Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Synthesis and physical properties of layered Ba_xCoO₂

Jinfeng Liu^a, Xiangyang Huang^{*b}, Danfeng Yang^a, Guisheng Xu^a and Lidong Chen^b

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

5 Abstract

A layered cobaltite Ba_xCoO_2 (x = 0.19, 0.28, 0.30, 0.33) has been synthesized by an ion exchange technique from the layered Na_xCoO_2 precursors. The phase composition and physical properties were investigated. Ba_xCoO_2 is isomorphic to the precursor Na_xCoO_2 . The magnetic susceptibility of Ba_xCoO_2 decreases with increasing the barium content and shows a Curie-Weiss-like behavior at temperatures above 50 K. The resistivity is sensitive to the barium content. As the barium content increases from 0.19 to 0.33, a crossover from a ¹⁰ semiconducting behavior to a metallic behavior was observed. The Seebeck coefficient of Ba_xCoO_2 is insensitive to the barium content due to the tradeoff effect between the carrier concentration and Co^{4+} content, while the thermal conductivity increases with increasing the

barium content from 0.19 to 0.33 owing to the ordered state of Ba ions between the CoO_2 layers.

1. Introduction

- ¹⁵ Since the Na_{0.50}CoO₂ single crystal was discovered to exhibit a large Seebeck coefficient as well as a low resistivity in 1997¹, misfit cobaltites have been considered to be one of the potential candidates for thermoelectric applications. The crystal structure of those cobaltites, such as Na_xCoO₂¹, [Sr₂O_{2]₉}CoO₂², Ca₃Co₄O₉³,
- ²⁰ Bi₂Sr₂Co₂O₉⁴, contain the hexagonal CdI₂-type CoO₂ layers and the single, double, triple, or quadruple layered blocks, which are alternately stacked along the c axis. It was generally supposed that the CdI₂-type CoO₂ layer along with the natural superlattice structure feature in the layered cobaltites play a very important ²⁵ role in the thermoelectric properties⁵.
- In recent years, some other new layered cobaltites, $Ca_xCoO_2^6$, $Sr_xCoO_2^{7,8}$, and $Ln_xCoO_2(Ln = La, Pr, and Nd)^{9,10}$ synthesized by an ion exchange technique from the Na_xCoO₂ precursor^{11,12} have been reported to exhibit a large Seebeck coefficient, low
- ³⁰ resistivity or low thermal conductivity, which are necessary for a good thermoelectric material with high *ZT* value ($ZT = S^2 \sigma T/\kappa$; where *S*, σ , κ , *T* are the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature, respectively). For Ca_{0.33}CoO₂ crystal, the resistivity and Seebeck
- $_{35}$ coefficient in ab-plane is 0.74 m Ω cm and 81 $\mu V/K$ at 300 K, respectively, and the power factor is about 25% higher than that of the Ca₃Co₄O₉ crystal⁶. For Sr_{0.29}CoO₂ crystal, the resistivity and Seebeck coefficient in ab-plane at 300 K is 2 m Ω cm and 78 $\mu V/K$, respectively⁸, and for Sr_{0.29}CoO₂ polycrystalline, the
- ⁴⁰ resistivity and Seebeck coefficient is 9 m Ω cm and 70 μ V/K at 300 K⁷. However, for $Ln_x \text{CoO}_2$ polycrystalline, although the Seebeck coefficient at room temperature is over 175 μ V/K and the thermal conductivity is as low as 1 W m⁻¹ K⁻¹, the resistivity is about 10⁴ m Ω cm, four order of magnitude higher than that of
- ⁴⁵ alkaline earth cobaltites. More importantly, in the ion exchange reaction of synthesizing $Ca_xCoO_2^{11}$, $Sr_xCoO_2^7$, and $Ln_xCoO_2^{9,10}$, only the Na⁺ ions were substituted by the Ca²⁺, Sr^{2+} or Ln^{3+} ions, while the CdI₂-type CoO₂ layers still maintained the hexagonal CdI₂-type structure, resulting in the exchange products being

