This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Syntheses, Characterization, and Structural studies of Copper(I) complexes containing 1,1′-bis(di-tert-butylphosphino) ferrocene (dtbpf) and their Application in Palladium-Catalyzed Sonogashira Coupling of Aryl halides

Manoj Trivedi*a, Gurmeet Singha, Abhinav Kumara, and Nigam P. Rathc

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x

Four copper(I) complexes \([\text{Cu}_4(\mu_2-\text{Cl})_2(\mu_4-\text{dtbpf})_2] (1), \quad [\text{Cu}_4(\mu_2-\text{Br})_2(\mu_4-\text{dtbpf})_2] (2), \quad [\text{Cu}_4(\mu_2-\text{I})_2(\mu_4-\text{dtbpf})_2] (3)\) and \([\text{Cu}_4(\mu_2-\text{CN})_2(\kappa^2-\text{dtbpf})_2] (4)\) were prepared using CuX (X=Cl, Br, I, CN) and 1,1′-bis(di-tert-butylphosphino) ferrocene (dtbpf) in 2:1 molar ratio in DCM:MeOH (50:50 V/V) at room temperature. These complexes have been characterized by elemental analyses, IR, ¹H and ³¹P NMR, ESI-MS and electronic absorption spectroscopy. Molecular structures of the complexes 1, 2 and 3 were determined crystallographically. Complexes 1 and 3 are tetrameric Cu(I) pseudo-cubane like structures with CuCl₄ core, and stepped cubane-like structure with Cu₄I₄ core, respectively, whereas complex 2 shows trimeric copper(I) framework containing two \([\text{Cu}_3(\mu_2-\text{Br})_3(\mu_4-\text{Br})]\) units that are bridged by three bidentate \(\mu_4\)-dtbpf ligands. Each \([\text{Cu}_4(\mu_2-\text{Br})_2(\mu_4-\text{Br})]\) units form a pyramid with one copper atom at the apex and one of the triangular faces capped by one bromine atom. All the complexes were found to be efficient catalysts for Sonogashira reaction. The coupling products were obtained in moderate to good yields (58-99%) by using Pd loadings to 0.2 mol% as well as complex loading to 0.1 mol%. The ³¹P NMR studies show that all the complexes are unstable during the course of tandem catalytic reaction and dtbpf ligand migrates from copper(I) to palladium(II), which promotes palladium Sonogashira cross-coupling of activated and non-activated aryl halides.

Introduction

During the last four decades, ferrocenyl diphosphines have received significant research interest because of their extensive applications as ligands for a wide variety of transition metal catalysed transformations. ¹ Although there are many different types of ferrocenyl diphosphines, the most common are 1,1′-bis(diphenylphosphino) ferrocene (dppf)⁵ and 1,1′-bis(di-tert-butylphosphino) ferrocene (dtbpf).³ These ligands have significant advantages over other diphosphines which contain alkylic rather than metalloocene-backbones.⁴ Recently it has been reported that dtbpf is superior to dppf for the Pd-catalyzed arylation of ketones and for certain Pd-catalyzed Suzuki couplings.⁵⁶ The tetraphosphine ligand \(\text{Fe}_{2}(\text{P}(ext{Me})_2_{2} \text{Bu}_4,1,1′,2,2′,4,4′-\text{tetakis(diphenylphosphino)-4,4′-di-tert-butylferrocene}, \text{acts} \text{as} \text{an} \text{efficient} \text{auxiliary in Sonogashira reaction} \text{in the presence of} \quad [\text{Pd}(\eta^5-\text{C}_5\text{H}_5)]_2 \text{in Pd-catalyzed reactions.}⁷\) Various Cu(I) complexes containing phosphine, N-heterocyclic carbene, imidazole, triazoles, hybrid nitrogen-sulfur ligands have been found to be versatile catalysts in catalytic reactions.⁸ We were interested in the structural properties of dtbpf complexes with simple salts, particularly copper(I) and their applications in cross-coupling reactions.⁹ As compared to the previously mentioned 1,1′-bis(phosphino)metalallocene ligands, dtbpf has not been studied extensively. To date, most of the work with dtbpf has focused on catalytic systems in which dtbpf is used as a ligand for the palladium catalyst.¹⁰ With these viewpoints and to explore other less expensive metal centre recently, our group¹¹ has explored the interaction of copper(I) thiocyanate with dtbpf for the construction of a tetranuclear copper(I) complex with a cubane-like structure and its application in palladium-catalyzed Sonogashira coupling reaction. To the best of our knowledge no structural report has been published on CuX: dtbpf (X=Cl, Br, I, CN). We decided to extend our studies in order to have a better understanding regarding the Cu(I) species present in the solid state as well as in solution. Herein we report the first syntheses, spectroscopic characterization, and catalytic properties of four copper(I) complexes \([\text{Cu}_4(\mu_2-\text{Cl})_2(\mu_4-\text{dtbpf})_2] (1), \quad [\text{Cu}_4(\mu_2-\text{Br})_2(\mu_4-\text{Br})_2(\mu_4-\text{dtbpf})_2] (2), \quad [\text{Cu}_4(\mu_2-\text{I})_2(\mu_4-\text{Br})_2(\mu_4-\text{dtbpf})_2] (3)\) and \([\text{Cu}_4(\mu_2-\text{CN})_2(\kappa^2-\text{dtbpf})_2] (4)\) respectively.

