Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

1,2,3-Triazolylidene Ruthenium(II)(η⁶-arene) Complexes: Synthesis, Metallation and Reactivity

Bidraha Bagh, Adam M. McKinty, Alan J. Lough and Douglas W. Stephan*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Three bis(1,2,3-triazolylidene) silver(I) complexes were synthesized, and the ruthenium complexes $([RCH_2N_2(NMe)C_2Ph)]RuCl_2(p$ -cymene) (R = C₆H₂Me₃ **4a**₁, C₆H₂*i*Pr₃ **4b**₁) were isolated as major products with the minor C(sp²)-H activated products ($[RCH_2N_2(NMe)C_2C_6H_4)]RuCl(p$ -cymene) (R = C₆H₂Me₃ **4a**₂, C₆H₂*i*Pr₃ **4b**₂). In the related case where R = Ph, the species 10 ($[PhCH_2N_2(NMe)C_2Ph)]RuCl_2(p$ -cymene) **4c**₁ was obtained with two C(sp²)-H activated products [PhCH₂N₂(NMe)C₂C₆H₄)]RuCl(p-cymene) **4c**₂ and [(C₆H₄)CH₂N₂(NMe)C₂Ph)]RuCl(p-cymene) **4c**₃

derived from metallation of the N and C-bound arene rings. Heating a solution of $4a_1$ at 45 °C over three weeks resulted in a ruthenium(II)(1,2,3-triazolylidene) complex [(C₆H₂Me₃)CH₂N₂(NMe)C₂Ph)]RuCl₂ **5a**, where the pendant mesityl group on the triazolylidene moiety displaced the *p*-cymene ligand. The

¹⁵ complexes $4a_1$, $4b_1$, $4c_1$ and 5a displayed moderate catalytic activities in base-free oxidation of benzyl alcohols to benzyldehydes and oxidative homocoupling of benzyl amines to imines using oxygen as oxidant.

Introduction

In 2002, Sharpless and Meldal *et al.* independently introduced ²⁰ Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), commonly known as the "click" reaction, as a versatile, high-yielding and selective reaction which works under mild reaction conditions with little or no byproduct.¹⁻² This milestone discovery in synthetic organic chemistry was subsequently exploited to access

- ²⁵ triazolium salts via alkylation of triazoles selectively at the N3position. Metallation of triazolium salts using Ag₂O has been successfully performed and the resulting silver(I)-triazolylidene complexes can be exploited for transmetallation reactions, thus offering a route to a variety of transition metal complexes. Such
- ³⁰ ligands represent a new family of mesoionic N-heterocyclic carbenes (NHCs). These ligands and their complexes have attracted considerable attention in recent years.³⁻¹¹ In general, while free 1,2,3-triazolydenes (Fig. 1) are sensitive and decompose rapidly under the mild conditions,¹² Bertrand *et al.*
- $_{35}$ synthesized the free 1,3,4-trisubstituted-1,2,3-triazol-5-ylidenes by the deprotonation of the 1,2,3-triazolium salt using KN(SiMe_3)_2 or KOtBu.^{13-14} The $\nu_{\rm CO}$ stretching frequencies of the iridium dicarbonyl complex with triazolylidene ligand suggested that these ligands are slightly better donor than the normal $_{40}$ imidazole-2-ylidene.^{14}

Metal complexes with triazolylidenes have been exploited as catalysts in a wide variety of reactions including ring-opening metathesis,¹⁴ ring-closing metathesis,¹⁴ Suzuki coupling,¹⁵⁻¹⁶ oxidative coupling and oxidation of water,¹⁷ alcohols¹⁸ and ⁴⁵ amines.¹⁸

 R^1 , R^2 = alkyl, benzyl or aryl; R^3 = alkyl or benzyl **Fig. 1** 1,2,3-triazole species.

Our on-going interest in Ru-carbene complexes and their applications in catalysis prompted the examination of the utility ⁵⁰ of Ru-triazolylidene complexes. Herein, we describe a series of reactions of bis(triazolylidene) silver(I) salts with [RuCl₂(*p*-cymene)]₂. The nature of the resulting species is discussed and the use of these species in the catalytic, aerobic oxidation of alcohols and oxidative coupling of benzyl amines is explored.