- ⁵⁰ isostructural to their precursor Na_xCoO_2 with a layered structure⁶, ^{7, 9}. Those results indicate that the ion exchange reaction can provide an important route to synthesize new layered cobaltites, which may have good thermoelectric properties.
- T. Kajitani *et al.* has ever prepared $Ba_{0.35}CoO_2$ by solid-state reaction using $Na_{0.70}CoO_2$ and $Ba(NO_3)_2^{13}$. The X-ray diffraction results showed that $Ba_{0.35}CoO_2$ was isostructural to the precursor $Na_{0.70}CoO_2$. However, no detailed study on the physical properties of Ba_xCoO_2 has been reported. In this contribution, we report the synthesis of layered Ba_xCoO_2 by another method-ion 60 exchange reaction in flux, and the magnetization and thermoelectric properties.

2. Experimental details

- Polycrystalline samples of Ba_xCoO_2 were synthesized through the for temperature ion exchange technique from Na_xCoO_2 precursors, and the polycrystalline precursors, Na_xCoO_2 , with the nominal composition of x = 0.70, 0.80 and 0.90 were prepared by a conventional solid state reaction. A stoichiometric amount of reagent grade Na_2CO_3 and Co_3O_4 was mixed and calcined at 850 70 °C for 20 h in air, and then reground and calcined at 850 °C for another 20 h. Since sodium tends to evaporate during calcination, the actual content of sodium in Na_xCoO_2 was lower than the
- nominal composition. A lower sodium concentration Na_xCoO_2 sample was prepared by chemically de-intercalating sodium from 75 Na_xCoO_2 (x = 0.7) using bromine as an oxidizing agent, similar to that described in ref. 14. The ion exchange was carried out by
- reacting Na_xCOO_2 with molten $Ba(NO_3)_2$ and KNO_3 at 500 °C for 50 h. The molar ratio of $Ba(NO_3)_2$ to KNO_3 was 1:1. After the reaction, the ion exchange products were collected, washed with ⁸⁰ distilled water and dried at 120 °C in air. Finally, the powder
- so distilled water and dried at 120°C in air. Finally, the powder samples were consolidated by spark plasma sintering (SPS) at 400°C for 5 min under a pressure of 300 MPa.

The crystal structure and chemical composition of the samples were determined by powder x-ray diffraction (XRD) analysis (Cu ss K_{α} , Rigaku, Rint2000) and inductively coupled plasma atomic

emission spectroscopy (ICP-AES) measurement (Agilent, 710), respectively. The low temperature magnetic susceptibility (χ), electrical resistivity (ρ), Seebeck coefficient (*S*), thermal conductivity (κ) and Hall coefficient (R_H) were measured using a ⁵ physical property measurement system (PPMS, Quantum Design).

3. Results and discussion

10	Table I	. ICP-AES	results	of Ba _x CoO ₂ .
----	---------	-----------	---------	---------------------------------------

	Ba _x CoO ₂	Ba : Co : Na (atom ratio)	Ba (mass percent %)	Co (mass percent %)	Na (mass percent %)		
	$Ba_{0.19}CoO_2 \\$	0.19 : 1.00 : 0.0017	24.42	54.11	0.040		
	$Ba_{0.28}CoO_2 \\$	0.28 : 1.00 : 0.0023	30.42	46.49	0.054		
	$Ba_{0.30}CoO_2$	0.30 : 1.00 : 0.0020	32.58	46.53	0.047		
	Ba _{0.33} CoO ₂	0.33 : 1.00 : 0.0019	35.39	46.04	0.043		

Fig. 1. Powder XRD patterns for $Ba_xCoO_2(x = 0.19, 0.28, 0.30, 0.33)$ and one of the precursor $Na_{0.70}CoO_2$.

