This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cu(I) and Ag(I) Complexes of 7,10-bis-N-heterocycle-diazafluoranthenes: Programmed Molecular Grids?

Nelli Rahanyan, Simon Duttwyler, Anthony Linden, Kim K. Baldridge and Jay S. Siegel*

Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

This submission was created using the RSC Article Template (DO NOT DELETE THIS TEXT) (LINE INCLUDED FOR SPACING ONLY - DO NOT DELETE THIS TEXT)

Reactions of 7,10-disubstituted diazafluoranthene derivatives with three different silver(I) salts AgX (X = [PF6]−, [SbF6]−, [CB4H5Cl]−) and [Cu(2-pyridyl)]PF6 afforded complexes exhibiting five different motifs. The crystal structures of the free ligands and nine new complexes from this series of reactions are reported. The use of 2,5-di-tert-butyl-7,10-di(pyridin-2-yl)-8,9-diazafluoranthene as a ligand leads to the formation of the tetranuclear compounds [Ag2(C30H32N3S)2][PF6]·3C6H11·MeCN, [Ag2(C30H32N3S)2][SbF6]·4C2H4 and [Cu2(C30H32N3S)2][PF6]·8C2H5·H2O, which exhibit “propeller” and saddle-type geometry, respectively, as well as a dinuclear complex [Ag2(C30H32N3S)2][CHB11Cl]·4C2H5·Cl·C2H5Cl. The reactions involving the less sterically hindered 2,5-di-tert-butyl-7,10-di(pyrimidin-2-yl)-8,9-diazafluoranthene and 2,5-di-tert-butyl-7,10-di(thiazol-2-yl)-8,9-diazafluoranthene afforded crystals of the dinuclear complexes [Ag2(C30H32N3S)2][PF6]·0.5C6H11·0.5Cl·C2H4Cl·4C2H4 and [Ag2(C30H32N3S)2][SbF6]·C2H4·H2O, the polymeric species [Ag2(C30H32N3S)2]·8(2n)PF6·nC6H12·o and the tetranuclear compounds [Cu2(C30H32N3S)2][PF6]·2C2H5·Cl·C2H5·H2O and [Cu2(C30H32N3S)2][PF6]·2.17H2O, which possess saddle and grid-like architectures, respectively. Conformational analysis of the free ligands showed that they exhibit N–C–O–N torsion angles ranging from syn clinal (58°) to fully anti-periplanar conformations; the syn clinal conformation dominates in the complexes. The relative energies of the possible structural conformations of the synthesized ligands as well as an oxazol disubstituted diazafluoranthene was carried out using density functional theory at the B97D/Def2TZVPP level of theory.

Introduction

Transition metal coordination chemistry provides a powerful methodology for the construction of various metallosupramolecular architectures, which are of interest in the fields of chemistry and biology.1,3 The taxonomy of such assemblies comprises helicates,2,4 cages,5 rotaxanes and grids.6–8 Grid-like complexes are of particular interest due to their physicochemical and electronic properties.5,10 Schematic representation of the formation of [2x2] grids is illustrated in Fig. 1.

Fig. 1 Construction of [2x2] grid-type metalloarray [M4(I)3]n

The construction of coordination grids based on dipirydilpyrazine and Cu(I) or Ag(I) has been used to support the hypothesis that supramolecular assembly can be programmed at the molecular level with engineering or simple algorithmic robustness,11–14 however, in supramolecular chemistry small imbalances of energy often cause major structure/property changes that may "surprise" the molecular engineer. The present study probes this hypothesis for a simple array of related ligands (7,10-disubstituted-8,9-diazafluoranthene derivatives 1-3), "tetrahedral" metals (Cu, Ag) and counterions (X = [PF6]−, [SbF6]−, [CB4H5Cl]−). Analysis of the resultant crystalline structures in light of ligand-field strength, ligand conformational preference, and counter ion participation, indicates that neither the geometry nor robustness of these structures supports the oversimplified analysis of the "programmable" synthesis hypothesis.

Ligand design. A syn-periplanar arrangement of nitrogen atom lone pairs in fluoranthene derivatives defines the "ideal" conformation for the assembly of a [2x2] molecular grid comprising bis-bidentate ligands and tetrahedral metals. Even the simplest dipirydilpyrazine prefers the anti-periplanar form; so formation of the grid must come at some conformational rearrangement cost. The modular syntheses of diazafluoranthene derivatives 1-3 by [2 + 2] cycloaddition reactions of 4,7-di-tert-butylacyanophy-lene and 3,6-disubstituted 1,2,4,5-tetrazines,9 allows the study of a closely related set of ligands with variable conformational preferences and variable energy costs associated with the syn periplanar arrangement (Fig. 2). In the case of compound 1, steric repulsion between hydrogen atoms in the adjacent pyridyl and acenaphthylene rings would force the pyridyl ring out of the pyridazine plane, leading to α > 0°. Lesser steric H–H, H–O and H–C interactions in 2 and 3 reduce syn periplanar costs; but, does the energy balance tip in favor of the [2x2] molecular grid in a readily foreseeable way? The systematic study of this metal-ligand array provides a context for answering this question.

Results and discussion

Mixing equimolar amounts of a ligand (I-3) and a Cu[X] or Ag[X] salt (X = [PF6]−, [SbF6]−, [CB4H5Cl]−) gave homogeneous solutions in acetone, acetonitrile, dichloromethane or nitromethane, which displayed a single set of 1H NMR signals consistent with metal interactions at the nitrogen atoms of the ligands. The solutions also showed UV-vis absorption consistent with nitrogen-metal complexation.

