. Jiao, M. Suzuki, T. Wei, S. Wang, Z. F. Chen, X. Lu and T. Akasaka, *Sci. Rep.*, 2013, 3, 1487.

- P. Jin, Z. Zhou, C. Hao, Z. X. Gao, K. Tan, X. Lu and Z. F. Chen, *Phys. Chem. Chem. Phys.*, 2010, 12, 12442-12449.
- A. A. Popov, N. Chen, J. R. Pinzon, S. Stevenson, L. A. Echegoyen and L. Dunsch, J. Am. Chem. Soc., 2012, 134, 19607-19618.
- 75 27. B. J. Delley, Chem. Phys., 1990, 92, 508-517.
 - B. J. Delley, *Chem. Phys.*, 2000, **113**, 7756-7764. DMol³ is available as part of Material Studio and Cerius2 by Accelrys Inc.
 - 29. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 80 30. K. Tan, X. Lu and C. R. Wang, J. Phys. Chem. B, 2006, 110, 11098-11102.
 - Y. Iiduka, T. Wakahara, K. Nakajima, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, M. T. H. Liu, N. Mizorogi and S. Nagase, *Angew. Chem.-Int. Ed.*, 2007, 46, 5562-5564.
- 85 32. H. Kurihara, X. Lu, Y. Iiduka, H. Nikawa, N. Mizorogi, Z. Slanina, T. Tsuchiya, S. Nagase and T. Akasaka, J. Am. Chem. Soc., 2012, 134, 3139-3144.
- 33. H. L. Yang, C. X. Liu, Z. Y. Jin, H. X. Che, Y. L. Olmstead, M. M. Balch, A. L., J. Am. Chem. Soc., 2008, 130, 17296-17300.
- 90 34. A. D. Becke, J. Chem. Phys. 1988, 88, 2547-2553.
- 35. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-786.
- 36. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 37. K. Wolinski, J. F. Hilton and P. J. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.
- 95 38. M. Krause and L. Dunsch, Chemphyschem, 2004, 5, 1445-1449.

 $_5$ A new metallofullerene Sc₃(C₂)(CN)@ I_h -C₈₀ encaging a scandium carbide/cyanide alloyed cluster was investigated.