- ¹⁵ The actual Ba contents in Ba_xCoO_2 were determined by ICP-AES, and listed in Table I. Only trace amount of sodium was detected in the ion exchange products and can be neglected. The samples Ba_xCoO_2 (x = 0.28, 0.30, 0.33) were the ion exchange ²⁰ resultants of γ -Na_yCoO₂ (y = 0.7, 0.8, 0.9, nominal composition), respectively. The precursor of $Ba_{0.19}CoO_2$ was prepared by chemically de-intercalating sodium from Na_{0.7}CoO₂ using bromine as an oxidizing agent. The XRD patterns of one of the
- precursor γ -Na_{0.70}CoO₂ and the ion exchange products Ba_xCoO₂ 25 (x = 0.19, 0.28, 0.30, 0.33) are shown in Fig. 1. A strong correlation exists between the structure of γ -Na_{0.70}CoO₂ and Ba_xCoO₂, which was expected from the topotactic nature of the ion exchange reactions¹¹. The patterns could be indexed on a hexagonal unit cell with the space group of *P*6₃/mmc, which
- agrees with the previous structural analysis of the ion exchange resultants $Ca_x CoO_2^{12}$, $Sr_x CoO_2^7$, and $La_x CoO_2^9$. The XRD results indicate that the ion exchange resultants $Ba_x CoO_2$ are isostructural to the precursors γ -Na_xCoO₂. Compared to the peaks of the precursor γ -Na_{0.70}CoO₂, the (hkl) peaks (l \neq 0) of $Ba_x CoO_2$
- ³⁵ shift toward lower 2θ range, while the (hk0) peaks, such as (100) and (110), did not shift much. Since only the larger Ba²⁺ ions substitute the smaller Na⁺ ions in the single block layer between the CoO₂ layers and the CoO₂ layers still maintain the hexagonal CdI₂-type structure. As a result, the lattice parameter *c* would
- ⁴⁰ become larger as indicated in the following Figure 2, while the lattice parameters *a* and *b* did not change much (not shown here). For the Ba_{0.19}CoO₂ and Ba_{0.28}CoO₂ samples, some weak diffraction peaks from a tiny trace of Co₃O₄ impurity were observed, marked by triangles in the Fig. 1. In addition, some

⁴⁵ highly asymmetric extra peaks were detected in the 2θ range from 20° to 25°. They show a sharp edge from the low 2θ side and a long tail at the high 2θ , which is similar to the XRD results of $Sr_xCoO_2^7$ and $La_xCoO_2^9$, and caused by the superstructure⁹.

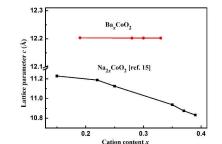


Fig. 2. Variation of the *c*-axis lattice parameter c as a function of cation content x.

Fig. 2 shows the *c*-axis lattice parameters of Ba_xCoO_2 and Na_xCoO₂ as a function of the cation content. The *c*-axis lattice parameters of Na_xCoO₂ were taken from ref. 15. The lattice parameter *c* of Ba_xCoO_2 is almost unchanged with Ba ions content *x*, which is different from the Na_xCoO₂ precursors. This suggests that the stronger electrostatic interaction between the Ba^{2+} ions and O^{2-} ions is enough to overcome the repulsion between the negatively charged layers. A similar relationship between the CoO_2 layer-spacing and the composition in $Ca_xCoO_2^{6}$ and $Sr_xCOO_2^{15}$ was also observed.

65 Table II. Curie-Wiess fitting parameters of Ba_xCoO₂.

samples	$\chi_{\theta}(\times 10^{-3})$ [emu/(molOe)]	C (×10 ⁻³) [emu K/(molOe)]	<i>Ө</i> (К)	M _{eff} μ _B /Co
Ba _{0.19} CoO2	0.20	482.04	-68.44	1.96
Ba _{0.28} CoO2	0.10	425.31	-93.89	1.84
Ba _{0.30} CoO2	0.14	301.1	-102.93	1.55
Ba _{0.33} CoO2	0.12	266.61	-115.24	1.46

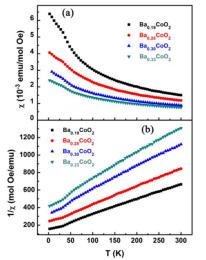
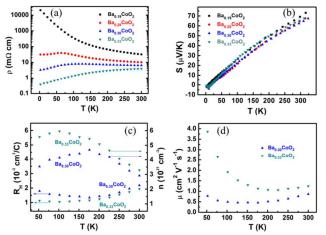



Fig. 3. Temperature dependence of the magnetic susceptibility χ and inverse susceptibility $1/\chi$ for Ba_xCoO_2 in a field of 5 T.