Mass spectrometry data. ESI MS data from solutions of 1 with Cu(I) salts exhibited m/z ion signals indicative of [Cu(1)+H]+ (1476.4), [Cu(1)]2+ (534.5), [Cu(1)+CH3CN]2+ (574.5), [Cu(1)]3+ (769.3), [Cu(1)]4+ (1004.0), and [Cu(1)3PF6]2+ (1211.7). The mass spectra of 1 with Ag(I) salts exhibited a similar M+ion fragment peak distribution (m/z): [Ag(1)+MeCN]+ (618.4), [Ag(1)]2+ (813.3), and [Ag(1)]3+ (1049.7) respectively, across all samples, as well as counterion specific peaks for [Ag(1)2]3+ (587.2), [Ag(1)]PF6− (1301.4), [Ag(1)2SbF6−]2− (1391.3) for X = [PF6]−, [SbF6]− and [Ag(1)]4+ (733.9) for X = [CB4H5Cl]−. The compositions were further confirmed by comparison of experimental and theoretical
isotopic distribution patterns. Notably, no M₂L₂X₄ ion was apparent for any sample.

![Diagram of structures](image)

Fig. 2 Structures of diazafluoranthene derivatives employed in the complexation reactions

Scheme 1. Synthesis of Ag(I) and Cu(I) complexes of 1-3

![Synthesis diagram](image)

The ESI MS data of the dark red solution of 2 with Cu(I) in acetone showed ion signals (m/z) for the species [Cu₂(2i)³⁺] (536.5), [Cu₃(2i)⁴⁺] (772.5), and [Cu(2i)⁵⁺] (1008.0). Combinations of 2 with Ag(I) in acetonitrile exhibited peaks for [Ag₂(2i)³⁺] (620.5), [Ag₃(2i)⁴⁺] (816.5), and [Ag(2i)⁵⁺] (1054.0) plus counterion specific peaks for [Ag₄(3)PF₆] (1305.6) and [Ag(2i)SbF₆] (1397.8). As with the complexes of 1, there was no evidence of tetranuclear species in any solution.

A similar picture evolved from the mass spectra of 3 with Cu(I) and Ag(I) salts. The species [Cu₃(3i)⁺], [Cu(3)+CH₃CN+acetone-H⁺] and [Cu(3)+CH₃CN]⁺ at m/z 1027.9, 645.3 and 586.4, respectively, were observed for Cu(I) salts and [Ag₃(3)]⁺ (1556.7), [Ag(3)+MeCN+H⁺]²⁺ (632.3) and [Ag(3)]⁺ (1073.5) for Ag(I) salts, with counterion specific signals for [Ag₃(3)PF₆]⁻ (1325.2) and [Ag₃(3)SbF₆]⁻ (1417.7).

No tetranuclear complex was seen under MS conditions, but crystallography reveals a different story.

X-ray crystallographic studies. Representative crystals were obtained for the free ligands 1-3, as well as from every class in the array (ligand 1-3 × [Cu(CH₃CN)₄]PF₆/AgX, X = PF₆⁻, SbF₆⁻, CHB₁(CH₄)₁) to provide a comparison set of twelve structures.

The crystal structures of the ligands 1 and 2 (Fig. 2) consist of planar diazafluoranthene cores to which the pyridyl and pyrimidyl rings are inclined. The two pyridyl rings in 1 adopt a NC–CN transoid geometry, one is syn clinal to the central pyrazidine ring (N–C–C–N torsion angle, α = 58.07°[18]), while the other is anti clinal (α = 132.15°[18]). In 2, α = –68.72°[19] and 85.8(2)° for the pyrimidyl N-atoms closest to being syn-periplanar to the pyridazine ring. There are two symmetry-independent molecules in the structure of 3; both are planar with an anti-periplanar disposition of the N-atoms and there is no obvious evidence to suggest that this is merely a consequence of averaging of superimposed twisted molecules.

A tetranuclear [2×2] grid-like architecture was observed crystallographically only from the reaction of [Cu(CH₃CN)₄]PF₆ with ligand 2. A single crystal was obtained from a solution in acetone/methanol and the crystal structure determination indicated the formation of the ([Cu(2i)]PF₆)[SbF₆] (1325.2) and [Ag(2i)SbF₆] (1397.8). As with the complexes of 1, there was no evidence of tetranuclear complexes in any solution.

The asymmetric unit contains two tetranuclear cations, eight PF₆⁻ anions, four sites fully occupied by water molecules and one site occupied by approximately one-third of a water molecule. Due to the absence of crystallographic symmetry within the cations, there are four different Cu⋯Cu separations in each cation in the range 3.2777(13)–3.4637(13) Å. Each Cu(I) ion is coordinated by two different ligands of 2 in a distorted tetrahedral geometry, and the Cu–N (pyrazidine) and Cu–N (pyrimidine) distance are in the ranges 1.969(5)–2.022(5) Å and 1.987(5)–2.060(5) Å, respectively.
The reaction of ligand 1 with one equivalent of [Cu(CH3CN)2]PF6 in acetone resulted in the formation of a dark red solution. Crystals of the tetraneuclear [Cu(I)4][PF6]·8CH3H2O complex (II) with a saddle architecture were obtained from a solution in acetone/pentane. The solid-state structure of the cationic unit [Cu(I)4]2+ is presented in Fig. 5. The asymmetric unit contains one tetraneuclear Cu-complex cation, four PF6− anions and an estimated eight acetone molecules, some of which are highly disordered. In the cation, each Cu atom is coordinated by three different ligands in a distorted tetrahedral geometry, and the Cu-N (pyridazine) and Cu-N (pyridine) distances are in the ranges 1.948(4)–2.088(4) Å and 2.019(4)–2.125(4) Å respectively.

In the grid structure [Cu(2)]+ each Cu atom is coordinated in a bidentate fashion by the pyridazine and pyrimidine N atoms of each of two ligands and each ligand bridges two different pairs of Cu atoms (bis-bidentate-bridging). In contrast, each ligand in the saddle-shaped [Cu(I)2]2+ cation is coordinated in a bidentate fashion to one Cu atom and is monodentate to each of two other Cu atoms, while two Cu atoms are coordinated by one pyridazine N atom from each of three ligands, plus one pyridine N atom from one of these ligands, while the other two Cu atoms are coordinated in the reverse way.