Experimental Section

Materials and Physical Measurements

All the synthetic manipulations were performed under nitrogen atmosphere. The solvents were dried and distilled before use by following the standard procedures.¹² Copper(I) chloride,
Copper(I) bromide, Copper(I) iodide, Copper(I) cyanide and 1,1'-bis(di-tert-butylphosphino) ferrocene (all from Aldrich) were used as received. Elemental analyses were performed on a Carlo Erba Model EA-1108 elemental analyzer and data for C, H and N were within ±0.4% of calculated values. IR(KBr) was recorded using Perkin-Elmer FT-IR spectrophotometer. Electronic and emission spectra for 1-4 were obtained on a Perkin Elmer Lambda-35 and Horiba Jobin Yvon Fluorolog 3 spectrofluorometer, respectively. 1H and 31P NMR spectra were recorded on a JEOL AL-400 FTNMR instrument using tetramethylsilane and phosphoric acid as an internal standard, respectively. Mass spectral data were recorded using a Waters micromass LCT Mass Spectrometer/Data system. Thermogravimetric analysis was carried out in air using TA DSC Q 200 instrument with a heating rate of 10°C min⁻¹. Powder X-ray diffraction data were collected on Bruker D8 Discover X-ray diffractometer, with Cu-Kα radiation (λ = 1.5405 Å). Electrochemical properties of the complexes 1-4 were measured by cyclic voltammetry using platinum as the working electrode and the supporting electrolyte used was [NBu4]ClO4 (0.1 M) in 0.001 M dichloromethane solution of complexes 1-4 versus Ag/AgCl at a scan rate of 100 mVs⁻¹. GCMS studies were done with the Shimadzu-2000 instrument containing a DB-5/RFX-5MS-30Mt & 60Mt column of 0.25mm internal diameter. M° is the mass of the cation.

Syntheses of the complexes

Synthesis of [Cu₂(μ₂-ChCl)(μ₂-dtbpfb)] (1). 1,1'-bis(di-tert-butylphosphino) ferrocene (474 mg, 1 mmol) was added slowly to a solution of CH₂OH (15 mL) and CH₂Cl₂ (15 mL) containing copper(I) chloride (198 mg, 2 mmol). The resulting solution was refluxed for 24 hours. Slowly, color of the solution changed from orange to yellowish orange. The resulting solution was filtered and saturated with hexane and left for slow evaporation. Orange colored crystals suitable for X-ray studies were obtained after two days. Yield: (1.075 g, 80%). Anal. Calc. for C₃₂H₅₂P₆Cu₂Fe₂C₂: C, 46.40; H, 6.54. Found: C, 46.43; H, 6.85. IR(cm⁻¹, KBr): ν = 3348, 3356, 3094, 2941, 2895, 2862, 1637, 1475, 1458, 1389, 1365, 1178, 1157, 1037, 932, 831, 574, 494, 471. 1H NMR (δ ppm, 400 MHz, CDCl₃): 2.46 (8H, t, J = 8.8 Hz, 72H, CH₂). 31P(1H): δ 31.14 (s) (sharp). UV/Vis: λ max (ε (dm³ mol⁻¹ cm⁻¹)) = 290 (14770), 284 (34421). ESI-MS (m/z): 1349.9 (M⁺).

