Dalton Transactions

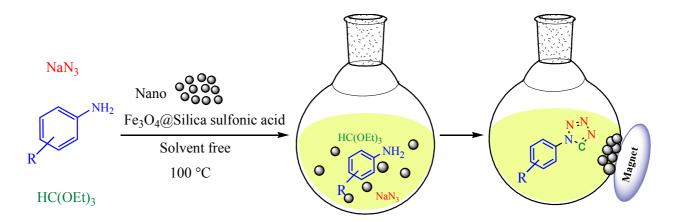
Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.


www.rsc.org/dalton

Graphical abstract:

Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1*H*-tetrazoles under solvent-free conditions

Hossein Naeimi, Samaneh Mohamadabadi

Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, I.R. Iran. E-mail: <u>naeimi@kashanu.ac.ir</u>; Tel. No.: +98-361-5912388; Fax No.: +98-361-5912397

Dalton Transactions

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth Accepted ooth

DOI: 10.1039/x0xx00000x

www.rsc.org/

Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1*H*-tetrazoles under solvent-free conditions

Hossein Naeimi*, Samaneh Mohamadabadi

Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, I.R., Iran. E-mail: <u>naeimi@kashanu.ac.ir</u>; Tel: +98-361-5912388; Fax: +98-361-5912397.

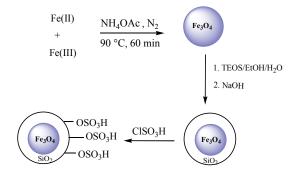
Regarding the green chemistry goals, silica-coated magnetite nanoparticles (MNPs) open up new avenue to introduce an amazing and efficient system for facilitating catalyst recovery in different organic reactions. Therefore, in this paper the preparation of sulfonic acid functionalized silica-coated magnetic nanoparticles with core-shell structure (Fe₃O₄@silica sulfonic acid) are presented by using Fe₃O₄ spheres as the core and silica sulfonic acid nanoparticles as the shell. The catalyst was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), dynamic light scattering (DLS), Thermo gravimetric analysis (TGA) and vibrating sample magnetometer (VSM). Nano catalyst can be recovered by an external magnet and reused for subsequent reactions for 6 times without noticeable deterioration in catalytic activity.

Introduction

Magnetic iron oxide nanoparticles (NPs) have attracted much research interest over the recent years because of their unique physicochemical properties and great potential for various biomedical applications. In several pioneering works magnetic NPs were claimed as an effective tool for magnetically assisted biomolecule separation¹, biochemical sensing², NMR imaging^{3,4}, targeted drug delivery^{5,6} and cancer treatment through hyperthermia^{7,8}. The requirements for any biomedical application of magnetic nanoparticles include the chemical stability, biocompatibility, strong magnetization and low coercivity of the dispersed magnetic NPs.

Tetrazoles have a wide range of applications⁹. For example, this functional group has roles in material science including explosives and rocket propellants^{10,11}. In addition, they can also function as ligands in coordination chemistry¹² and information recording systems¹³.

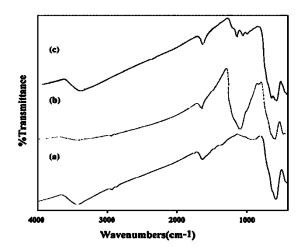
Tetrazole can be prepared in several methods include acid-catalyzed cycloaddition between hydrazoic acid and isocyanides¹⁴, acidcatalyzed cycloaddition between isocyanides and trimethyl azide¹⁵, cyclization between primary amines, or their salts, with an orthocarboxylic acid ester in acetic acid or trifluoroacetic acid and sodium azide¹⁶, and cyclizations from an amine, triethyl orthoformate, using AcOH, PCl₅, In(OTf)₃, Yb(OTf)₃, SSA, [HBIm]BF₄, natrolite zeolite, chitosan supported magnetic ionic liquid (CSMIL) and Fe₃O₄@SiO₂/Salen complex of Cu(II) as a catalyst¹⁷⁻²⁵. In this work, the silica-coated magnetite nanoparticles are synthesized through two steps. The magnetite nanoparticles are firstly prepared by co-precipitation method. Then the magnetite nano particles are used to synthesize the $Fe_3O_4@SiO_2$ composite nanoparticles through the modified Stöber method²⁶. Ability of this nano-magnetic solid acid catalyst in the one-pot three components reaction between triethyl orthoformate, an amine and sodium azide is also described. Utilization of easy reaction conditions, catalyst with high catalytic activity, good reusability, and simple magnetically work-up, makes this methodology as an interesting option for the economic synthesis of 1-substituted 1*H*-tetrazoles under solvent-free conditions.