The combination of ligand 3 and [Cu(CH3CN)2]PF6 did not present a product which gave cleanly interpretable 1H-NMR spectra; however, the solid state structure confirmed the formation of the tetraneuclear species [Cu(3)3][PF6]2·2CH3Cl·2CH3H2O (III) with the same saddle architecture as in [Cu(3)][PF6]·8CH3H2O (Fig. 6). Red crystals were obtained from a solution in acetone/chloroform/diethyl ether. The asymmetric unit contains one half of a C2-symmetric disordered tetraneuclear Cu-complex cation, two PF6− anions and one disordered molecule of each of chloroform and acetone. As in [Cu(3)][PF6]·8CH3H2O, each Cu atom is coordinated by three different ligands in a distorted tetrahedral geometry, and the Cu-N (pyridazine) and Cu-N (thiazole) distances are in the ranges 1.921(7)–2.197(6) Å and 1.954(7)–2.126(7) Å, respectively.

Reactions of the 7,10-diiiodo-1,10-diazafluoranthenes with silver salts Ag[X] (X = [PF6]−, [SbF6]− and [CB3H11]−) afforded complexes with three different motifs. Mixing 2,5-di-tert-butyl-7,10-di(pyridin-2-yl)-9,9-diazafluoranthenes (I) and [Ag][CHB(CH3)4] resulted in the formation of the dinuclear [Ag2(I)2][CHB(CH3)4]·4CH3Cl·CH2Cl2 complex (IV), which crystallized from dichloromethane/dichlorobenzene/hexane (Fig. 7).
5.0623(4) Å and 3.8761(4) Å ([PF$_6$]$^-$ salt), and 4.9727(3) Å and 3.8839(3) Å ([SbF$_6$]$^-$ salt).

Fig. 8 The structure of the tetranuclear [Ag$_4$(I)$_4$]$^{12+}$ cation present in [Ag$_4$(I)$_2$]$_2$SbF$_6$.HCI. H$_2$O (VI) (hydrogen atoms, counter ions and solvent molecules have been omitted for clarity). Selected bond distances (Å) and angles (°): Ag1—N1 2.363(2), Ag1—N2 2.398(2), Ag1—N3 2.343(2), Ag1—N4' 2.413(2), N1—Ag1—N2 72.17(8), N2—Ag1—N3 141.07(9), N3—Ag1—N4' 102.67(8), N4'—Ag1—N2 99.41(8), N1—Ag1—N3 109.72(8), N4'—Ag1—N1 136.97(8); primed atoms are at the symmetry-related position 1-x, 1-y, z.

2,5-di-tert-butyl-7,10-di-(pyrimidin-2-yl)-8,9-diaza-fluoranthen-2(1H,3H) salt sits across a crystallographic mirror plane perpendicular to the Ag···Ag axis, while that in the SbF$_6^-$ salt lies in a general position. The structures of the [Ag$_4$(I)$_4$]$^{12+}$ cations in these salts look similar to that observed for [Ag$_2$(I)$_2$]CH$_2$CN, [Ag$_2$(I)$_2$]CH$_2$CN, although the entire dinuclear complex of [Ag$_4$(I)$_4$]$^{12+}$ is flatter than that of [Ag$_2$(I)$_2$]$^{2+}$ as a result of the absence of steric H···H repulsion across the bay region of the ligand.

The NMR and MS data from the reaction of 3 with AgSbF$_6$ support the formation of the same polymeric structure as with AgPF$_6$. Attempts to isolate crystals of the [SbF$_6$]$^-$ salt were unsuccessful.

Conformational analysis. The N/S donor atoms in ligands 1-3 act in mono- and bidentate coordination modes with [Cu(CH$_3$CN)$_3$]PF$_6$ and three different silver(I) salts, resulting in the formation of the nine reported structures I-IX (three Cu(I) and six Ag(I) salts), which display distorted tetrahedral coordination at each Cu(I) ion and distorted tetrahedral or square planar coordination geometry at the Ag(I) ions.

The structural diversity of the Cu(I) and Ag(I) metal complexes is associated with the flexible coordination chemistry of these closed shell d10 metal ions, considered to provide linear, tetrahedral or square planar coordination geometries. A measure of the degree of distortion from the ideal tetrahedral is the Housner’s τ_5 parameter, which varies from 0.0 for perfect square planar to 1.0 for ideal tetrahedral geometry. In addition, ligand N–C–C–N torsion angles, α, involving the pyridazine and terminal aryl rings in each compound and complex were evaluated. These structural data, as well as the metal identity, the constitutional nature of the ligands, the molecular ratio of metals to ligand overall, the ligand field around the metal, the chelation mode of the polydentate ligand, the nature of the anion and the symmetry of the complexes are summarized in Table 1.

by all four N-atoms from one ligand in a bis-bidentate-bridging fashion, as seen in several of the structures described above. A second ligand also bridges the same two Ag atoms through its two pyridazine N atoms (although the Ag1–N8 bond is quite long at 2.721(7) Å, but now the thiazole rings are oriented such that the thiazole N atoms do not coordinate with these two Ag atoms, but with two other symmetry-related Ag atoms. These last connections mean that each Ag atom is coordinated by three ligands and nominally by four N atoms. However, the twisting of the thiazole rings of the second ligand described above brings the two S-atoms close to the two Ag atoms of the asymmetric unit and these can be considered weak Ag···S interactions that might have some influence on the coordination geometry (Ag1···S2 = 3.162(3) and Ag2···S1 = 3.292(3) Å; shorter than the sum of the van der Waals radii of these atoms of 3.52 Å). The Ag–N distances in the polymeric cation span a wide range: 2.208(8)-2.720(7) Å. The coordination geometry at each independent Ag atom is so contorted (Fig. 10), that it is unrealistic to attempt to assign a classical geometry descriptor to these.
Table 1. Taxonomy of Cu(I) and Ag(I) complexes with diarylpyridazines