Synthesis of [Cu₂(μ₆-Br)(μ₆-Br₂)(μ₂-dtbpfb)] (2). 1,1'-bis(di-tert-butylphosphino) ferrocene (474 mg, 1 mmol) was added slowly to a solution of CH₂OH (15 mL) and CH₂Cl₂ (15 mL) containing copper(I) bromide (286 mg, 2 mmol). The resulting solution was refluxed for 24 hours, and color of the solution changed from orange to yellowish orange over this period. The resulting solution was filtered and saturated with hexane and left for slow evaporation. Yellow color crystals suitable for X-ray studies were obtained after four days. Yield: (1.485 g, 65%). Anal. Calc. for C₃₂H₅₂Br₆P₆Cu₂Fe₂C₂: C, 40.98; H, 5.78. Found: C, 41.12; H, 5.95. IR (cm⁻¹, KBr): ν = 3342, 3106, 3082, 2945, 2922, 2895, 2864, 2714, 2368, 2345, 2125, 1718, 1475, 1458, 1390, 1365, 1307, 1177, 1155, 1061, 1037, 934, 890, 850, 830, 813, 745, 629, 604, 577, 547, 492, 473, 438. 1H NMR (δ ppm, 400 MHz, CDCl₃): 2.46 (8H, t, J = 8.8 Hz, 72H, CH₂). 31P(1H): δ 31.14 (s) (sharp). UV/Vis: λ max (ε (dm³ mol⁻¹ cm⁻¹)) = 299 (9930). ESI-MS (m/z): 2283.5 (M⁺).**

Synthesis of [Cu₄(μ₂-I)(μ₂-I₂)(μ₂-dtbpfb)] (3). 1,1'-bis(di-tert-butylphosphino) ferrocene (474 mg, 1 mmol) was added slowly to a solution of CH₂OH (15 mL) and CH₂Cl₂ (15 mL) containing copper(I) iodide (380 mg, 2 mmol). The resulting solution was refluxed for 24 hours. Solution color changed slowly from orange to reddish orange color. The resulting solution was filtered and saturated with hexane and left for slow evaporation. Orange color crystals suitable for X-ray studies were obtained after three days. Yield: (1.197 g, 70%). Anal. Calc. for C₅₂H₈₆P₆Cu₄Fe₄C₄: C, 36.49; H, 5.15. Found: C, 36.63; H, 5.20. IR (cm⁻¹, KBr): ν = 3430, 3097, 2942, 2894, 2662, 1637, 1458, 1389, 1364, 1175, 1157, 1035, 936, 817, 544, 493, 470, 439. 1H NMR (δ ppm, 400 MHz, CDCl₃): 5.32 (s, 8H, CH₃). 31P(1H): δ 28.31 (s) (sharp). UV/Vis: λ max (ε (dm³ mol⁻¹ cm⁻¹)) = 484 (48586), 272 (12832). ESI-MS (m/z): 1710.8 (M⁺).**

Synthesis of [Cu₄(μ₂-CN)(μ₂-dtbpfb)] (4). 1,1'-bis(di-tert-butylphosphino) ferrocene (474 mg, 1 mmol) was added slowly to a solution of CH₂OH (15 mL) and CH₂Cl₂ (15 mL) containing copper(I) cyanide (179 mg, 2 mmol). The resulting solution was refluxed for 24 hours. Color of the solution changed slowly from orange to reddish orange. The resulting solution was filtered and saturated with hexane. In a couple of days reddish orange powder was precipitated which was washed several times with diethyl ether, and vacuum-dried. Yield: (0.789 g, 70%). Anal. Calc. for C₅₂H₈₆N₆P₆Cu₄Fe₄C₄: C, 57.49; H, 7.81. Found: C, 57.64; H, 7.85. IR (cm⁻¹, KBr): ν = 3407, 2925, 2225, 2138, 1541, 1366, 1143, 1157, 1020, 813, 656, 602, 493. 1H NMR (δ ppm, 400 MHz, CDCl₃): 5.32 (s, 8H, CH₃). 31P(1H): δ 28.31 (s) (sharp). UV/Vis: λ max (ε (dm³ mol⁻¹ cm⁻¹)) = 374 (11159), 284 (9565). ESI-MS (m/z): 1127.2 (M⁺).**

X-ray structure determination

Intensity data sets for 1, 2 and 3 were collected on Bruker APEX II and Oxford X-calibur S CCD area detector diffractometers using graphite monochromated Mo-Kα radiation at 100(2) and 293(2) K. ApexII, SAINT and CrysalisPro RED software packages were used for data collection and data integration for 1 to 3. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on F². The non-hydrogen atoms were refined with anisotropic thermal parameters. All the hydrogen atoms were treated using appropriate riding models. Structures 1 and 2 were refined using solvent masking routine, SQUEEZE (Platon) as it was difficult to identify and model the solvent present in the lattice. Despite several attempts, we are not able to get better quality crystals for complex 3. This resulted in poor crystal data with higher R-factor. The crystal undergoes decomposition/solvent loss during data collection adding to the problem. PLATON was also used for analyzing the interaction and stacking distances.**

Sonogashira Catalytic Reactions

The reaction of aryl halides (3.38×10⁻³ mol, 1 equivalent), phenylacetylene (0.75 mL, 6.76×10⁻³ mol, 2 equivalent), and K₂CO₃ (0.935 g, 6.76×10⁻³ mol, 2 equivalent) with 0.001 equivalent of complex 1/2/3/4 and 0.002 equivalent [PdCl₂(n-C₅H₅)] (0.73 mg), at 120°C for 20 h in DMF (10 mL), under nitrogen, formed the coupling products. The progress of the
reaction was monitored by TLC using EtOAc and hexane as eluent. After completion, the reaction mixture was treated with EtOAc (10 mL) and water (3 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 5 mL). The combined organic solution was washed with brine (3 × 5 mL) and water (1 × 5 mL). Drying (anhydrous Na$_2$SO$_4$) and evaporation of the solvent provided a residue, which was purified on short pad of silica gel using EtOAc and hexane as eluent.

