This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Halogenophilic pathway in the reactions of transition metal carbonyl anions with [(η⁶-iodobenzene)Cr(CO)₃]

Petr K. Sazonov, Vasiliy A. Ivushkin, Victor N. Khrustalev, Natal'ya G. Kolotyrkina, and Irina P. Beletskaya

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

The paper provides a first example of formal nucleophilic substitution by halogenophilic pathway in Cr(CO)₃ complexes of haloarenes with metal carbonyl anions. All metal carbonyl anions examined attack [(η⁶-iodobenzene)Cr(CO)₃] at halogen, which is shown by aryl carbanion scavenging with t-BuOH. The reaction with K[CPtFe(CO)₃] gives only the dehalogenated arene, but the reaction with K[CP*Fe(CO)₃] (CP*=η⁶-C₅H₅) results in nucleophilic substitution to give [(η⁶-C₆H₄FeCP*CO)₂Cr(CO)₃]. Reaction with Na[Re(CO)₅] quantitatively gives the iodo(acyl)rhenate anion Na[(η⁶-C₆H₄C(O)Re(CO)₃]Cr(CO)₃] and in case of K[Mn(CO)₅] a mixture of σ-aryl complexes [(η⁶-C₆H₄Mn(CO)₃]Cr(CO)₃] and K[(η⁶-C₆H₄Mn(CO)₃]Cr(CO)₃]. An analogous rhenium complex Na[(η⁶-C₆H₄Re(CO)₅]Cr(CO)₃] is formed from the initial iodo(acyl)rhenate upon prolonged standing at 20°C, and its structure (in the form of [NEt₄]⁺ salt) is established by X-ray diffraction analysis. The reaction of [(η⁶-chlorobenzene)Cr(CO)₃] with K[CPtFe(CO)₃], on the contrary, proceeds by common S₈Ar mechanism.

Introduction

Nucleophilic substitution with a transition-metal centered nucleophile is arguably one of the easiest ways to form a transition-metal carbon σ-bond. For more than five decades metal carbonyl anions, carbonylmetallates, have been widely used for that purpose due to their nucleophilic reactivity, availability and better stability, compared to other transition metal anions. Besides aliphatic substitution, carbonylmetallates can be also used to create transition metal – sp³-carbon bond in nucleophilic vinylic and aromatic substitution reactions. Among the notable examples are the reactions of carbonylmetallates with Cr(CO)₅ π-complexes of haloarenes leading to heterobimetallic complexes with bridging σ,π-arene ligand. Complexation with Cr(CO)₅ activates haloarene towards nucleophilic attack and these reactions display rather a rich and interesting chemistry of competitive nucleophilic aromatic substitution and haloarene reduction. It was concluded, however, that more detailed studies are required to define both the mechanism of the substitution and the relationship between the substitution and dehalogenation processes.

On the other hand, transition metal carbonyl anions gained significant importance as model systems in organometallic chemistry, and were used by our group to study the mechanisms of nucleophilic vinylic and aromatic substitution by metal-centered nucleophiles. In the reactions with halopentafluorobenzenes and bromtrifluoroethylene we were able to prove a halogenophilic mechanism of nucleophilic substitution. In this pathway carbonylmetallate first attacks not at the carbon atom, but at halogen, and the “normal” nucleophilic substitution product is formed on the second step by the coupling of carbanion and metal carbonyl halide intermediates (Scheme 1).

Scheme 1. The halogenophilic mechanism of nucleophilic vinylic substitution

Later it was shown, that the halogenophilic attack is one of the major pathways in the reactions of carbonylmetallates with vinyl halides. However, the scope of the same mechanism in aromatic substitution with carbonylmetallates remained unexplored, the known examples are still limited to the pentafluorophenyl halides. The aim of this work is to study the reaction mechanism of carbonylmetallates with Cr(CO)₅ π-complexes of chloro- and iodoarenes, and to seek evidence for or against the halogenophilic pathway in both substitution and competing reduction processes.
Table 1. Products of the reaction of η^5-C$_5$H$_5$XCr(CO)$_3$ (X=Cl, I) with K[(Cr$_5$R$_3$)Fe(CO)$_2$] (R=H, CH$_3$) in THF, 22°C.