<table>
<thead>
<tr>
<th>Complex</th>
<th>Metal</th>
<th>Ligand Type</th>
<th>M:L</th>
<th>(\tau_f (^\circ))</th>
<th>Ligand Field</th>
<th>Chelation #</th>
<th>Ligand Config</th>
<th>Metal Array Geometry</th>
<th>Symmetry</th>
<th>Local Symmetry (Crystallographic)</th>
<th>Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Cu</td>
<td>N/CH</td>
<td>2</td>
<td>4.4</td>
<td>0.66-0.71</td>
<td>td</td>
<td>4[2+2] sp / ac</td>
<td>Tetranuclear planar</td>
<td>(D_2)</td>
<td>(C_{1v}) (Cs)</td>
<td>PF_6</td>
</tr>
<tr>
<td>II</td>
<td>Cu</td>
<td>N/N</td>
<td>1</td>
<td>4.4</td>
<td>0.80-0.84</td>
<td>td</td>
<td>4[2+2] sp / ac</td>
<td>Tetranuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Cu</td>
<td>N/S</td>
<td>3</td>
<td>4.4</td>
<td>0.83</td>
<td>td</td>
<td>4[2+2] sp / ac</td>
<td>Tetranuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Ag</td>
<td>1</td>
<td>2.2</td>
<td>0.18</td>
<td>sq pl</td>
<td>4[2+2] sp / ac</td>
<td>Dinuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Ag</td>
<td>1</td>
<td>4.4</td>
<td>0.57-0.58</td>
<td>'flat' td</td>
<td>4[2+2] sp / ac</td>
<td>Tetranuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Ag</td>
<td>3</td>
<td>4.4</td>
<td>0.58</td>
<td>[1+1+1+1]</td>
<td>4[2+2] sp / ac</td>
<td>Tetranuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Ag</td>
<td>2</td>
<td>2.2</td>
<td>0.23-0.26</td>
<td>sq pl</td>
<td>4[2+2] sp / ac</td>
<td>Dinuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Ag</td>
<td>2</td>
<td>2.2</td>
<td>0.24</td>
<td>sq pl</td>
<td>4[2+2] sp / ac</td>
<td>Dinuclear planar</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Ag</td>
<td>3</td>
<td>1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polymeric</td>
<td>(C_{1v})</td>
<td>PF_6</td>
<td></td>
</tr>
</tbody>
</table>

Ligand Conformation: sp = syn-periplanar with angle under 30°, sc = syn clinal with angle between 30 and 90°, cc = clinal for angles very close to 90°, ac = anti clinal with angle between 90 and 150°, ap = anti-periplanar with angle over 150°, \(a' \) = 135°. Chelation # refers to the number of heteroatoms around the metal [contribution per ligand]. Metal Array Geometry refers to the collection of metal positions in the complex and not the ligand field.

Introduction of a second nitrogen atom into the aryl substituents decreases the relative energy of the N-syn clinal conformation. Computational analysis suggests five structural conformations for ligand 2 (Fig. 12). Structural diversity is represented by the totally planar structure 2a, which has the highest relative energy of 7.69 kcal/mol, structure 2b with a sc/ap conformation of one aryl group and a cc conformation of the second, structure 2c with an orthogonal arrangement of both pyrimidine rings (presented in the crystal structure of 2), and the energetically favorable conformations 2d and 2e. Structures 2d and 2a were components in the construction of the molecular grid 1 and dinuclear structures VII, VIII.

Computational analysis of ligand 3 resulted in only three structural possibilities for the thiazole system 3a-c (Fig. 13). All structures are planar in this case, with the energy minima having an anti-periplanar conformation, 3a, as observed in the crystal structure of 3. All other possible conformations of 3 are predicted to interconvert to one of the three planar structures 3a-c.

Replacement of the sulfur atoms in 3 by oxygen, resulted in nine conformational isomers 4a-i (Fig. 14), where 4e interconverts into the energetically favorable conformation 4b (0.11 kcal/mol). Here, 4b and 4h can be used as reference structures for the polymeric complex IX, whereas the ligand conformation in III can be represented by the reference structures 4h and 2b. Rotation of the oxazole groups from the anti-periplanar into the syn clinal conformations is seen to increase the energy of the system, as shown in Fig. 14.
Fig. 14 Relative energies of the possible conformations of 4

Conclusion

Investigation of the complexation reactions of 7,10-disubstituted dianzafluoranthene derivatives with three different silver salts and [Cu(CH2CN)3]PF6 led to an array of structures inconsistent with any simple rules, such as maximum ligand occupancy, or preferred coordination geometry.11 ESI MS spectra of these reaction solutions provided no evidence for tetranuclear species (except for complex IV). Although mixtures of M2L2 could not be excluded in solution, clearly no unique "programmed" complex is formed. The crystal structures of 2,5-di-tert-butyl-7,10-di(pyridin-2-yl)-8,9-diazfluoranthene (1) with Ag(I) and Cu(I) salts displayed three structural motifs. The use of relatively small anions, namely [PF6]− and [SbF6]3−, led to the formation of tetranuclear complex cations as their [Ag2(L)2][X]1 and [Cu(L)2][PF6]2 salts whose structures are not of the grid-type, but have a "propeller" and saddle-type shape. The larger [CHB3Cl]3 anion crystallized with a wave-like dianza fluoranthene (2) and 2,5-di-tert-butyl-7,10-di(pyridazin-2-yl)-8,9-diazfluoranthene (3), which are less hindered in terms of H-heterocycle repulsion, afforded crystals of dinuclear and polymeric complexes with AgPF6 and AgSbF6, and a saddle-type tetranuclear complex [Cu4(L)2][PF6]4. A grid structure was obtained only for crystals of 1 obtained from 2,5-di-tert-butyl-7,10-di(pyridazin-2-yl)-8,9-diazfluoranthene (2)

Quantum mechanical calculations of the relative energies for the possible structural conformations of 1, 2, 3 and oxazole disubstituted diazfluoranthenes 4 have shown the ★anti-periplanar★ conformation of the ligands to be energetically preferable; in the complexes syn-periplanar conformations predominate.