Results and Discussion

Synthesis

All the complexes [Cu$_4$(μ$_3$-Cl)$_4$(μ-dtbpf)$_2$] (1), [Cu$_4$(μ$_2$-Br)$_4$(μ$_3$-Br)$_2$(μ-dtbpf)$_2$] (2), [Cu$_4$(μ$_2$-I)$_2$(μ$_3$-I)$_2$(μ-dtbpf)$_2$] (3) and [Cu$_2$(μ$_3$-CN)$_2$(κ$_2$-dtbp)$_2$] (4) were prepared in high yield by the reaction of CuX (X= Cl, Br, I, CN) with 1,1′:bis(di-tert:butylphosphino)ferrocene ligand in a dichloromethane: methanol mixture (50:50 V/V) in 2:1 ratio under refluxing condition (Scheme 1).

Complexes 1-4 were found to be air stable, non-hygroscopic solids and soluble in dimethylformamide, dimethylsulfoxide and halogenated solvents but insoluble in petroleum ether and diethyl ether. The elemental analyses were consistent with their chemical formula. More information about composition of the complexes was also obtained from ESI-MS. The positions of different peaks and overall fragmentation patterns in the ESI-MS of the respective complexes are consistent with their formulations. The IR spectrum of complex 4 exhibited characteristic band corresponding to v$_{CNN}$ of the bridging cyanide group at 2138 cm$^{-1}$ (See F4, supporting material). However, only one v$_{CNN}$ band agreed well with the presence of only one type of cyanide bridge between copper(I) atom15, which is in accordance with those reported in literature for bridging pseudohalide groups.16 1H and 31P{1H} NMR spectral data of the complexes are presented in the experimental section along with the other data. In 1H NMR spectra of the complexes 1, 2, 3 and 4, η$_5$-C$_5$H$_4$ protons of dtbp ligand resonated as a two broad singlets in the range of δ 4.63-4.04 ppm (See F:5 supporting material). The tert-butyl protons of dtbp were observed as a doublet at 1.32-1.36 ppm. The 31P NMR spectra of the complexes 1-4 showed a single resonance (δ 31.14(1), 37.39(2), 28.31(3), 66.78(4) ppm) for the dtbp ligand which suggested that all the phosphorus atoms were chemically equivalent (See F:6:F:9 supporting material). These chemical shifts were within the accepted range and are comparable to that of the chelating dtbp ligands.10c,17

All the complexes exhibited two bands at 374:484 nm and 272:299 nm in dichloromethane solution (Fig. 1; Table 1). The lower-energy band in the range 374-484 nm can be assigned to the d-d transition. The higher-energy band at 259:275 nm has been assigned to intraligand charge transfer. All the complexes upon excitation at their respective lowest energy band maximum (374:484 nm) were non-emissive, however, on excitation at 272-299 nm exhibited two broad emission at 334:341 nm and 415:419 nm, respectively (Fig. 2; Table 1). We tentatively assigned the emission of these complexes to XLCT, CC, and LC transitions as dtbp ligand does not show luminescence in the range of 495-900 nm.
Dalton Transactions Accepted Manuscript

The electrochemical redox behavior of the complexes 1-4 were studied through cyclic voltammetry (CV) at the Pt electrode in dichloromethane solution (1mM) containing 0.1M tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte. The Ag/Ag\(^+\) in acetonitrile was used as reference electrode. The electrochemical parameters derived from these voltammograms (\(E_{pa}, E_{pc}, \Delta E\)) are given in Table 2. It is to be noted that the peak potential separation (\(\Delta E = E_{pa} - E_{pc}\)) is larger than the expected value for one electron transfer process (~60 mV, \(I_{pa}/I_{pc} = 1\)) for these complexes so, one can conclude that these complexes exhibit quasi-reversible redox behavior coupled with some chemical reaction. In comparison to the ferrocene standard (\(E = 0.19V\)), the potentials for these complexes are anodically shifted due to the electron withdrawing effect of the linker groups between the ferrocene units. In complexes 1 and 3, single cathodic peak are present at -173 and -714 mV, respectively.