Results and discussion

Preparation and characterization of the catalyst

 Fe_3O_4 @silica sulfonic acid core-shell composite, that Fe_3O_4 spheres as the core and silica sulfuric acid nanoparticles as the shell, was prepared by a simple, low cost and convenient method. Magnetite nanoparticles were synthesized by the co-precipitation route. To improve the chemical stability of magnetite nanoparticles, their surface engineering was successfully performed by the suitable deposition of silica onto nanoparticles surface by the ammoniacatalyzed hydrolysis of tetraethylorthosilicate (TEOS). Next, The SiO₂ spheres served as support for the immobilization of SO₃H groups by simple mixing of core-shell composite and chlorosulfonic acid in CH₂Cl₂ (Scheme 1).

RSC Adv., 2014, 00, 1-7 | 1


Page 2 of 9

Scheme 1 Preparation steps for fabricating sulfonic acidfunctionalized magnetic Fe₃O₄ nanoparticles.

Fe₃O₄@silica sulfonic acid nanocomposite was characterized by FT-IR, XRD, TGA, SEM, DLS and VSM.

Figure 1 shows the FT-IR spectra of pure Fe₃O₄, Fe₃O₄@SiO₂ core/shell, and Fe₃O₄@silica sulfonic acid nanoparticles. The absorption peak at approximately 570 cm⁻¹ corresponding to the stretching vibration of the Fe–O bond and the adsorption of the silica-coated on the magnetite surface was indicated by band near 1100 cm⁻¹ assigned to the Si–O stretching vibration. Also, successful sulfonic acid functionalization of the silica layer on Fe₃O₄ surface was evidenced by the absorption bands at 1040 and 1130 cm⁻¹ are related to the stretching of the S–O bonds. A peak appeared at about 3400 cm⁻¹ due to the stretching of OH groups in the SO₃H (Fig. 1c). These FT-IR spectra provided the formation of a silica shell onto the surface of Fe₃O₄ and the acid functionalization of the silica shell.

2 | *RSC Adv.*, 2014, **00**, 1-7

Figure 1 comparative FT-IR spectra for (a) Fe_3O_4 (b) Fe_3O_4 @SiO₂ (c) Fe_3O_4 @silica sulfonic acid.

Figure 2 shows the X-ray diffraction patterns of magnetic nanoparticles. The observed diffraction peaks appeared at $2\theta = 30.3^{\circ}$, 35.6° , 43.3° , 53.8° , 57.4° and 62.9° corresponding to the diffractions of (220), (311), (400), (422), (511) and (440) are indexed to the crystalline cubic inverse spinel structure of Fe₃O₄ nanoparticles. The sizes of the nanoparticles were evaluated from the XRD data using the Debye-Scherrer equation, which gives a relationship between particle size and peak broadening by the following equation:

$$d = k\lambda / (\beta \cos\theta)$$

where *d* is the particle size of the crystal, *k* is Sherrer constant (0.94), λ is the X-ray wavelength (0.15406 nm), β is the line broadening in radian obtained from the full width at half maximum (FWHM), and θ is the Bragg diffraction angle of the XRD diffraction patterns. The average MNPs core diameter was calculated to be 21 nm from the XRD results by above equation.

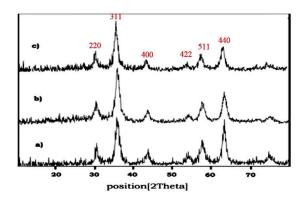


Figure 2 XRD patterns of (a) Fe_3O_4 (b) Fe_3O_4 @SiO₂ (c) Fe_3O_4 @silica sulfonic acid.

TGA was used to study the thermal stability of the acid catalyst (Fig. 3). It is clear that, for the Fe₃O₄@silica sulfonic acid MNPs, there are three steps of weight loss in the following temperature ranges, namely; (1) below 150 °C, displayed a mass loss that was attributable to the loss of adsorbed solvent or trapped water from the catalyst. (2) Around 150-500 °C, the large weight reduction occurred in this region, which can be mainly resulted from the decomposition of SO₃H groups (Fig. 3b). (3) Above 500 °C, the occurrence of further mass losses at higher temperature was resulted from the decomposition of silica shell 27 .