It has been previously noted that "programmed ligand-metal architectures" are more often artifact than algorithmic based.17a,b,c,d,e,f,g,h,i,j

Experimental

General Information: All solvents were used as purchased (p. a. grade) without further purification. Commercially available chemicals were used as purchased without further purification. Melting points were determined using a Büchi B-540 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Compounds were measured as KBr pellets. Absorption bands are given in wave-numbers (cm⁻¹), and the intensities are characterized as follows: s = strong (0-33% transmission), m = medium (34-66% transmission), w = weak (67-100% transmission). UV-Vis absorption spectra (250-650 nm) were collected on an Agilent 8453 UV-Vis spectrophotometer. 1H- and 13C-NMR spectra were recorded on Bruker Avance 500 (400 MHz), Bruker Avance 500 (500 MHz), Bruker DRX-500 (500 MHz) and Bruker DRX-600 (600 MHz) spectrometers, with the solvent as the internal standard. Data are reported as follows: chemical shift in ppm, multiplicity (s = singlet, d = doublet, m = multiplet, dd = doublet of doublets, dt = doublet of triplet, etc.), coupling constant (J in Hz, integration and interpretation. Mass spectra (MS) were obtained from a Finnigan MAT95 instrument. Analytical thin layer chromatography (TLC) was performed with Macherey-Nagel POLYGRAM SIL N-HF/UV254 and POLYGRAM ALOX N/UV254 visualization by an ultraviolet (UV) lamp (λ = 254 nm and λ = 366 nm). Column chromatography was carried out on silica gel (Merck silica gel 60 (particle size 0.040 - 0.063 mm). Column chromatography was carried out using stoichiometric amounts of silver(I) salts Ag[X] (X = [PF6]−, [SbF6]3−, [CHB3Cl]3), [Cu(CH2CN)3]PF6 and diazafluoranthene ligands. 1H-NMR of these reactions indicated full conversion to the silver and copper complexes of 1, 2 and 3.

2,5-Di-tert-butyl-7,10-di(pyridin-2-yl)-8,9-diazfluoranthene (1). A mixture of 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (0.36 g, 1.52 mmol) and 4,7-di-tert-butylacenaphthylene (0.2 g, 0.76 mmol) in CH2Cl2 (20 mL) was stirred at reflux overnight. The solvent was evaporated, the residue was purified by column chromatography (silica gel, hexane/ethyl acetate 10:1→5:1→1:1 to yield a yellow solid (0.34 g, 95%). IR (KBr): 3046, 2961, 2905, 2904, 2855, 1624, 1587, 1566, 1552, 1538, 1475s, 1443s, 1434, 1393m, 1369s, 1325s, 1290m, 1244m, 1224m, 1210m, 1155m, 1116m, 1093s, 1084s, 1041m, 1022w, 925m, 893m, 822w, 800m, 787s, 749s, 674s, 684m, 664m, 638m, 614m, 591w, 569w, 546w; λ [H-NMR (500 MHz, CDCl3)] δ 8.96 (dd, 1H, J = 4.8, J = 2.0, J = 1.2 Hz), 8.59 (d, 1H, J = 1.6 Hz), 8.32 (dt, 1H, J = 8.0, J = 1.2), 8.13 (d, 1H, J = 1.2 Hz). 8.10 (td, 1H, J = 7.6, J = 1.6 Hz), 7.64 (dd, 1H, J = 6.0, J = 4.8, J = 1.2 Hz), 1.43 (s, 9H), 13C-NMR (500 MHz, CDCl3), δ 157.2, 156.0, 152.3, 149.0, 138.2, 136.1, 132.3, 130.1, 130.0, 128.2, 126.9, 125.5, 125.4, 36.5, 31.8; MS (ESI) m/z (%): 472.0 (M⁺, 100), 455.2 (M⁺-Me, 69), 439.2 (22), 414.2 (47%); HRMS (ESI) calc. for C23H14N6: 470.2470; UV–Vis (CH2Cl2), λmax nm (log ε): 470.2459; UV–Vis (CH2Cl2), λmax nm (log ε): 470.2470; UV–Vis (CH2Cl2), λmax nm (log ε): 245 (4.7), 276 (4.5), 321 (4.2), 329 (4.1), 376 (4.1); mp 290°C.

2,5-Di-tert-butyl-7,10-di(pyridin-2-yl)-8,9-diazfluoranthene (2). A mixture of 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (0.54 g, 2.3 mmol) and 4,7-di-tert-butylacenaphthylene (0.3 g, 1.13 mmol) in DMSO (10 mL) was stirred at 100 °C overnight. The mixture was diluted with water (50 mL), the precipitate formed was filtered off, washed with methanol and dried to yield a yellow solid (0.45 g, 85%). IR (KBr): 2962s, 2896m, 1627w, 1599s, 1560s, 1445s, 1433s, 1424m, 1395w, 1371s, 1327m, 1264w, 1251w, 1231m, 1231m, 1185w, 1146m, 1132w, 1100m, 1081m, 1008w, 902w, 834m, 829m, 814m, 807m, 755w, 698w, 679m, 642m, 621m, 590w, 566w; 1H-NMR (400 MHz, CDCl3) δ 9.18 (s, 1H), 9.17 (s, 1H), 8.25 (d, 1H, J = 1.2 Hz), 8.10 (d, 1H, J = 1.2 Hz), 7.63 (dd, 1H, J = 4.8, J = 4.8 Hz), 1.4 (s, 9H), 13C-NMR (400 MHz, CDCl3), δ 165.1, 158.3, 154.5, 152.2, 152.2, 131.4, 130.2, 129.9, 127.3, 127.0, 122.0, 36.1, 31.9; MS (ESI) m/z (%): 472.2 (M⁺, 100), 457.2 (M⁺-Me, 98), 441.2 (M⁺-2Me-H, 29), 416.2 (M⁺-3Me-H, 30), 401.2 (6), 226.8 (%); HRMS (ESI) calc. for C23H14N6: 472.2375; found: 472.2378; UV–Vis (CH2Cl2), λmax nm (log ε): 244 (4.7), 307 (4.2), 326 (4.0), 373 (4.1); mp over 350°C.
2,5-Di-tert-butyl-7,10-di(4-pyridin-4-yl)-9-diazafluoranthene (3).
A mixture of 3,6-di(thiazol-4-yl)-1,2,4,5-tetrazine (0.092 g, 0.10 mmol) and AgSbF$_6$ (0.022 g, 0.046 mmol) in CD$_2$CN (2 mL) was stirred at RT overnight.