Description of the Crystal Structures

Three X-ray structures emerged from the current study. Refinement details for all the structures are summarized in Table 1 in the SI, and selected bond lengths and angles and hydrogen bond parameters are presented in Table 2 and Table 3 in the SI, respectively. Complex 1 crystallizes in the orthorhombic crystal system, and the structure was solved in space group Fddd. The molecular structure of 1 is depicted in Fig. 4. Complex 1 reveals the tetranuclear copper(I) complex, which produces a 18-electron configuration at each copper without the need for any metal-metal bonds. The CuCl\(_4\) core of the molecule defines a rather distorted “cubane-like” framework, with the phosphorus atoms being approximately apical, thereby completing a pseudo-tetrahedral coordination provided by the bidentate dtbpf ligands in \(\kappa^2\)-manner and the four bridging chloro groups in \(\mu_2\)-manner about each Cu(I) atom. The Cu-CI bond lengths vary appreciably, ranging from 2.374(16) Å to 2.5269(16) Å \([\text{Cu(I)}-\text{Cl}(1)] = 2.4315(17) \text{ Å}\); \(\text{Cu(I)-Cl}] = 2.5269(16) \text{ Å}\); \(\text{Cu(I)-Cl}] = 2.374(16) \text{ Å}\). The tetramer is irregular with respect to the Cu···Cu separations (2.936:3.424 Å) and the Cl···Cl separations (3.378:3.953 Å). The six Cu···Cu distances are in the range of 2.936-3.424 Å, (average value = 3.200 Å). All these distances are sufficiently large to preclude the possibility of any significant direct Cu···Cu interaction. The Cl···Cl distances within the \([\text{Cu}_4(\mu_2-\text{Cl})_2(\mu-\text{dtbpf})_2]\) molecule spread over a slightly larger range than the Cu···Cu distances. Angles within the CuCl\(_4\) cube vary significantly from the idealized value of 90°. The Cu-Cl, and Cu-P bond distances are 2.374(16)-2.5269(16) Å, and 2.1950(17) Å, respectively and are comparable with other copper derivatives with ferrocenyl diphosphines.\(^{8,9,11,18}\) The two substituted Cp rings in the dtbpf ligand in 1 adopt the antiperiplanar staggered conformation.

Crystal packing in complex 1 is stabilized by C-H···Cl hydrogen bond interactions (See F11 supporting material). The contact distances for C-H···Cl interactions are in the range of 2.74-2.90 Å.
Complex 2 crystallized in the triclinic space group P-1. The molecular structure of 2 is depicted in Fig. 5. The structure of complex 2 exhibits a triangular copper(I) frameworks, where two \([\text{Cu}(\mu_3-\text{Br})\text{Br}(\mu_2-\text{Br})]\) units are bridged by three bidentate dtbpf ligands in \(\kappa^3\)-manner. Each \([\text{Cu}(\mu_3-\text{Br})\text{Br}(\mu_2-\text{Br})]\) units to form a pyramid with one copper atom at the apex and one of the

\[\text{Cu}(4)-\text{P}(4)= 2.2216(13) \text{ Å, Cu}(5)-\text{P}(5)= 2.2088(12) \text{ Å, Cu}(3)-\text{P}(3)= 2.2048(13) \text{ Å, Cu}(2)-\text{P}(2)= 2.2134(12) \text{ Å and Cu}-\text{Br}\]
\[\text{Br}(4)-\text{Cu}(4)= 2.4592(8) \text{ Å, Br}(5)-\text{Cu}(4)= 2.6900(9) \text{ Å, Br}(6)-\text{Cu}(4)= 2.7471(8) \text{ Å, Br}(4)-\text{Cu}(5)= 2.4740(8) \text{ Å, Br}(5)-\text{Cu}(5)= 2.6883(8) \text{ Å, Br}(6)-\text{Cu}(5)= 2.5669(8) \text{ Å, Br}(2)-\text{Cu}(3)= 2.4759(8) \text{ Å, Br}(3)-\text{Cu}(3)= 2.4308(7) \text{ Å, Br}(1)-\text{Cu}(3)= 3.054(9) \text{ Å, Br}(1)-\text{Cu}(2)= 2.4763(7) \text{ Å, Br}(3)-\text{Cu}(2)= 2.4311(7) \text{ Å, Br}(2)-\text{Cu}(2)= 3.027(7) \text{ Å.}\]