<table>
<thead>
<tr>
<th>entry</th>
<th>ArX</th>
<th>Reagent and additive</th>
<th>ArFp or ArFp*</th>
<th>ArH</th>
<th>Fp$_2$ or (Fp*)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{C}{6}\text{H}{5}\text{Cl}$</td>
<td>KFp, no additive</td>
<td>80</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>$\text{C}{6}\text{H}{5}\text{Cl}$</td>
<td>KFp, t-BuOH</td>
<td>80</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>$\text{C}{6}\text{H}{5}\text{I}$</td>
<td>KFp, no additive</td>
<td>-</td>
<td>25</td>
<td>~100</td>
</tr>
<tr>
<td>4</td>
<td>$\text{C}{6}\text{H}{5}\text{I}$</td>
<td>K[Fp*], no additive</td>
<td>60</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>$\text{C}{6}\text{H}{5}\text{I}$</td>
<td>K[Fp*], t-BuOH</td>
<td>-</td>
<td>50</td>
<td>~100</td>
</tr>
</tbody>
</table>

*Product yields were determined by 1H NMR spectroscopy using durene as internal standard.

Results and Discussion

The reaction of Cr(CO)$_3$ complexes of chlorobenzenes with K[CpFe(CO)$_2$] (KFp) was studied most extensively by Heppard et al.8 The reaction usually gives the nucleophilic substitution products (ArFp) in good yields accompanied by minor amounts of reduced haloarene (ArH) and [Fp$_2$]. To test for aryl carbanion intermediates in this reaction we performed it in the presence of an “anion scavenger” – t-BuOH, the test previously used by us13 and others18,20 to detect the halogenophilic reaction mechanism (Scheme 1). The yield of the ArFp complex, and the substitution/reduction product ratio (ArFp/Fp$_2$) did not change in the presence of t-BuOH (en. 2, Table 1), which effectively rules out the halogenophilic pathway for the nucleophilic substitution reaction.

Scheme 2. Reaction of η^5-$\text{C}_6\text{H}_5\text{I}$Cr(CO)$_3$ with K[Cp*Fe(CO)$_2$] (R=H, CH$_3$).

Haloarene reduction becomes the only observed process in the reaction of KFp with $[\eta^5$-iodobenzeneCr(CO)$_3$], with no substitution product detected in the reaction mixture. A considerable amount of ArH formed without an added alcohol may be explained by aryl carbanion proton abstraction from Cpgroup of Fp$_2$ or FpI. If this is indeed the case, one can try to exclude this proton source (and aryl carbanion sink) by replacing KFp with its pentamethylated analog, K[C$_5$Me$_5$Fe(CO)$_2$] (K[Fp*]).

We were pleased to find that the reaction of K[Fp*] with $[\eta^5$-$\text{C}_6\text{H}_5\text{I}$Cr(CO)$_3$] gave the $[\eta^5$-$\text{C}_6\text{H}_5\text{Fp*}$]Cr(CO)$_3$ complex with 60% yield (Scheme 2). The addition of t-BuOH to the reaction mixture suppressed its formation, completely proving the halogenophilic pathway for this substitution reaction. The amount of ArH formed in the presence of t-BuOH (0.5 mol per mol of K[Fp*]) corresponds to a stoichiometry of halogenophilic reaction when it gives [Fp$_2$] (eqn (1)).

$$\text{ArI} + 2\text{KFp*} \rightarrow \text{[ArK + Fp*] + KFp*}$$

This journal is © The Royal Society of Chemistry [year]
Dalton Transactions

Na[Re(CO)₅] are instantaneous at room temperature, but its reaction with less nucleophilic K[Mn(CO)₅] is not, its progress can be monitored spectroscopically and in this case a more complex picture arises. Its main product is not the iodo(aryl)manganate, by the analogy with Na[Re(CO)₅], but the iodo(aryl)manganate anion, K[ArMnI(CO)₅] (Ar=η⁵-C₆H₅) (Scheme 4, Table 2). The anionic product is easily identified by its characteristic CO-signal patterns in IR and ¹³C NMR spectra, closely resembling that of halo(acyl)metallates, but with no bridging acyl carbon signal (δ=250 ppm, Fig. S3 and S4 of the ESI). In contrast to acyl anions, addition of 18-crown-6 has a negligible effect on the IR and NMR spectra of K[ArMnI(CO)₅], indicating that it forms solvent-separated ion pairs in THF solution.