⁷⁰ Fig. 3 is the temperature dependences of χ and inverse χ for the Ba_xCoO₂ samples, measured in a field of 5 T. The χ value of the four samples increased with decreasing temperature and showed a Curie-Weiss-like behavior at temperatures above 50 K, while a

deviation was noticed at temperatures below 50 K, indicating an increase of the magnetic interaction. The χ value for Ba_xCoO₂ decreased with increasing the Ba content, implying a decrease of the magnetic moments. Above 50 K, the χ value can be analyzed

- s by the Curie-Weiss law with the formula $\chi = C/(T-\Theta) + \chi_0$, where *C*, Θ and χ_0 are the Curie constant, Weiss temperature and temperature independent term, respectively. The fitting parameters are shown in Table II. The effective moments M_{eff} of Co ions were determined from the Curie Constant *C*. In Ba_xCoO₂,
- ¹⁰ Co³⁺ and Co⁴⁺ coexist as in Na_xCoO₂¹⁶. The occupancy of Co⁴⁺ increases with decreasing *x* owing to a fraction (1-2*x*) of Co ions being in the Co⁴⁺ state. The Curie-Weiss behavior in χ was considered to be induced by magnetic Co⁴⁺ ions. Consequently, the M_{eff} of Ba_xCoO₂ decrease with increasing *x*, due to the ¹⁵ decreasing concentration of Co⁴⁺ ions. On the other hand, the
- temperature dependence of χ of Ba_xCoO₂ with the cation concentration was found to be different from that of Na_xCoO₂¹⁷, but similar with that of Sr_xCoO₂¹⁵. The χ value of Na_xCoO₂ changes from a Curie-Weiss-like behavior for x > 0.5 to a
- ²⁰ relatively T-dependent Pauli paramagnetic behavior for $x < 0.5^{17}$, while the χ value of Ba_xCoO₂ and Sr_xCoO₂ still shows a Curie-Weiss-like behavior even at the low cation content.

²⁵ **Fig. 4.** Temperature dependence of (a) resistivity ρ , (b) Seebeck coefficient *S*, (c) Hall coefficient *R*_H and carrier concentration *n*, and (d) mobility μ for Ba_xCoO₂ at temperatures below 300 K.

Fig. 4(a) displays the temperature dependence of ρ for Ba_xCoO₂. ³⁰ With increasing *x* from 0.19 to 0.33, the magnitude of ρ decreased dramatically, and the ρ value for Ba_xCoO₂(*x* = 0.19, 0.28, 0.30, 0.33) at 300 K was 32.4 m Ω cm, 10.2 m Ω cm, 6.5 m Ω cm, and 4.0 m Ω cm, respectively, which implies that ρ was very sensitive to the barium content. The ρ of Ba_{0.33}CoO₂ is the lowest

- ³⁵ in the four samples, which is similar to the results of Sr_xCoO₂ reported by Y. G. Guo *et al.*¹⁵. The ρ of Sr_{0.35}CoO₂ is lower than the other five samples, for which the content of strontium is 0.15, 0.22, 0.25, 0.37 and 0.39. A crossover from a semiconducting behavior to a metallic behavior was observed with increasing
- ⁴⁰ barium content from 0.19 to 0.33. $Ba_{0.19}CoO_2$ exhibits a semiconducting behavior, and $Ba_{0.33}CoO_2$ exhibits a metallic behavior in the whole measured temperature range. However, for $Ba_{0.28}CoO_2$ and $Ba_{0.30}CoO_2$, the resistivity is metallic at low temperatures, but exhibits a semiconducting behavior at high ⁴⁵ temperatures. The difference in ρ of Ba_xCoO_2 should be

attributed to the difference in carrier density n along with carrier mobility μ .