1H-NMR (100 MHz, CD$_2$CN) δ 8.30 (d, 1H, $J = 7.0$ Hz), 7.91 (d, 1H, $J = 8.0$ Hz), 7.79 (s, 1H), 6.12 (d, 1H, $J = 7.0$ Hz), 2.71 (dd, 1H, $J = 5.2$, $J = 6.8$ Hz), 1.33 (s, 9H); 13C-NMR (100 MHz, CD$_2$CN), δ 157.2, 156.0, 152.3, 150.0, 138.2, 136.1, 132.3, 130.1, 130.0, 128.2, 126.8, 125.8, 125.4, 123.6, 31.8, 31.8; MS (ESI) m/z (%): 10497 ([Ag$_2$(C$_4$H$_9$NS$_2$)$_4$]$^+$ (20), 4713 ([C$_4$H$_9$NS$_2$]+$^+$H$^+$) (46), 4552 ([C$_4$H$_9$NS$_2$]+$^+$Me$^+$H$^+$) (36%); UV - Vis (CH$_2$CN), λ_{max} nm (log e): 245 (5.1), 276 (5.0), 312 (4.7), 327 (4.6), 374 (4.7).

1-[H]-2,5-Di-tert-butyl-7,10-di-(pyridin-4-yl)-9-diazafluoranthene (4) (0.02 g, 0.046 mmol) and AgPF$_6$ (0.016 g, 0.036 mmol) in CD$_2$CN (3 mL) was stirred at RT overnight. 1H-NMR (400 MHz, CD$_2$CN) δ 8.30 (d, 1H, $J = 4.4$ Hz), 8.23 (d, 1H, $J = 1.2$ Hz), 7.84 (d, 1H, $J = 7.6$ Hz), 7.75 (s, 1H), 7.62 (dd, 1H, $J = 7.0$, $J = 5.2$ Hz), 6.83 (d, 1H, $J = 6.8$ Hz), 1.33 (s, 9H); 13C-NMR (400 MHz, CD$_2$CN), δ 157.2, 156.0, 152.3, 150.0, 138.2, 136.1, 132.3, 130.1, 130.0, 128.2, 126.8, 125.8, 125.4, 123.6, 31.8, 31.8; MS (ESI) m/z (%): 10497 ([Ag$_2$(C$_4$H$_9$NS$_2$)$_4$]$^+$ (20), 4713 ([C$_4$H$_9$NS$_2$]+$^+$H$^+$) (46), 4552 ([C$_4$H$_9$NS$_2$]+$^+$Me$^+$H$^+$) (36%); UV - Vis (CH$_2$CN), λ_{max} nm (log e): 245 (5.1), 276 (5.0), 312 (4.7), 327 (4.6), 374 (4.7).

1-[H]-2,5-Di-tert-butyl-7,10-di-(pyridin-4-yl)-9-diazafluoranthene (5) (0.03 g, 0.066 mmol) and AgPF$_6$ (0.016 g, 0.036 mmol) in CD$_2$CN (3 mL) was stirred at RT overnight. 1H-NMR (400 MHz, CD$_2$CN) δ 8.30 (d, 1H, $J = 4.4$ Hz), 8.23 (d, 1H, $J = 1.2$ Hz), 7.84 (d, 1H, $J = 7.6$ Hz), 7.75 (s, 1H), 7.62 (dd, 1H, $J = 7.0$, $J = 5.2$ Hz), 6.83 (d, 1H, $J = 6.8$ Hz), 1.33 (s, 9H); 13C-NMR (400 MHz, CD$_2$CN), δ 157.2, 156.0, 152.3, 150.0, 138.2, 136.1, 132.3, 130.1, 130.0, 128.2, 126.8, 125.8, 125.4, 123.6, 31.8, 31.8; MS (ESI) m/z (%): 10497 ([Ag$_2$(C$_4$H$_9$NS$_2$)$_4$]$^+$ (20), 4713 ([C$_4$H$_9$NS$_2$]+$^+$H$^+$) (46), 4552 ([C$_4$H$_9$NS$_2$]+$^+$Me$^+$H$^+$) (36%); UV - Vis (CH$_2$CN), λ_{max} nm (log e): 245 (5.1), 276 (5.0), 312 (4.7), 327 (4.6), 374 (4.7).
Crystal data

All X-ray crystal structure measurements were made on a Nonius KappaCCD area-detector diffractometer or on an Oxford Diffraction SuperNova Duo diffractometer using graphite monochromated Mo Kα radiation (λ = 0.7073 Å). All reflections were conducted on F^2 with SHELXL97.28 H-atoms were included in geometrically calculated positions and allowed to ride on their parent atoms.