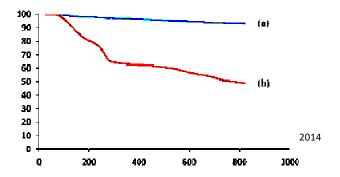


Figure 3 TGA curve of (a) $Fe_3O_4@SiO_2$ (b) $Fe_3O_4@silica$ sulfonic acid

The morphology and structure of prepared samples were characterized by scanning electron microscopy (SEM). Fig. 4a shows that the Fe₃O₄ nanoparticles are spherical in shape with an average size of 20 ± 2 nm, (b) shows that most of Fe₃O₄@SiO₂ nanoparticles are spherical with larger particle size and smoother surface. The SEM image shown in Fig. 4c demonstrates that Fe₃O₄@silica sulfonic acid nanoparticles are approximately spherical.

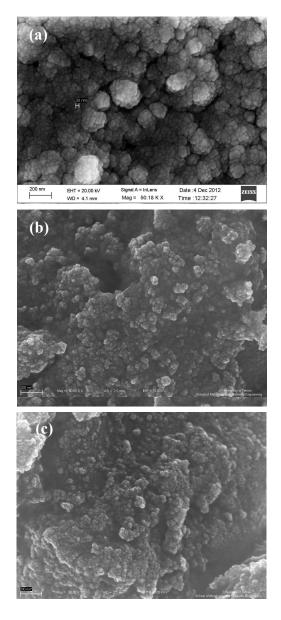


Figure 4 SEM image of (a) Fe_3O_4 (b) Fe_3O_4 @SiO₂ (c) Fe_3O_4 @silica sulfonic acid

The dynamic light scattering (DLS) measurement of Fe_3O_4 @silica sulfonic acid nanoparticles is shown in Fig. 5. In order to determine the fraction of the particle population that aggregates, comparisons between the intensity averaged DLS data and number averaged DLS data were made. From this slurry, an aqueous stock dispersion (100 ml acetone at 5 g Fe_3O_4 @silica sulfonic acid) was prepared using an ultrasonic bath for 30 min.

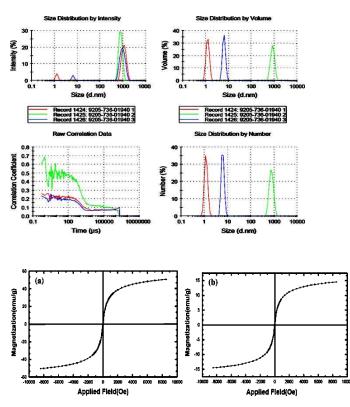


Figure 5 DLS of Fe₃O₄@silica sulfonic acid

The magnetic property of the catalyst was studied by vibrating sample magnetometer (VSM). On the basis of Fig. 6, the saturation magnetization value was measured to be 50.86 emu/g for Fe₃O₄@SiO₂ and 14 emu/g for Fe₃O₄@silica sulfonic acid. The results are shown that the surface modification reaction has little impact on the magnetism of nano-adsorbent before and after modification and also the saturation magnetization of sulfonic acid-functionalized silica-coated magnetic nanoparticles is lower than that of Fe₃O₄@SiO₂ nanoparticles. Furthermore, the number of H⁺ sites (0.33 mmol/g) for Fe₃O₄@silica sulfonic acid was quantitatively determined by acid-base titration ²⁷.

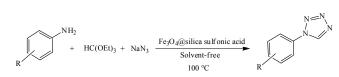
Figure 6 Magnetization curves for the prepared (a) $Fe_3O_4@SiO_2$ and (b) $Fe_3O_4@silica$ sulfonic acid

Optimization of the reaction conditions

For further studies regarding the effect of catalyst amount on formation of 1-substituted 1*H*-tetrazoles, we found that the yields were obviously affected by the amount of catalyst. It was found that 0.02 g Fe₃O₄@silica sulfonic acid was sufficient to catalyze the reaction of 4-chloro aniline, triethyl orthoformate and sodium azide at 100 °C (Table 1, entry 4). The usage of higher amounts of catalyst did not increase the yields significantly, while decreasing the amount of catalyst reduced the yields (Table 1). Also, when the reaction was attempted without the addition of catalyst, no desired product was obtained (Table 1, entry 1).