Table 2. Yields of the arene products in the reaction of [(η⁵-C₆H₅)JCr(CO)₅] with K[Mn(CO)₅], THF, 22°C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive</th>
<th>K[ArMnI(CO)₅]</th>
<th>[ArMn(CO)₅]</th>
<th>ArH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18-crown-6</td>
<td>50</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>t-BuOH</td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
</tbody>
</table>

Minor amounts of [Mn(CO)₅] and [Mn(CO)₅] were also detected by IR spectroscopy. Minor amount of K[Mn(CO)₅] was also detected by IR.

Also present in the mixture is the neutral pentacarbonyl manganese σ-aryl complex, [ArMn(CO)₅], together with the iodoarene reduction product, [(η⁵-C₆H₅)Cr(CO)₅]. However, K[ArMnI(CO)₅] and [ArMn(CO)₅] are not the initial products, as they are both absent at the early stages of the reaction (10-30 min) whereas the signals of the two intermediates are seen in ¹H and ¹³C NMR spectra (Fig. S5 of the ESI).

The intermediate, appearing first and decaying faster (~1 hr), exhibits signal patterns characteristic for a iodo(aryl)manganate anion: the ¹³C NMR signal of bridging CO group at 285.6 ppm, the signal of C-para of C₆H₅ group at 95.8 ppm, in lower field than that of ortho and meta carbons (94.8, 91.7 ppm). The IR band at 2073 cm⁻¹ observed in the first minutes of reaction presumably also belongs to this intermediate and is replaced towards the end of the reaction (4 hr) by the band at 2060 cm⁻¹ belonging to K[ArMnI(CO)₅] (Fig. S6 of the ESI).

Upon the addition of 18-crown-6 the band at 2073 cm⁻¹ is immediately replaced by the band at 2060 cm⁻¹, which may be explained by the dissociation of contact ion pairs of the iodo(aryl)manganate (Fig. S7 and S8 of the ESI). Signals presumably belonging to this intermediate are also observed in ¹³C NMR spectrum of the reaction performed in the presence of 18-crown-6 (93.63, 92.20, and 93.50 ppm). The final products composition in the presence of 18-crown-6 is simpler and contains only K[ArMnI(CO)₅] and ArH (en. 2, Table 2) and minor amount of K[Mn(CO)₅].

These observations lead one to conclude that acylmanganate, K[ArC(O)MnI(CO)₅] is the initial product of the reaction, which then transforms into [ArMn(CO)₅] and K[ArMnI(CO)₅]. Besides, this is in good agreement with the previous data on the facile decomposition of halo(aryl)manganates into σ-aryl complexes in the reactions of K[Mn(CO)₅] with C₆F₅X (X=Br,I). Halogenophilic character of the [(η⁵-C₆H₅)JCr(CO)₅] reaction with K[Mn(CO)₅] was further confirmed by the aryl carbamation intermediate trapping with proton donor. With t-BuOH added, no σ-aryl manganese complexes were formed, and [(η⁵-C₆H₅)Cr(CO)₅] became the only arene product (Scheme 4, en.3, Table 2), while [Mn(CO)₅]I was mainly trapped in the form of K[t-BuOC(O)Mn(CO)₅] and [Mn₂(CO)₁₃] according to IR spectrum.