2.5-Di-tert-butyl-7,10-dipyrindin-2-yl)-8,9-diazfluoranthen (1). Obtained from acetone, C_{25}H_{30}N_6O_4, M = 470.62, space group: P1̅1 (triclinic), a = 10.2434(3), b = 10.6985(2), c = 12.3052(2) Å, α = 112.07(2), β = 100.661(13), γ = 102.5753(15), V = 1269.20(5) Å^3, Z = 2, μ(Mo Kα) = 0.0733 mm^-1, D_{c} = 1.231 g cm^-3, 2θ(max) = 55°, T = 160 K, 37154 measured reflections, 5810 independent reflections, 4067 reflections with I > 2σ(I), 332 parameters, R(F̄0/F) [I > 2σ(I)] reflections = 0.0527, wR(F̄2) [all data] = 0.1450, goodness of fit = 1.033, Δρ_{max} = 0.25 e Å^-3.

2.5-Di-tert-butyl-7,10-dithiazol-2-yl)-8,9-diazfluoranthen (2). Obtained from dichloromethane/pentane/benzene, C_{26}H_{36}N_6O_4S_4, M = 472.59, space group: P2₁ (monoclinic), a = 10.1555(2), b = 12.3482(3), c = 14.1107(2) Å, β = 98.7439(14), V = 1290.35(5) Å^3, Z = 2, μ(Mo Kα) = 0.0744 mm^-1, D_{c} = 1.216 g cm^-3, 2θ(max) = 55°, T = 160 K, 26745 measured reflections, 3094 independent reflections, 2834 reflections with I > 2σ(I), 333 parameters, R(F̄0/F) [I > 2σ(I)] reflections = 0.0375, wR(F̄2) [all data] = 0.0941, goodness of fit = 1.066, Δρ_{max} = 0.16 e Å^-3. The absolute structure was chosen arbitrarily.

2.5-Di-tert-butyl-7,10-dithiazol-2-yl)-8,9-diazfluoranthen (3). Obtained from acetonitrile/dichloromethane/pentane, C_{26}H_{36}N_6O_4S_4, M = 534.07, space group: P2₁2₁2₁ (tetragonal), a = 16.67987(11), c = 15.01274(17) Å, V = 4176.82(6) Å^3, Z = 6, μ(Mo Kα) = 0.220 mm^-1, D_{c} = 1.274 g cm^-3, 2θ(max) = 60°, T = 160 K, 72287 measured reflections, 5846 independent reflections, 3959 reflections with I > 2σ(I), 328 parameters, 343 constraints, R(F̄0/F) [I > 2σ(I)] reflections = 0.0680, wR(F̄2) [all data] = 0.2199, goodness of fit = 1.088, Δρ_{max} = 0.57 e Å^-3. There are two symmetry-independent dazfluoranthen molecules in the structure. One of these molecules sits on a mirror plane which bisects the molecule. The other sits in a mirror plane as well by lying across a second mirror plane which bisects this molecule (mm symmetry). One r-buty group in each molecule is disordered over two orientations and similarity restraints were employed in the refinement of these groups. The atomic displacement parameters suggest there might even be whole molecule disorder, but no attempt was made to develop such a model. There are voids in the structure, which appear to be partially occupied with solvent molecules. As attempts to model the solvent were unfruitful, the solvent contribution to the structure was removed using the SQUEEZE procedure of the program PLATON. Full details are in the deposited CIF data.

[Cu(C_{25}H_{30}N_6O_4)(PF_6)_2]@[C_6H_5CHCl_3] (I). Obtained from acetonitrile/methanol/aceton, C_{29}H_{23}N_6O_2PF_6, M = 2763.46, space group: P1̅1 (triclinic), a = 12.4516(4), b = 23.6077(8), c = 42.9502(2) Å, α = 99.3440(9), β = 94.255(1), γ = 94.401(1), V = 12372.97(9) Å^3, Z = 4, μ(Mo Kα) = 0.827 mm^-1, D_{c} = 1.483 g cm^-3, 2θ(max) = 50°, T = 160 K, 149307 measured reflections, 41319 independent reflections, 42116 reflections with I > 2σ(I), 3551 parameters, 2062 restraints, R(F̄0/F) [I > 2σ(I)] reflections = 0.0791, wR(F̄2) [all data] = 0.1762, goodness of fit = 1.077, Δρ_{max} = 0.81 e Å^-3. The asymmetric unit contains two tetranuclear cations, eight PF_6^- anions, four sites fully occupied by what appear to be water molecules and one site approximately one-third occupied by a water molecule. Three tert-butyl groups in one cation and one in the other are disordered. Some of the anions also show disorder and the disorder was modelled for two of the PF_6^- anions. Similarity restraints were employed in the refinement of the disordered entities. Full details of the disorder treatment are in the deposited CIF data.

[Cu(C_{25}H_{30}N_6O_4)(PF_6)_2]@[C_6H_5CHCl_3] (II). Obtained from acetonitrile/pentane, C_{152}H_{164}Cu_2F_6N_2O_6P_6S_4, M = 3181.11, space group: Pbcn (orthorhombic), a = 23.9121(4), b = 32.2190(4), c = 38.8832(6) Å, V = 29956.68(8) Å^3, Z = 8, μ(Mo Kα) = 0.695 mm^-1, D_{c} = 1.407 g cm^-3, 2θ(max) = 55°, T = 160 K, 127500 measured reflections, 31301 independent reflections, 19963 reflections with I > 2σ(I), 1760 parameters, 2788 restraints, R(F̄0/F) [I > 2σ(I)] reflections = 0.0874, wR(F̄2) [all data] = 0.2635, goodness of fit = 1.060, Δρ_{max} = 1.19 e Å^-3. The asymmetric unit contains one tetranuclear Cu-complex cation, four PF_6^- anions and an estimated eight acetone molecules, some of which are highly disordered. Disorder was modelled for three of the eight unique tert-butyl groups in the cation. Some of the anions also show evidence of disorder and the disorder was modelled for one of the two PF_6^- anions. Similarity restraints were employed in the refinement of the disordered entities. As the disorder in many of the solvent molecules could not be modelled adequately, the solvent contribution to the diffraction data was removed using the SQUEEZE procedure of the program PLATON. Full details of the disorder and solvent treatment are in the deposited CIF data.