Table 1 Effect of catalyst amount on formation of 1-Substituted

 1*H*-tetrazoles.^a

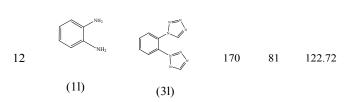

Entry	Cat. amount (g)	Time (min)	Yield ^b (%)
1	No catalyst	300	0
2	0.005	150	65
3	0.01	120	82
4	0.02	80	95
5	0.03	50	80
6	0.05	50	63

^a Reaction conditions: 4-chloro aniline (1 mmol), triethyl orthoformate

(1.2 mmol), and sodium azide (1 mmol).

^b Isolated yield.

After optimization of the reaction conditions, the reaction of triethyl orthoformate and sodium azide with various amines was carried out in according to the general experimental procedure (Scheme 2).



Scheme 2 Synthesis of 1-substituted 1*H*-tetrazoles catalyzed by Fe_3O_4 @silica sulfonic acid.

In all the cases, the corresponding 1-substituted 1*H*-tetrazoles were obtained in high to excellent yields and short reaction times. Therefore, we showed a reaction of several anilines with triethyl orthoformate, and sodium azide in the presence of 0.02 g Fe_3O_4 @silica sulfonic acid, the results are summarized in Table 2. A wide range of anilines containing electron-withdrawing groups and electron-donating groups such as, bromo, chloro, methyl and acetyl underwent condensation in short reaction times with excellent isolated yields. While, *para*-position anilines (Table 2, entries 3 and 4) were given good results in compared to the *ortho*-position anilines (Table 2, entries 6 and 10). There is more steric hindrance for the *ortho*- position anilines (*o*-Cl, -Me) on the product formation than the *para*- position (*p*-Cl, -Me) anilines. All known compounds were characterized by comparing their physical and spectral data with those reported in the literature.

Table 2 Preparation of 1-substituted 1*H*-tetrazoles in the presence of Fe_3O_4 @silica sulfonic acid^a.

Enti	ry Substrate	product	Time (min)	Yield ^b (%)	TON	
1	(1a)	(3a)	50	97	146.96	ot
2	Br NH ₂ (1b)	Br	80	95	143.94	scri
3	CI	(3c)	80	95	143.94	anus
4	Me-NH ₂ (1d)	Me	60	92	139.39	ed M
5		N Ne	70	87	131.81	Accept
6	(1e)	(3e) Me (3f)	100	82	124.24	ns Ac
7	Me H ₂ N Me (1g)	ме (3g)	90	90	136.36	actio
8	_{н,N}	(3h)	180	78	118.18	rans
9	H ₂ N-(1i)	(3i)	100	96	151.51	D T
10	(11) _{H₂N} (1j)	(3j)	135	83	125.75	Dalto
11	(1k)	(3k)	150	84	127.27	

^a Reaction conditions: amines (1 mmol), triethyl orthoformate (1.2 mmol), and sodium azide (1 mmol).

^b Isolated yield.

Reusability of the catalyst

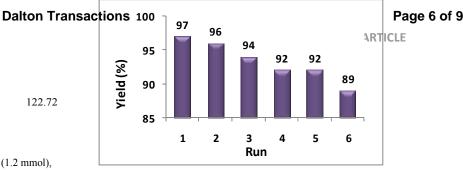
The reusability is one of the important properties of this catalyst. The possibility and recovery of catalyst was investigated for the reaction of aniline, triethyl orthoformate, and sodium azide under optimized conditions. After completion of the model reaction, the catalyst was recovered from the reaction mixture simply by an external magnet. Then the recovered catalyst was washed with ethyl acetate, and reused for subsequent reactions for 6 times without noticeable deterioration in catalytic activity (Fig. 7).