A rate plot consistent with second-order kinetics is observed for the reaction of [(η⁵-C₆H₅)JCr(CO)₅] with K[Mn(CO)₅] in the presence of t-BuOH (Fig. S9 and S10 of the ESI), allowing for the second order rate constant (kobs=0.031 l/mol·s) to be calculated from this data. However, the same reaction without an added proton donor is definitely slower (kobs=0.010-0.013) and deviates from the second order rate law. The reversible halogen-metal exchange step in the case of relatively weak K[Mn(CO)₅] nucleophile may be the cause underlying this kinetic behavior.

We will refer here to the general Scheme 1 because it shows the same mechanism; reversible halogen-metal exchange step means that k₁>k₅. When the intermediate carbamation is captured by the proton donor, and provided this step is sufficiently fast (kₕ>p=k₁), the first step becomes irreversible and the overall rate increases (kobs=k₅HME).

The transformation of acylmanganate K[ArC(O)MnI(CO)₅] into arylmanganate may go through the elimination of KI followed by aryl migration, to give the neutral σ-aryl complex in which the CO-ligand is then substituted by iodide anion (Scheme 4).
5). However, $[\text{ArMn(CO)}_5]$ was not observed as intermediate, i.e. its signals appeared only when the signals of $\text{K[ArMnI(CO)}_4]$ product were already visible in the spectrum (Fig. S5 of the ESI). Yet, this alternative possibility of direct elimination of CO from $\text{K[ArC(O)MnI(CO)}_4]$ seems less likely. DFT calculations showed that the barrier for the CO elimination from $\text{Na[(η}_6\text{K}_6\text{C}_6\text{H}_5\text{C(O)MnI(CO)}_4]Cr(CO)_3}$ is much higher (32.9 kcal/mol) than the barrier for elimination of NaI (19.8 kcal/mol).‡

Moreover, the reaction of $\text{[Mn(CO)}_5\text{Br]}$ with $\text{[(C}_6\text{H}_5\text{Li)Cr(CO)}_3]}$ in the presence of P(OMe)$_3$ was reported to give the product of bromide (not CO) substitution in the intermediate bromo(acyl)manganate, i.e. $\text{[cis-(MeO)}_3\text{P)Mn(CO)}_4(\eta^6$-C$_6H_5$C(O))Cr(CO)$_3]$.‡, 23, 24

The $\text{K[ArMnI(CO)}_4]$ complex was not isolated and therefore was characterized in solution with spectroscopic methods (IR, 13C NMR and HR ESI MS). However, it was observed that the iodo(aryl)rhenate, $\text{K[ArC(O)ReI(CO)}_4]$ on prolonged standing in THF solution was also transformed into analogous iodo(aryl)rhenate. After 6 months, only 17% of iodo(aryl)rhenate was left and iodo(aryl)rhenate, $\text{K[ArReI(CO)}_4]$ was formed in 58% yield (eqn (2)). It was isolated in solid state as an [Et$_4$N]$^+$ salt (using the method from 10) and its structure was unambiguously established by single-crystal X-ray diffraction analysis.

$$\text{Na[[(η^6-C}_6\text{H}_5\text{C(O)Re(CO)}_4]}\text{Cr(CO)}_3] \xrightarrow{\text{THF, 6 month}} \text{Na[[(η^6-C}_6\text{H}_5\text{Re(CO)}_4]}\text{Cr(CO)}_3]$$ (2)

It should be pointed out, that the 1H and 13C NMR signal patterns of the $\text{K[ArMnI(CO)}_4]$ and of the isolated iodo(aryl)rhenate are quite similar, which confirms the identification of the former.

The downfield shift of the signals of ortho-protons (~6.05 ppm) and ortho-carbons (~113 ppm) is a distinctive spectrum feature and reflects the contribution of the metal carbene resonance structure (Fig. 1) in these complexes.