[Cu(C_{25}H_{30}N_6O_4)(PF_6)_2]@[C_6H_5CHCl_3] (III). Obtained from chloroform/aceton/diethyl ether, C_{152}H_{164}Cu_2F_6N_2O_6P_6S_4, M = 3119.57, space group: C2/c (monoclinic), a = 14.8533(2), b = 42.4657(4), c = 23.1313(3) Å, β = 95.2051(13), V = 14518.73(8) Å^3, Z = 4, μ(Mo Kα) = 0.930 mm^-1, D_{c} = 1.427 g cm^-3, 2θ(max) = 58.8°, T = 160 K, 57097 measured reflections, 15081 independent reflections, 9224 reflections with I > 2σ(I), 1120 parameters, 1518 restraints, R(F̄0/F) [I > 2σ(I)] reflections = 0.0987, wR(F̄2) [all data] = 0.3243, goodness of fit = 1.161, Δρ_{max} = 1.48 e Å^-3. The asymmetric unit contains one half of a C₂-symmetric disordered tetranuclear Cu-complex cation, two PF_6^- anions and one disordered molecule of each of chloroform and acetone. One of the two unique ligands in the cation is disordered over its entirety, while both tert-butyl groups of the other unique ligand are also disordered over two orientations. Similarity restraints were employed in the refinement of the disordered entities. The nature of the solvent molecules present was estimated from an assessment of the residual electron density peaks, although the indications are weak. The solvent molecules are disordered and clustered into two large cavities per unit cell, where each cavity contains four of each type of solvent molecule. As these solvent molecules could not be modelled sufficiently well, their contribution to the diffraction data was removed by using the SQUEEZE procedure of the program PLATON. Full details of the disorder treatment are in the deposited CIF data.
CH₂Cl₂, which is disordered about a centre of inversion. As a result of disorder, attempts to model one of the 1,2-dichlorobenzene molecules and the CH₂Cl₂ molecule were unsatisfactory, so the contribution of these solvent molecules to the structure was removed using the SQUEEZE procedure of the program PLATON. Full details are in the deposited CIF data.

[Ag₂(C₆H₅N₃S)₂][PF₆]₂·3C₆H₅CH₂Cl (VII). Obtained from acetonitrile/benzene/pentane, C₆H₅Ag₂PF₆·3C₆H₅CH₂Cl, M = 1545.30, space group: P2₁/c (monoclinic), a = 17.686(1) Å, b = 17.414(4) Å, c = 12.846(9) Å, β = 92.878(1) °, V = 7819(2) Å³, Z = 2, μ(Mo Kα) = 0.854 Å⁻¹, Dₜ = 1.684 g cm⁻³, 2θ(max) = 55°, T = 160 K, 10805 measured reflections, 14801 independent reflections, 7962 reflections with I > 2σ(I), 418 parameters, R(F) = 0.0967, wR(F) = 0.2441, goodness of fit = 1.175, Δρₐ = 1.97 e Å⁻³. The cation is a one-dimensional polymeric ribbon. The asymmetric unit contains two Ag⁺ cations, two PF₆⁻ anions and one acetone molecule. As attempts to model the solvent were unfruitful, the solvent contribution to the structure was removed using the SQUEEZE procedure of the program PLATON. Similarity restraints were employed in the refinement of the disordered anion. Full details are in the deposited CIF data.

[Ag₂(C₆H₅N₃S)₂][PF₆]₂·3C₆H₅CH₂Cl (VII). Obtained from dichloromethane/chlorobenzene/hexane/acetonitrile, C₆H₅Ag₂PF₆·3C₆H₅CH₂Cl, M = 1592.68, space group: P2₁/c (monoclinic), a = 17.469(3) Å, b = 17.866(1) Å, c = 23.210(2) Å, β = 90.026(2) °, V = 6949(2) Å³, Z = 4, μ(Mo Kα) = 0.744 Å⁻¹, Dₜ = 1.522 g cm⁻³, 2θ(max) = 52°, T = 160 K, 14001 measured reflections, 13650 independent reflections, 10805 reflections with I > 2σ(I), 915 parameters, 234 restraints, R(F) = 0.0543, wR(F) = 0.2703, goodness of fit = 1.074, Δρₐ = 1.01 e Å⁻³. The asymmetric unit contains one cation, two disordered anions and some disordered solvent molecules which have been estimated at one half of each of a molecule of dichloroethane, chlorobenzene and hexane per asymmetric unit. As attempts to model the solvent were unfruitful, the solvent contribution to the structure was removed using the SQUEEZE procedure of the program PLATON. Similarity restraints were employed in the refinement of the disordered anions. Full details are in the deposited CIF data.

[Ag₂(C₆H₅N₃S)₂][PF₆]₂·3C₆H₅CH₂Cl (VII). Obtained from acetone/benzene/hexane, C₆H₅Ag₂PF₆·3C₆H₅CH₂Cl, M = 1772.52, space group: C2/m (monoclinic), a = 23.250(3) Å, b = 17.2660(3) Å, c = 17.6490(3) Å, β = 91.746(1) °, V = 7081(2) Å³, Z = 4, μ(Mo Kα) = 1.380 mm⁻¹, Dₜ = 1.662 g cm⁻³, 2θ(max) = 55°, T = 160 K, 75629 measured reflections, 8370 independent reflections, 7293 reflections with I > 2σ(I), 472 parameters, 100 restraints, R(F) = 0.0456, wR(F) = 0.1161, goodness of fit = 1.080, Δρₐ = 3.20 e Å⁻³. The asymmetric unit contains half