Figure 7 Reusability of Fe₃O₄@silica sulfonic acid for the reaction of aniline, triethyl orthoformate, and sodium azide under solvent-free conditions

Comparison of the $Fe_3O_4 @\mbox{silica}$ sulfonic acid catalyst with other catalysts

In future attempts, the activity of the prepared catalyst were measured in the model reaction. From Table 3, it was clear that Fe_3O_4 @silica sulfonic acid remarkably worked well to give the desired product within 50 min in 97% yield in shorter reaction time and lower temperature than SSA and natrolite zeolite. Also this catalyst is comparable with In(OTf)₃, [HBIm]BF₄, CSMIL and Fe₃O₄@SiO₂/Salen Cu(II).

 $\begin{array}{l} \textbf{Table 3} \mbox{ Comparison of different catalysts on formation of 1-substituted} \\ 1H\mbox{-tetrazoles}^a. \end{array}$


Eı	ntry Catalyst	solvent	t (°C)	Time (min)	Yield ^b (%)	Ref.
1	SSA	Neat	120	300	95	20
2	Natrolite zeolite	Neat	120	240	82	22
3	In(OTf) ₃	Neat	100	90	89	18
4	[HBIm]BF ₄	Neat	100	30	91	21
5	CSMIL	Neat	70	60	92	23
6	Fe ₃ O ₄ @SiO ₂ /Salen Cu(II)	Neat	100	60	96	24
7	Fe ₃ O ₄ @silica sulfonic acid	Neat	100	50	97	

^a Reaction conditions: aniline (1 mmol), triethyl orthoformate (1.2 mmol), and sodium azide (1 mmol), Fe₃O₄@silica sulfonic acid (0.02 g), solvent free at 100 °C.

^b Isolated yield.

Experimental section

Chemicals

Iron (II) chloride tetrahydrate (99%), iron (III) chloride hexahydrate (98%), tetraethoxysilane (TEOS), chlorosulfonic acid and other chemical materials were purchased from Fluka and Merck companies and used without further purification.

Apparatus

Products were characterized by comparison of their physical data, IR and ¹H NMR and ¹³C NMR spectra with known samples. NMR spectra were recorded on a Bruker Advance DPX 400 MHz instrument spectrometer at 400 and 100 MHz in CDCl₃ as solvent in the presence of TMS as internal standard. IR spectra were recorded as KBr pellets on a Perkin-Elmer 781 spectrophotometer. The purity determination of the products and reaction monitoring were accomplished by TLC on silica gel PolyGram SILG/UV 254 nm plates. X-ray diffraction patterns of samples were taken on a Philips Xpert X-ray powder diffraction diffractometer (CuK, radiation, k = 0.154056 nm). The particle morphology was examined by SEM (Hitachi S4160 scanning electron microscope). TGA patterns were obtained for characterization of the heterogeneous catalyst on a Rheometric Scientific Inc. 1998 thermal analysis apparatus under a N2 atmosphere. DLS was performed on Malvern ZEN 3600. Melting points were measured on a Yanagimoto micro melting point apparatus. The Bandelin ultrasonic HD 3200 with probe model KE 76.6 mm diameter was used to produce ultrasonic irradiation.

Preparation of Fe₃O₄ (MNPs)

Magnetic nanoparticles were synthesized by coprecipitation of FeCl₃.6H₂O and FeCl₂.4H₂O in ammonia solution, according to the reported procedure²⁷. Typically, FeCl₃.6H₂O (15.136 g) and FeCl₂·4H₂O (6.346 g) were dissolved in 0.64 L deionized water under nitrogen at 90 °C and added to a ammonium hydroxide 25% solution (0.08 L) with vigorous mechanical stirring. After the color of bulk solution turned to black the reaction was carried out for 60 min in N₂ atmosphere. The resulting black MNPs were isolated by applying an external magnet, washed 3 times with deionized water and then dried under vacuum at 60 °C for 12 h.

Preparation of Fe₃O₄@SiO₂

The Fe₃O₄@SiO₂ nanospheres were prepared by a modified Stöber method. Briefly, Fe₃O₄ (0.50 g) was dispersed in the mixture of ethanol (50 mL), deionized water (5 mL) and tetraethoxysilane (TEOS) (0.20 mL), followed by the addition of 5.0 mL of NaOH (10 wt%). This solution was stirred mechanically for 30 min at room temperature. Then the product, Fe₃O₄@SiO₂, was separated by an external magnet and was washed with deionized water and ethanol three times and dried at 80 °C for 10 h.