Such types of copper(I) complexes involving tetrahedral and trigonal chromophores and both triple- and double-bridging halides have been found in the tetranuclear ‘step’ \([\text{Cu}(\text{PPPh})\text{X}]_2\) \[^{18a,b,19}\text{ and ‘three:runged ladder’ }\text{Cu}(\mu_3-\text{X})(\mu_2-\text{dpmt})_2\] \((\text{X} = \text{I, Br or Cl})\) \[^{20}\text{ and ‘step’ }\text{Cu}(\text{X})(\text{PPPh})_2\] \((\text{X} = \text{I or Br})\) \[^{21}\text{ and ‘cubane’ }\text{Cu}(\text{X})(\text{dpmt})_2\] \((\text{X} = \text{I, Br or Cl})\) \[^{22}\text{ and ‘step’ }\] \((\text{X} = \text{I, Br or Cl})\)

indicating that there are no direct Cu···Cu interactions. The sum of all bonding angles of 359.8° and 343.2° for the tricoordinate and tetracoordinate copper ions in 2 indicates pyramid formation. The two substituted Cp rings in the dtbpf ligand in 2 adopt the antiperiplanar staggered conformation as well. Crystal packing in complex 2 is stabilized by C-H···Br hydrogen bond interactions (See F-15 supporting material). The contact distances for C-H···Br interactions are in the range of 2.90-3.14 Å.
Complex 3 crystallized in the orthorhombic space group Pca21. The molecular structure of 3 is depicted in Fig. 6. Complex 3 shows the tetranuclear copper(I) complex, which produces an 18-electron configuration at each copper without the need for any metal-metal bonds. The CuI₄ core for this molecule has a step structure, rather than a cubane-like configuration. The step structure of $[\text{Cu}(\mu_3-I)]_2(\mu_3-I)(\mu_4-$dtbpf)$_2$ is defined by three four-membered systems: Cu(I)-I(I)-Cu(II)-I(2) [plane I], Cu(1)-I(1)-Cu(4)-I(3)], and Cu(3)-I(3)-Cu(4)-I(4) [plane II]. The dihedral angle between planes I and II is 101.31°-102.23°, which is lower than that of $[\text{PPh}_3\text{Cu}]_4$.19 Atoms Cu(1), I(1), Cu(4), and I(3) are crystallographically coplanar. Atoms Cu(2), I(2), Cu(1), and I(1) are not precisely coplanar. The nonplanarity of this four-membered motif is conveniently described in terms of the dihedral angles of 135.09° between I(2)-Cu(2)-I(1) and I(2)-Cu(1)-I(2) and 133.27° between Cu(I)-I(2)-Cu(2) and Cu(I)-I(1)-Cu(2). Atoms in the step-like CuI₄ core of the $[\text{Cu}(\mu_3-I)]_2(\mu_3-I)(\mu_4-$dtbpf)$_2$ molecule have variable coordination numbers. Thus, Cu(1) and Cu(2) are of trigonal coordination (CN = 3), while Cu(3) and Cu(4) each have an essentially tetrahedral coordination environment (CN = 4). Atoms I(2) and I(4) have an angular geometry (CN = 2), while I(1) and I(3) are in pyramidal sites (CN = 3). As was previously seen for CuI₄ core by Churchill et al.,19 the copper-halogen distances show significant differences and increase systematically as the CN of the component atoms increases. In the present case, we have observed a similar pattern. The four copper atoms are exactly coplanar and show a parallelogram. These distances in “Cu₄ parallelogram” are comparable to the reported values. The four iodine atoms of $[\text{Cu}(\mu_3-I)]_2(\mu_3-I)(\mu_4-$dtbpf)$_2$ are precisely coplanar. Individual I-1 distances show considerably less variation than the Cu–Cu distances; these are I(1)-I(2) = 4.251 Å, I(2)-I(3) = I(1)-I(4) = 4.115 Å, and I(1)-I(3) = 3.974 Å. These distances are within the range reported for iodide derivatives of phosphine complexes.18,23 Angles within the four-membered rings defined by Cu(2)-I(2)-Cu(1)-I(1) and Cu(3)-I(3)-Cu(4)-I(4) vary grossly from 90°. Angles at the copper atoms are close to the ideal trigonal or tetrahedral values [I(2)-Cu(2)-I(1) = 111.9(2)°, I(1)-Cu(1)-I(2) = 102.30(2)°, I(3)-Cu(4)-I(4) = 100.62(19)°, and I(4)-Cu(3)-I(3) = 113.0(2)°, respectively] while angles at the iodine atoms are quite acute [Cu(2)-I(2)-Cu(1) = 63.14(18)°, Cu(2)-I(1)-Cu(1) = 60.90(17)°, Cu(3)-I(3)-Cu(4) = 60.30(17)°, Cu(3)-I(4)-Cu(4) = 67.30(18)°]. Angles between atoms in different planes of the step are not dependent upon the nature of the central atom. Small angles at the iodine atoms are common to species with a CuI₄ core, irrespective of the gross geometry of the molecule. The Cu-I-Cu angles are comparable to those in the other similarly related complexes with step and cubane-like structures. The reason for small Cu-I-Cu angles could be due to van der Waals repulsions between the halogen atoms. The Cu(trigonal)-P distance of 2.176(12) Å < 2.252(12) Å is slightly shorter than the Cu(tetrahedral)-P distance of 2.230(12) Å < 2.279(11) Å. The two substituted Cp rings in the dtbpf ligand in 3 adopt the antiperiplanar staggered conformation. Crystal packing in complex 3 is stabilized by C–H···I hydrogen bond interactions (See F-19 supporting material). The contact distances for C–H···I interactions are in the range of 3.00-3.16 Å.