The structure of the iodo(aryl)rhenate complex is shown in Fig. 2. The coordination around rhenium is approximately octahedral, slightly distorted by an “umbrella” effect, the displacement of the two mutually trans carbonyl groups (C12-O6 and C11-O5) towards the aryl ring.‡, 22-27 The octahedral rhenium moiety adopts a “staggered” conformation relative to the plane of the aryl ring (C12-Re=C1-C2 torsion angle 51.7°). Iodine and the aryl group are expectedly in cis-position, which is the preferred configuration for [XYM(CO)$_4$] (M=Mn, Re) complexes. The Re1-C13 distance is significantly shorter (1.898 Å) than the other three Re-CO distances (1.978 – 2.007 Å), reflecting the stronger trans-effect of CO and aryl ligands compared to iodide ligand.

$\text{Na[[(η^6-C}_6\text{H}_5\text{C(O)Re(CO)}_4]}\text{Cr(CO)}_3] \xrightarrow{\text{THF, 6 month}} \text{Na[[(η^6-C}_6\text{H}_5\text{Re(CO)}_4]}\text{Cr(CO)}_3]$

Fig. 2. Molecular structure of [Et$_4$N][[(η^6-C}_6\text{H}_5\text{Re(CO)}_4]}\text{Cr(CO)}_3].

Selected bond distances (Å) and angles (°): Re1-1 2.8321(3), Re1-C1 2.214(3), Re1-C12 2.007(4), Re1-C13 1.899(4), Re1-C10 1.978(5), Cr1-C1 2.321(3), C1-C2 1.436(5), C2-C3 1.401(5), Cr1-C4 2.238(4), Cr1-C7 1.824(4), C11-Re=C12 172.9(1), C13-Re=C1 172.2(1), C12-Re=C1-C2 51.7(2)

There is no significant shortening of Re1-C$_\text{aryl}$ bond (2.214 Å) in comparison to the known rhenium π-aryl complexes (2.22-2.23 Å), and it is significantly longer than found in rhenium carbene.

Scheme 5. Pathway for iodo(aryl)manganate formation in the reaction of $[(η^6$-C$_6$H$_5$I)Cr(CO)$_3]$ with $\text{K[Mn(CO)}_5]$
complexes (2.09-2.13 Å). However, the contribution of metal carbene resonance structure (Fig. 1) can be traced in the slight elongation of C1-C6 (1.435 Å) and C1-C2 (1.424) bonds adjacent to rhenium, compared to 1.409 Å for the other four C-C bonds in the aromatic ring and a slight slipping of Cr(CO)3 unit away from C1 by 0.08 Å.

Conclusions

The reactions of iodo-benzene Cr(CO)3 π-complex with carbonylmetallates show an illustrative example of halogenophilic attack in nucleophilic aromatic substitution. Depending on the carbonylmetallate anion, the final product of the reaction may be the σ-aryl complex (with K[(C5Me5)Fe(CO)5]), the iodo(acyl)rhenate anion (with Na[Re(CO)5]) or the iodo(aryl)manganate anion (with K[Mn(CO)5]), but in all these cases the reaction proceeds via initial attack of carbonylmetallate anion at halogen in [η5-iodo-benzene]Cr(CO)3. Thus, the halogenophilic pathway of nucleophilic substitution is common for aryl halides with different types of activation – polyfluorinated and π-coordinated.

Experimental

General

1H NMR (400.13 MHz) and 13C NMR (100.61 MHz) spectra were obtained on a Bruker Avance spectrometer at 22°C and referenced to the signals of the solvent. IR spectra were recorded on Thermo Nicolet IR-200 spectrometer in THF in a vacuum into thin-walled glass tubes (~3.5 mm diameter) which were sealed-off with flame and placed into standard NMR tubes containing acetone-d6 for the lock signal. Product yields were determined by the integration of the 1H NMR spectra of the reaction solutions containing an internal standard (durene). The 1H NMR spectra of the isolated compounds or literature data.

The [η5-C5H5]Cr(CO)3 was prepared according to published procedure3 by metalation of [(η5-C5H5)Cr(CO)3] with n-ButLi in THF and subsequent quenching of the resulting aryllithium with iodo. 1H NMR (THF, 400.13 MHz), δ: 5.77 (m, 2H), 5.40 (m, 3H). 13C NMR (THF, 100.6 MHz), δ: 233.39 (CO), 94.39 (Cquat), 101.41, 95.24, 91.61 (CH). IR (THF), v/cm−1: 1901 vs (ν=4130), 1973 vs (ν=3830).