RSC Adv., 2014, 00, 1-7 | 5

Preparation of Fe₃O₄@silica sulfonic acid

A suction flask was equipped with a constant pressure dropping funnel. The gas outlet was connected to a vacuum system through an adsorbing solution of alkali trap. Fe₃O₄@silica (0.5 g) was added into the flask and dispersed by ultrasonic irradiation for 10 min in dry CH₂Cl₂ (10 mL). Chlorosulfonic acid (0.4 mL) was added drop wise to a cooled ice-bath over a period of 30 min at room temperature. After completion of the addition, the mixture was shaken for 90 min, while the residual HCl was eliminated by suction. Then the Fe₃O₄@silica sulfonic acid was separated from the reaction mixture by a magnetic field and washed several times with dried CH₂Cl₂. Finally, Fe₃O₄@silica sulfonic acid was dried under vacuum at 60 °C.

General synthesis for the preparation of 1-substituted 1*H*-tetrazoles

A mixture of amine (1 mmol), sodium azide (1 mmol), triethyl orthoformate (1.2 mmol) and Fe₃O₄@silica sulfonic acid (0.02 g) was taken in a round-bottomed flask and stirred at 100 °C. The progress of the reaction was monitored by thin layer chromatography (TLC). After completion of the reaction, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (3×20 mL). The catalyst was removed by an external magnet, and then the resulting solution was washed with water and dried over anhydrous Na₂SO₄. After concentration, a crystallization step was performed using EtOAc-hexane (1:9). The products were characterized by ¹H NMR, ¹³C NMR, FT-IR and melting points. We have reported the spectral data of synthesized compounds.

1-(phenyl)-1*H***-tetrazole (3a).** Yellow solid (97% yield); m.p= 63-65 °C. M.P_{Lit}: 65-67 °C; IR (KBr)/ v (cm⁻¹): 3126 (C-H, sp² stretch Ar), 1694 (C=N), 1597, 1498 (C=C). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.07-7.34 (m, 5H, Ar), 8.20 (s, 1H tetrazole).

1-(4-Bromophenyl)-1*H***-tetrazole (3b).** White solid (95% yield); m.p=169-170°C ; IR (KBr)/ v (cm⁻¹): 3060 (C-H, sp² stretch, Ar), 1659 (C=N), 1576, 1482 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.92-6.94 (d, 2H), 7.40-7.42 (d, 2H), 8.09 (s, 1H tetrazole); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 116.43, 120.76, 132.03, 143.99, 149.29.

1-(4-Chlorophenyl)-1*H***-tetrazole (3c).** White solid (95% yield); m.p=153-155°C; M.PLit:155-156 °C; IR (KBr)/ v (cm⁻¹): 3057 (C-H, sp² stretch, Ar), 1661 (C=N), 1485, 1581 (C=C) ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.98-7.00 (d, 2H), 7.27-7.29 (d, 2H), 8.09 (s,1H tetrazole); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 120.35, 128.85, 129.47, 143.52, 149.50.

1-(4-Methylphenyl)-1*H*-tetrazole (3d). Light yellow solid (87% yield); m.p=92-99 °C; IR (KBr)/ v (cm⁻¹): 3022 (C-H, sp² stretch, Ar), 2918(C-H, sp³ stretch), 1664 (C=N), 1607, 1506 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.34 (s, 3H), 6.94-6.96 (d, 2H), 7.11-7.13 (d, 2H), 8.17 (s, 1H tetrazole); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 20.79, 119.08, 129.63, 130.17, 142.95, 149.77.

1-(3-Methylphenyl)-1*H***-tetrazole (3e).** White solid (85% yield); m.p=53-55 °C; IR (KBr)/ v (cm⁻¹): 3167 (C-H, sp² stretch, Ar), 2923 (C-H, sp³ stretch), 1690 (C=N), 1594, 1483 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.33 (s, 3H), 6.86 (s, 1H), 6.89- 6.91 (d, 2H), 7.18-7.22(t, 1H), 8.21 (s, 1H tetrazole); ¹³C NMR (CDCl₃, 100

MHz) δ (ppm): 21.43, 115.93, 119.97, 124.06, 129.19, 139.26, 145.28, 149.23.