Powder X-ray diffraction and thermal gravimetric analysis

All the four complexes (1, 2, 3 and 4) have been further studied by powder X-ray diffraction (PXRD) (See F-22 to F-25 supporting material) and thermogravimetric analysis (TGA) (See F-26 to F-29 supporting material). There is good agreement between the experimental and calculated powder XRD patterns for the complexes 1, 2, and 3, thus supporting phase purity. The thermogravimetric (TG) curves over 30-800°C indicates that in complex 1, weight loss takes place in four close and consecutive steps from 30°C to 784°C. Weight loss occurred in two steps in complex 2. The first weight loss is between 30°C to 425°C whereas the second weight loss is finished around 700°C. There are two weight loss steps in complex 3. The first one is from 32°C to 333°C, the second one is finished around 600°C. Complex 4 is stable up to ~250°C but after that there is a slight weight increase till 280°C. Followed by that, there is a weight loss from 410°C to 745°C.

Catalytic Performances in Sonogashira Alkylation Reactions

The comparative catalytic activities of the Cu and newly synthesized copper(I) complexes were investigated in Sonogashira alkynylation of activated and non-activated aryl halides according to the previously established method developed by Hierso et al.24 The comparative catalytic performances for the coupling of the activated and non-activated aryl halides with phenylacetylene are presented in Table 4. It can be seen that, without palladium, the system incorporating only either complex 1-4 or CuI were inefficient (Table 4, entry 1 & 2). We have also found that no reaction occurred in the absence of a copper source and dtbpf (Table 4, entry 3). As shown in Table 4, we isolated 10-11% yield of coupling product in the presence of [Pd(allyl)Cl]₂/dtbpf (Table 4, entry 4) with no formation of homocoupling products under these conditions indicating that dtbpf and copper source are crucial to the cross-coupling reaction. Actually, as shown in Table 4, we observed a difference in catalytic activity, that is, complexes 1-4 exhibited higher catalytic activity compared to CuI. In the case of coupling between bromobenzene and phenylacetylene in the presence of either 0.4 mol% of CuI or CuI/dtbpf and 0.2 mol% of [Pd(allyl)Cl]₂, the isolated yield of alkyenylation product was 20-25%, while alkyne...
dimerization products were formed in appreciable amounts (entry 5 & 6) so the use of complexes 1-4 in the presence of [Pd(allyl)Cl]₂ was more efficient for this coupling. The use of the complexes 1-4 confirmed that the pre-stabilization of copper(I) structures with a bidentate ferrocenyl phosphine ligand promotes the palladium cross-coupling of activated and non-activated aryl halides with phenylacetylene. The desired coupled product in 60-95% yield was obtained (75-85%, 75-95% and 60-70%, respectively, Table 4 entries 7, 8, and 9) by employing 0.1 mol% of CuI with 0.2 mol% of [Pd(allyl)Cl]₂.

The catalytic activities of various copper(I) complexes such as [Cu(µ-SCN)(κ^2-P,P-dtbpf)₄], [Cu(µ-I)(µ-Br)₂(µ-Br)(µ-dtbpf)₃], [Cu(µ-I)(µ-I)₂(µ-dtbpf)₂] and [Cu(µ-CN)(κ^2-dtbpf)₂] were tested in Sonogashira alkylation reactions. Among them, [Cu(µ-SCN)(κ^2-P,P-dtbpf)₂] and [Cu(µ-I)(µ-I)₂(µ-dtbpf)₂] are more efficient copper source as compared to others in catalyzing this reaction.