Reactions of [η6-haloarene]Cr(CO)3] with K[η5-]

Reactions were performed by adding haloarene (0.2 mmol) to a THF solution of carbonylmetallate (0.2 mol in 3 ml THF) prepared in situ by the reduction of the dimer with Na[Re(CO)5]. Product yields determined by 1H NMR are given in Table 1.

Nucleophilic substitution product was isolated by column chromatography on silica gel (Mercck 60) using petroleum ether – CH2Cl2, 2:3 as eluent. [η5-(C5Me5)Fe(CO)5]Cr(CO)3]. 1H NMR (THF, 400.13 MHz), δ: 5.27 (m, 4H), 5.14 (m, 1H), 1.71 (s, 15H). 13C NMR (THF, 100.6 MHz), δ: 235.88 (3CO), 216.97 (2CO), 137.30 (ipso-Ar), 107.14, 96.79, 99.60 (CH), 97.31 (ipso-Cp*), 9.55 (CH3). IR (THF), v/cm−1: 1873 vs, 1950 vs, 1959 vs, 1873 vs, 1950 vs, 1959 vs, 2011 vs. HR ESI MS, m/z (relative intensity, %): 498.9683 [M+K]+ (50%), 482.9945 [M+Na]+ (100%). Calcd. for C27H20CrFeKO, 498.9702, for C27H20CrFeNaO, 482.9963.

Reaction of [η5-C5H5]Cr(CO)3 with Na[Re(CO)5]

Reaction of [η5-C5H5]Cr(CO)3 with Na[Re(CO)5] (24 mg, 0.071 mmol) produced a single product, quantitatively formed in solution, Na[η5-C5H5Cr(CO)3(O)Re(CO)5]Cr(CO)3]. 1H NMR (THF, 400.13 MHz), δ: 5.82 (m, 2H), 5.49 (m, 3H). 13C NMR (THF, 100.6 MHz), δ: 259.58 (1CO), 233.95 (3CO), 189.11 (2CO), 188.45 (1CO), 187.38 (1CO), 122.05 (Cquat), 94.74 (1C), 94.63 (2C), 92.91 (2C) (CH). IR (THF), v/cm−1: 1894 vs, 1915 s, 1967 sh, 1979 vs, 2084 m. IR (THF+18-crown-6), v/cm−1: 1890 vs, 1912 s, 1966 vs, 1982 vs, 2082 m. HR ESI MS, m/z (relative intensity, %): 554.8174 [M-4CO]+ (60%), 562.8222 [M-5CO]+ (80%), 548.8275 [M-6CO]+ (100%). Calcd. for C48H38Cr2O5Re, 554.8196, for C48H38Cr2O5Re, 548.8246, for C48H38Cr2O7Re, 498.8298. When the THF solution of the iodo(aryl)rhenate complex was reanalyzed by NMR after standing for 6 month at room temperature its main component was another complex, Na[η5-C5H5][Re(CO)5Cr(CO)3]Cr(CO)3]. 1H NMR (THF, 400.13 MHz), δ: 6.05 (m, 2H), 5.12 (m, 3H). 13C NMR (THF, 100.6 MHz), δ: 237.57 (3CO), 189.95 (2CO), 189.31 (1CO), 188.45 (1CO), 128.81 (Cquat), 113.41, 96.37, 92.14 (CH). This iodo(aryl)rhenate was isolated in the form of [Et4N][η5-C5H5][Re(CO)5Cr(CO)3]Cr(CO)3] with Na[Re(CO)5].
Reactions were performed in THF on the same 0.1 mmol scale as with other carbonylmethalides, the 1H NMR spectroscopic product yields are given in Table 2. The neutral Mn(CO)5c allyl complex was isolated by column chromatography on silica gel (Merck 60) using petroleum ether – CH2Cl2, 2:1 (increasing to 1:2) as eluent. K[η6-C5H5Mn(CO)3L][Cr(CO)3]. 1H NMR (THF, 100.13 MHz), δ: 6.02 (m, 2H), 5.31 (m, 2H), 5.10 (m, 1H). 13C NMR (THF, 100.6 MHz), δ: 229.02, 217.8 (CO), 210.1 br (CO), 200.9, 195.6170(10) vs, 200.9 sh (Mn(CO)5). HR ESI MS, δ: 6.00 (m, 2H), 5.14 (m, 2H), 5.08 (m, 1H). 13C NMR (THF, 100.6 MHz), δ: 237.32, 225.1 (CO), 217.7 br (CO), 216.1 br (CO), 137.86 (C quat), 112.64, 95.38, 91.72 (CH). IR (THF), v/cm−1: 1865 vs, 1942 vs (Cr(CO)3), 1921 s, 1965 s, 1980 s, 2060 m (Mn(CO)5). HR ESI MS, m/z (relative intensity, %): 366.8161 [M+5CO]100). Calcd. for C14H10CrO2Mn 366.8048. [(η4-C5H4Mn(CO)3)Cr(CO)3]. 1H NMR (THF, 100.13 MHz), δ: 5.49 (m, 2H), 5.33 (m, 3H), 5.12 (m, 1H), 13C NMR (THF, 100.6 MHz), δ: 235.51 (CO), 210.1 br (CO), 130.4 (C quat), 108.87 (2C), 95.95 (2C), 93.24 (1C) (CH). IR (THF), v/cm−1: 2123 m, 2065 w, 2027 vs, 2009 sh (Mn(CO)5), 1955 vs, 1878 vs (Cr(CO)3). Calc. for C14H10CrMnO5C: C 41.20, H 1.23. Found: C 41.55, H 1.48. ESI MS, m/z (relative intensity, %): 388 [M-3CO, +CH2CN, +Na]+ (100%), 388 [M-4CO, +CH2CN, +H]+ (60%), 332 [M-5CO, +CH2CN, +Na]+ (30%).