1-(2-Methylphenyl)-1*H***-tetrazole (3f).** White solid (82% yield); m.p=152-155 °C; IR (KBr)/ v (cm⁻¹): 3015 (C-H, sp² stretch, Ar), 2870 (C-H, sp³ stretch), 1664(C=N), 1488, 1590 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.33 (s, 3H), 7.02-7.03 (d, 1H), 7.05-7.07 (d, 1H), 7.18-7.22 (t, 2H), 8.08 (s, 1HTetrazole); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 17.94, 117.68, 123.43, 127, 128.71, 130.72, 144.10, 147.78.

1-(2,4-Dimethylphenyl)-1H-tetrazole (3g). White solid (90% yield); m.p=133-135 °C; IR (KBr)/ ν (cm⁻¹): 3069 (C-H, sp² stretch, Ar), 2914 (C-H, sp³ stretch), 1663 (C=N), 1495, 1607 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.29 (s, 3H), 2.30 (s, 3H), 6.94-6.96 (d, 1H), 6.98-7.00 (d, 1H), 7.02 (s, 1H), 8.00 (s, 1H tetrazole).

1-(4-Acetylphenyl)-1*H***-tetrazole (3h).** Yellow solid (78% yield); m.p=175-176 °C; IR (KBr)/ v (cm⁻¹): 3075 (C-H, sp² stretch, Ar), 2995 (C-H, sp3 stretch), 1669 (C=N), 1499, 1585 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.60 (S, 3H), 7.13-7.15 (d, 2H), 7.95-7.97 (d, 2H), 8.30 (s, 1H tetrazole).

1-(3-Chlorophenyl)-1*H***-tetrazole (3i).** White solid (81% yield); m.p=137-139 °C; IR (KBr)/ v (cm⁻¹): 3065 (C-H, sp² stretch, Ar), 1669 (C=N), 1473, 1586 (C=C). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.92-6.94 (d, 1H) 7.07-7.09 (d, 2H) 7.26-7.27 (t, 1H), 8.14 (s, 1H tetrazole); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 117.45, 119.23, 123.73, 130.34, 135.12, 146.14, 149.72.

1-(2-Chlorophenyl)-1*H***-tetrazole (3j).** White solid (79% yield); m.p=129-131 °C; IR (KBr)/ ν (cm⁻¹): 3023 (C-H, sp² stretch, Ar), 1670 (C=N), 1481, 1598 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.03-7.50 (m-4H), 8.10 (s, 1H tetrazole).

1-(Naphthalen-1-yl)-1*H***-tetrazole (3k).** White solid (84% yield); m.p=132-135 °C; IR (KBr)/ v (cm⁻¹): 3048 (C-H, sp² stretch, Ar), 1658(C=N), 1574, 1432 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.23-8.27 (m, 7H), 8.36 (s, 1H tetrazole).

1-[2-(1*H***-tetrazol-1-yl) phenyl]-1***H***-tetrazole (3l). White solid (83% yield); m.p=167-169 °C; IR (KBr)/ v (cm⁻¹): 3062 (C-H, sp² stretch, Ar), 1619 (C=N) 1458, 1588 (C=C); ¹H NMR (CDCl₃, 400 MHz) \delta (ppm): 7.30-7.70 (m, 4H), 8.11 (s, 1HTetrazole); ¹³C NMR (CDCl₃, 100 MHz) \delta (ppm): 115.76, 122.37, 138.50, 142.40.**

Conclusion

In conclusion, we have firstly reported that Fe_3O_4 @silica sulfonic acid can be an efficient and reusable catalyst for one-pot synthesis of 1-substituted 1*H*-tetrazoles from an amine, triethyl orthoformate and sodium azide. The catalytic research on novel approaches toward magnetic nanoparticles should be improved to enhance organic synthesis. For that purpose, magnetic nanocatalyst provides high surface area for interaction of compounds. This catalyst can provide new way for continuous processes, because of its simple recyclability. Good yields, short reaction times, solventfree conditions, non-toxic and a recyclable catalyst with a very easy operation are the most important advantages of synthesized catalyst. The catalyst can be easily recovered from the reaction system by an external magnet and reused for 6 times without noticeable deterioration in catalytic activity.

Acknowledgement

The authors are grateful to University of Kashan for supporting this work by Grant No. 159148/43.