As discussed later in Seebeck coefficient part, Ba_xCoO₂ showed the p-type behavior and the carrier was hole. Fig. 4(c) presents the temperature dependence of $R_{\rm H}$ and n ($n = 1/eR_{\rm H}$) for Ba_{0.30}CoO₂ and Ba_{0.33}CoO₂. The *n* for Ba_{0.33}CoO₂ was higher than that for Ba_{0.30}CoO₂, which is owing to the well-defined Baordered state appears at $x \approx 1/3$ as Ca_xCoO₂¹⁸, Sr_xCoO₂^{19, 20}, and La_xCoO₂⁹. The barium ions between the CoO₂ layers deviated the

⁵⁵ ordered state when the concentration of the barium was less than 1/3 or more than 1/3. Due to the reduction of *n*, the average distance between the hole carriers increased, which could lead to the increase in the localization of holes²¹. Consequently, μ ($\mu = R_{\rm H}/\rho$) of the system (shown in Fig. 4(d)) also decreased with ⁶⁰ decreasing barium content, and the difference of μ was enlarged with decreasing temperature. Furthermore, in such a strongly correlated system, the increase of the average distance between the carriers would enhance electronic correlations and cause the decrease of the bandwidth^{15, 21}. Accordingly, as the bandwidth ⁶⁵ narrows, the system will change from a metallic behavior to a semiconducting behavior.

The *n* of the two samples increased with decreasing temperature first, which is commonly seen in the layered cobalt oxides^{8, 22}. And then, a drop is observed about 175 K and 100 K for 70 Ba_{0.30}CoO₂ and Ba_{0.33}CoO₂, respectively. We assume that this is related to the coexistence of two Fermi surfaces of different natures, which is similar to its precursor Na_xCoO₂ and predicted by the calculation of the band structure of Na_{0.5}CoO₂²³. One is the narrow **a**_{1g} band providing localized carriers, and the other is the 75 wide **a**_{1g}+**e**_g band providing itinerant carriers. As the temperature decreasing, the Fermi surface for the lower mobility carriers vanishes upon a carrier localization effect, so the *n* of the two

samples decreased with decreasing temperature at low temperatures. On the other hand, the Fermi surface for the higher mobility carriers still survives. Thus, the ρ still decreased with decreasing temperature, because ρ is inversely proportional to the total scattering time average over the whole Fermi surface^{8, 22}.

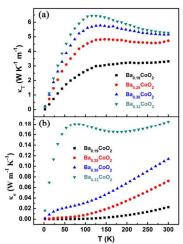
Fig. 4(b) shows the temperature dependence of *S* for Ba_xCoO₂. All the four samples present similar *S* behavior. As the barium ⁸⁵ content increases, the *S* for Ba_xCoO₂(x = 0.19, 0.28, 0.30, 0.33) at 300 K is 70 μ V/K, 65 μ V/K, 64 μ V/K, and 65 μ V/K, respectively. Namely, *S* was insensitive to the barium content. In Ba_xCoO₂, not only the carrier density but also the concentration of the Co⁴⁺ ions is very important for *S*. In general, *S* can be ⁹⁰ expressed using the Mott formula (originating from the Sommerfield expansion)²⁴.

$$S = \frac{\pi^2 \kappa_B^2 T}{3e} \left[\frac{\partial \ln \sigma(\varepsilon)}{\partial \varepsilon} \right]_{\varepsilon = \varepsilon_F}$$
(1)

By substituting $\sigma = en\mu(\varepsilon)$ in formula (1), we can obtain

$$S = \frac{C_e}{n} + \frac{\pi^2 \kappa_B^2 T}{3e} \left[\frac{\partial \ln \mu(\varepsilon)}{\partial \varepsilon} \right]_{\varepsilon = \varepsilon_F}$$
(2)