Crystal structure determination of complex [Et4N][η6-C5H4OSi(OMe)3]2. The crystal of 0.10×0.12×0.15 mm3 (C2H5)2CrNO-Res, M ≈ 768.52 is monoclinic, space group P21/n, at T = 100 K: a = 7.5063(2) Å, b = 29.7019(8) Å, c = 11.2833(3) Å, β = 95.6170(10)°, V = 2503.55(12) Å3, Z = 4, d calc = 2.039 g/cm3. F(000) = 1464, µ = 6.537 mm−1. 32904 total reflections (2θ=90° unique reflections, Rint = 0.039) were measured on a three-circle Bruker APEX-II CCD diffractometer (α(MoKα)-radiation, graphite monochromator, φ and ω scan mode, 2θmax = 60°) and corrected for absorption using the SADABS program (Tmax = 0.444; Tmin = 0.561).24 The structure was determined by direct methods and refined by full-matrix least squares on F2 with anisotropic displacement parameters for non-hydrogen atoms. All hydrogen atoms were placed in calculated positions and refined with fixed isotropic displacement parameters [Ueq(C) = 1.5Ueq(C) for the CH2-groups and Ueq(H) = 1.2Ueq(C) for the other groups]. The final divergence factors were R1 = 0.029 for 6493 independent reflections with I > 2σ(I) and wR2 = 0.064 for all independent reflections, S = 1.002. All calculations were carried out using the SHEXLXL program.55

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 999498. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

Acknowledgements

Financial support of this work by the President of the Russian Federation for the State Support of Leading Research Schools (Grant № HI3–2783.2014.3) and the Russian Academy of Sciences Program 1-OX is gratefully acknowledged.

Notes and references

Formal nucleophilic substitution in \([(\eta^6\text{-iodobenzene})\text{Cr(CO)}_3]\) begins with the attack of carbonylmestallate \([\text{M(CO)}_n\text{L}^-]\) anion at iodine to form the aryl carbanion and \([\text{IM(CO)}_n\text{L}]\) intermediates, which then give all of the variety of products observed.