Interactions of Copper(I) complexes 1-4 with Palladium(II)

The stability of all the complexes 1-4 were checked by ³¹P and ¹H NMR experiments with palladium allyl chloride during the course of tandem catalytic reaction. Upon mixing the complex 1 with 0.5 equivalent of the [Pd(allyl)Cl]₂ and heating for 2 h at 120°C, a portion of the dtbpf ligand is transferred to palladium, giving rise to the palladium complex [PdCl(µ-C₅H₇)(κ^2-P,P-dtbpf)] which was clearly characterized in the ³¹P NMR by two sharp singlets at 31.14 ppm (complex 1) and 57.27 ppm (palladium complex) of equal intensity (See F-30 supporting material). Further heating the mixture for 4 h at 120°C, the equilibrium is not modified. Upon heating the mixture for 20 h at 120°C, the total transfer of the ligand from copper to palladium centre has been observed in complex 1 (See F-31 supporting material). The same kind of experiments was conducted with the complexes 2-4 in CDCl₃. Analogous behaviour was observed with the complexes 2-4 in CDCl₃ (Figure F-32 to F-34), showing the total transfer of the ligand from copper to palladium (See F-35 to F-37 supporting material).

Similar type of finding has been found in copper(I) iodide triphosphine adducts used at low loading for Sonogashira alkylation of demanding halide substrates, for which ligand exchange study between copper and palladium have been reported. The generalized results of Pd/Cu ligand exchange has been summarized in a scheme 2. The ligand transfer from the complexes 1-4 might take place due to the relatively soft nature of Pd(II) precursor which results in the transmetallation reaction to form [PdCl(µ-I₂)(κ^2-P,P-dtbpf)] (See F-38 to F-39 supporting material) when the palladium precursor is simply mixed.

CONCLUSIONS

We have synthesized and structurally characterized a series of copper(I) complexes [Cu(µ-I)(κ^2-P,P-dtbpf)₂] (1), [Cu(µ-I)(µ-Br)₂(µ-dtbpf)₃] (2), [Cu(µ-I)(µ-I)₂(µ-dtbpf)₂], and [Cu(µ-CN)(κ^2-dtbpf)₂] (4) in both solid state and solution. The interesting features of complex 1 and 2 are Cu(I) pseudo-cubane with Cu₄Cl₄ core and stepped cubane-like structure with Cu₄I₄ core, whereas complex 3 shows a triangular copper(I) frameworks, where each [Cu(µ-I)(µ-I)₂(µ-Br)] units forms a pyramid with one copper atom at the apex and one of the triangular faces capped by one bromine atom. The newly synthesized complexes were successfully used in the Sonogashira cross-coupling of activated and non-activated aryl halides with phenylacetylene. While all the complexes screened were found to be catalytically active, the best results were obtained for the complexes [Cu(µ-I)(κ^2-P,P-dtbpf)₂] and [Cu(µ-I)(µ-I)₂(µ-dtbpf)₂] in comparison to CuI. The ³¹P NMR studies show
that complexes 1-4 are unstable during the course of tandem catalytic reaction and dbpbf ligand migrates to palladium(II) from copper(I), which promotes palladium Sonogashira cross-coupling of activated and non-activated aryl halides. Further works towards development of new copper(I) complexes containing various chiral and achiral ferrocene phosphine ligands and their catalytic properties is in progress in our laboratory.

Acknowledgements

Thanks are due to Department of Science and Technology, New Delhi for financial assistance (Grant No. SR/FT/CS-104/2011). We also thank to the Director, USIC, and Dr. R. Nagarajan, University of Delhi, Delhi, for providing analytical, spectral, PXRD and Single Crystal X-ray Diffraction facilities and GC-MS facility from AIRF center of JNU, New Delhi. Special thanks are due to Professor P.J. Sadler, University of Warwick, UK and Professor Josef Michl, University of Colorado, USA for their kind encouragement. We acknowledge funding from the National Science Foundation (CHE0420497) for the purchase of the APEX II diffractometer.

Notes and references

aDepartment of Chemistry, University of Delhi, Delhi-110007, INDIA. Email: manojtri@gmail.com
bDepartment of Chemistry, University of Lucknow, Lucknow-226007, INDIA
cDepartment of Chemistry & Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA. Email: rathn@umsl.edu
dElectronic Supplementary Information (ESI) available: CCDC reference numbers 1002754(1), 1002756 (2), 924712 (3). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x/

The syntheses and characterization of copper(I) complexes \([\text{Cu}_4(\mu_3-\text{Cl})_4(\mu-\text{dtbpf})_2] (1), [\text{Cu}_6(\mu_3-\text{Br})_4(\mu_2-\text{Br})_2(\mu-\text{dtbpf})_2] (2), [\text{Cu}_4(\mu_2-\text{I})_2(\mu_3-\text{I})_2(\mu-\text{dtbpf})_2] (3)\) and \([\text{Cu}_2(\mu_1-\text{CN})_2(\Kappa^2-\text{dtbpf})_2] (4)\) are reported. These complexes were shown to exhibit efficient catalytic activity compared to CuI in Sonogashira reaction by using Pd loadings to 0.2 mol\% as well as complexes 1/2/3/4 to 0.1 mol\%.