⁹⁵ Where C_e , n, $\mu(e)$, and κ_B are the specific heat, carrier concentration, energy correlated carrier mobility, and Boltzmann constant, respectively. The first term of Eq. (2) is dominant, so the change in *S* can usually be explained by the alteration of carrier concentration *n*. Therefore, according to Eq. (2), the *S* of


 Ba_xCoO_2 increases with decreasing *n*, which decreases with decreasing barium content. However, for the layered cobaltites, the *S* value can also be expressed by the following formula:²⁵

$$S = -\frac{\kappa_B}{e} ln \left(\frac{g_3}{g_4} \frac{x}{1-x}\right) \tag{3}$$

15

⁵ where κ_B , g_3 , g_4 and x are the Boltzmann constant, numbers of the spin configuration of Co³⁺ and Co⁴⁺ and concentration of Co⁴⁺ ions, respectively. In Ca_xCoO₂ and Sr_xCoO₂, the Co³⁺ and Co⁴⁺ are in low-spin state^{6, 8, 25}, so the Co³⁺ and Co⁴⁺ in Ba_xCoO₂ may also be in low-spin state. Therefore, $g_3/g_4 = 1/6$, and according to Eq.

¹⁰ (3), the *S* value of Ba_xCoO_2 decreases with increasing the concentration of Co^{4+} ions, which increases with decreasing barium content. As a result, the *S* value of Ba_xCoO_2 was the tradeoff results of these two factors and therefore not sensitive to the barium content.

Fig. 5. Temperature dependence of the total thermal conductivity κ_T and carrier thermal conductivity κ_e for Ba_xCoO₂ at temperatures below 300 K.

- The total thermal conductivity of a solid can be written as $\kappa_T = \kappa_L + \kappa_e$, where κ_T , κ_L and κ_e are the total, lattice and carrier thermal conductivities, respectively. The value of κ_e can be estimated from Wiedemann-Franz law, $\kappa_e = LT/\rho$, where *L* is the Lorentz ²⁵ number (2.45 × 10⁻⁸ V² K⁻² for free electrons). Fig. 5(a) and (b)
- ²⁵ number (2.45 × 10 V K for free electrons). Fig. 5(a) and (b) present the temperature dependence of κ_T and κ_e for Ba_xCoO₂, respectively. The κ_e value was much lower than the κ_T value, indicating that κ_T was dominated by the lattice component in the Ba_xCoO₂ samples. κ_T increased with the increase of barium
- ³⁰ content from 0.19 to 0.33. We speculate this is also related to the ordered state of barium between the CoO_2 layers. As indicated before, for the $Ba_{0.33}CoO_2$ sample, the barium ions in the CoO_2 layers were in the ordered state, and could not strongly scatter the phonon, while for the other three samples, the barium ions
- ³⁵ deviated the ordered state more or less, and the lower the barium content was, the stronger the barium ions scattered the phonon, and thus the lower the κ_T value was.

4. Conclusions

⁴⁰ In summary, polycrystalline samples of Ba_xCoO₂ (x = 0.19, 0.28, 0.30, 0.33) have been successfully fabricated by an ion exchange technique. The Ba_xCoO₂ compounds are isostructural to γ -Na_xCoO₂ with a layered hexagonal structure. The magnetic

susceptibility of all the four samples shows a Curie-Weiss-like 45 behavior at temperatures above 50 K, and the effective magnetic moments decrease with increasing barium content. Different resistivity behavior was observed for Ba_xCoO_2 with varying *x*, and the resistivity undergoes a semiconducting to a metallic crossover with increasing barium content from 0.19 to 0.33 due to 50 the change of the bandwidth. Since the effects of carrier concentration and Co^{4+} concentration cancelled out, the Seebeck coefficient of Ba_xCoO_2 is insensitive to the barium content. Owing to the ordered state of barium between the CoO_2 layers, the thermal conductivity increases with increasing the barium 55 content from 0.19 to 0.33.