Notes and References

- O. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, *Clin. Microbiol. Rev.* 1994, 7, 43– 54.
- M. N. Widjojoatmodjo, A. C Fluit, R. Torensma, J. Verhoef, J. Immunol. Methods. 1993, 165, 11–19.
- R. Weissleder, G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele, L. Josephson, *Radiology*. 1990,175, 489–493.
- J. W. M. Bulte, L. D. Ma, R. L. Magin, R. L. Kamman, C. E. Hulstaert, K. G. Go, T. H. The, L. de Leij, *Magn. Reson. Med.* 1993, 29, 32–37.
- 5. P. K. Gupta, C. T. Hung, F. C. Lam, D. G. Perrier, *Int. J. Pharm.* 1988, **43**, 167–177.
- T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn. Magn. Mater. 2005, 293, 483–496.
- 7. A. Jordan, P. Wust, H. Fahling, R. Scholz, *Int. J.* 23. *Hyperthermia.* 1993, **9**, 51–58.
- 8. U. Hafeli, W. Schutt, J. Teller, M. Zborowski, *Eds. Plenum Press*: New York and London, 1997, 527–534.
- R.N. Butler, A.R. Katritzky, in *Comprehensive Heterocyclic Chemistry*, C.W. Rees, E.F.V. Scriven, Eds, Pergamon, Oxford, UK, 1996, Vol 4.
- (a) V. A. Ostrovskii, M. S. Pevzner, T. P. Kofmna, M. B. Shcherbinin, I. V. Tselinskii, *Targets Heterocycl.Syst.* 1999,
 3, 467. (b) M. Hiskey, D. E. Chavez, D. L. Naud, S. F. Son, H. L. Berghout, C. A. Bome, *Proc. Int.Pyrotech. Semin.* 2000, 27, 3.
- 11. M. U. S. Brown, Patent 3,338,915, 1967, Chem. Abstr. 1968, 87299.
- (a) V.V. Nilulin, T.V. Artamonova, G.I. Koldobskii, Russ. J. Org. Chem. 2003, 39, 1525-1529. (b) V.V. Nilulin, T.V. Artamonova, G.I. Koldobskii, Russ. J. Org. Chem. 2005, 41, 444-445.
- 13. G.I. Koldobskii, V.A. Ostrovskii, Usp. Khim. 1994, 63, 847.

- (a) D. M. Zimmerman, R. A. Olofson, *Tetrahedron Lett.* 1969, 58, 5081. (b) F. G. Fallon, R. M. Herbst, *J. Org. Chem.* 1957, 22, 933.
- T. Jin, S. Kamijo, Y. Yamamoto, *Tetrahedron Lett.* 2004, 45, 9435.
- Y. Satoh, N. Marcopulos, *Tetrahedron Lett.* 1995, 36, 1759-1762.
- 17. A.K. Gupta, C.H. Oh, *Tetrahedron Lett.* 2004, **45**, 4113-4116.
- K. Dhiman, M. Adinath, H. Alakananda, *Tetrahedron Lett.* 2009, 50, 2668-2670.
- W. Su, Z. Hong, W. Shan and X. Zhang, Eur. J. Org. Chem. 2006, 2723-2726.
- 20. D. Habibi, H. Nabavi, M. Nasrollahzadeh, J. Chem. 2012, 1-4.
- T.M. Potewar, S.A. Siddiqui, R.J. Lahoti, K.V. Srinivasan, *Tetrahedron Lett.* 2007, 48, 1721-1724.
- D. Habibi, M. Nasrollahzadeh, T.A. Kamali, *Green Chem.* 2011, **13**, 3499-3504.
 - A. khalafi-Nezhad, S. mohammadi, *RSC Adv.* 2013, **3**, 4362-4371.
- 24. F. Dehghani, A.R. Sardarian, M. Esmaeilpour, *Journal of Organometallic Chemistry*. 2013, **743**, 87-96.
- 25. N. T. Pokhodylo, V. S. Matiychuk and M. D. Obushak, *Tetrahedron*, 2008, **64**, 1430.
- W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62–69.
- F. Nemati, M. M. Heravi, R. Saeedirad. *Chin. J. Catal.* 2012, 33, 1825-1831.
- K.D. Kim, S.S. Kim, Y.H. Choa, H.T. Kim, J. Ind. Eng. Chem. 2007, 13, 1137–1141.

ARTICLE