 ^a Key Laboratory of Transparent Opto-Functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China. Fax: +86 21
52927184; Tel: +86 21 69987754

^b CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China. Fax: +86 21 69987781; Tel: +86 21 69987721

Reference

65

105

- I. Terasaki, Y. Sasago and K. Uchinokura, *Phys. Rev. B*, 1997, 56, 12685.
- 2 H. Yamauchi, K. Sakai, T. Nagai, Y. Matsui and M. Karppinen, *Chem. Mater.*, 2006, **18**, 155.
- 3 A. C. Masset, C. Michel, A. Maignan, H. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek, *Phys. Rev. B*, 2000, 62, 166.
- 4 R. Funahashi and I. Matsubara, Appl. Phys. Lett., 2001, 79, 362.
- 5 I. Terasaki, M. Iwakawa, T. Nakano, A. Tsukuda and W. Kobayashi, *Dalton Trans.*, 2010, **39**, 1005.
- 6 J. F. Liu, X. Y. Huang, F. Li, R. H. Liu and L. D. Chen, J. Phys. Soc. Jpn., 2011, 80, 074802.
- 7 R. Ishikawa, Y. Ono, Y. Miyazaki and T. Kajitani, Jpn. J. Appl. Phys., 2002, 41, 337.
- 80 8 J. F. Liu, X. Y. Huang, G. S. Xu and L. D. Chen, J. Alloys Comp., 2013, 576, 247.
 - 9 K. Knížek, J. Hejtmánek, M. Maryško, E. Šantavá, Z. Jirák, J. Buršík, K. Kirakci and P. Beran, J. Solid State Chem., 2011, 184, 2231.
- 10 K. Knížek, Z. Jirák, J. Hejtmánek, M. Maryško and J. Buršík, *J. Appl. Phys.*, 2012, **111**, 07D707.
- 11 B. L. Cushing, A. U. Falster, W. B. Simmons and J. B. Wiley, *Chem. Commun.*, 1996, 23, 2635.
- 12 B. L. Cushing and J. B. Wiley, J. Solid State Chem., 1998, 141, 385.
- 13 T. Kajitani, Y. Ono, Y. Miyazaki and Y. Morii, 21st International Conference on Thermoelectrics, 2002, 195.
- 14 R. E. Schaak, T. Klimczuk, M. L. Foo and R. J. Cava, *Nature*, 2003, 424, 527.
- 15 Y. G. Guo, J. L. Luo, G. T. Liu, H. Y. Yang, J. Q. Li, N. L. Wang and D. Jin, *Phys. Rev. B*, 2006, **74**, 155129.
- 95 16 D. Wu, J. L. Luo and N. L. Wang, Phys. Rev. B, 2006, 73, 014523.
- 17 M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava and N. P. Ong, *Phys. Rev. Lett.*, 2004, **92**, 247001.
- 18 H. Y. Yang, Y. G. Shi, X. Liu, R. J. Xiao, H. F. Tian and J. Q. Li, *Phys. Rev. B*, 2006, **73**, 014109.
- 100 19 H. Y. Yang, Y. G. Shi, Y. G. Guo, X. Liu, R. J. Xiao, J. L. Luo and J. Q. Li, *Mater. Res. Bull.*, 2007, **42**, 94.
 - 20 L. D. Yao, Y. G. Guo, J. L. Luo, W. Zhang, F. Y. Li, C. Q. Jin and R. C. Yu, *Phys. Rev. B*, 2007, **75**, 174118.
 - 21 Y. Wang, Y. Shi, J. G. Cheng, X. J. Wang, W. H. Su, X. Y. Liu and H. J. Fan, J. Phys. Chem. C, 2010, 114, 5174.
 - 22 M. Mikami, M. Yoshimura, Y. Mori, T. Sasaki, R. Funahashi, and M. Shikano, *Jpn. J. Appl. Phys.*2003, **42**, 7383.
 - 23 D. J. Singh, Phys. Rev. B 2000, 61, 13397.
- 24 B. Fisher, L. Patlagan, G. M. Reisner and A. Knizhnik, *Phys. Rev. B*, 2000, **61**, 470.

25 W. Koshibae, K. Tsutsui and S. Maekawa, Phys. Rev. B, 2000, 62, 6869.