55 Results and discussion

The 1,2,3-triazoles [RCH₂N₃C₂HPh] (R = C₆H₂Me₃ **1a**, C₆H₂*i*Pr₃ **1b**, Ph **1c**) were synthesized in excellent yield by heating a mixture of appropriate chloro-derivatives, phenylacetylene and sodium azide in distilled water in presence of catalytic amount of CuI (1 mol%) (Scheme 1). The reaction is regioselective as it produced only 1,4-disubstituted 1,2,3triazoles. Thereafter, **1a**, **1b** and **1c** were selectively methylated at N3-possition by using methyl triflate generating [RCH₂N₂(NMe)C₂Ph)][OTf] (R = C₆H₂Me₃ **2a**, C₆H₂*i*Pr₃ **2b**, Ph es **2c**). Attempts to prepare the free 1,2,3-triazol-5-ylidenes was

attempted by reacting triazolium salts 2a, 2b and 2c with potassium bis(trimethylsilyl)amide were unsuccessful. However, reaction of 2a, 2b and 2c with Ag₂O yielded the corresponding

silver(I) triazolylidenes species **3a**, **3b** and **3c**, respectively. These species proved stable for months in the solid state under nitrogen at ambient temperature. While several attempts were made, structural characterization of these silver(I) triazolylidenes by s single crystal X-ray analysis were unsuccessful. Mass spectrometry data suggested Schlenk equilibria result in **3a**, **3b** and **3c** being bis-triazolylidenes silver(I) salts of the general form [L₂Ag][AgCl₂]. This was supported by the observation of the

major m/z peaks at 689.25, 857.44 and 605.16 in the mass spectra ¹⁰ of **3a**, **3b** and **3c**, respectively (Scheme 1). A similar result for a related triazolylidene has been described by Albrecht *et al.*¹²

These *bis*(1,2,3-triazolylidene) silver(I) complexes were ¹⁵ utilized as efficient carbene transfer agents as transmetalation was successfully performed with [RuCl₂(*p*-cymene)]₂. The reaction of **3a** with [RuCl₂(*p*-cymene)]₂ formed ruthenium(II)(η^6 -arene) complex with 1,2,3-triazolylidene [(C₆H₂Me₃)CH₂N₂(NMe) C₂Ph)]RuCl₂(*p*-cymene) (**4a**₁) almost quantitatively as evidenced ²⁰ by the ¹H NMR spectrum of the crude reaction mixture (Scheme 2). However, a second set of signals in the ¹H NMR spectrum was also observed, which suggested the presence of a minor byproduct. Attempt to isolate this species from the crude solid by column chromatography using silica gel as stationary phase and a ²⁵ mixture of dichloromethane/acetone (9/1) as eluent was undertaken A vellow band senarated quickly in the column

- undertaken. A yellow band separated quickly in the column followed by a dark orange band. The first yellow band was found to be a $C(sp^2)$ -H activated product $[(C_6H_2Me_3)CH_2N_2(NMe) C_2C_6H_4)]RuCl(p-cymene)$ **4a**₂ (4 %), whereas, the second band
- ³⁰ was the expected ruthenium(II) triazolylidene complex **4a**₁ (83 %). Similarly, the reaction of **3b** with $[RuCl_2(p-cymene)]_2$ yielded the complex $[(C_6H_2iPr_3)CH_2N_2(NMe)C_2Ph)]RuCl_2(p-cymene)$ **4b**₁ in 81 % yield together with the C(sp²)-H activated product $[(C_6H_2iPr_3)CH_2N_2(NMe)C_2C_6H_4)]RuCl(p-cymene)$ **4b**₂
- ³⁵ in 2 % yield (Scheme 2). These products (**4a**₁, **4a**₂, **4b**₁, **4b**₂) are formally 18-electron species and consequently air stable. The presence of the triazolylidene moiety and the spectator arene ligand was consistent with the ¹H and ¹³C NMR spectra. As expected, NMR spectra of **4a**₁ and **4b**₁ are consistent with C_s
- ⁴⁰ symmetry. The benzylic-CH₂ resonances for **4a₁** and **4b₁** appeared as singlets (**4a₁**: 6.02 ppm, **4b₁**: 6.04 ppm) as the resonances for the N-CH₃ fragments (**4a₁**: 3.51 ppm; **4b₁**: 3.53 ppm). Two doublets (**4a₁**: 4.85 and 5.18 ppm; **4b₁**: 4.89 and 5.22 ppm) were observed for four aromatic hydrogen atoms of the ⁴⁵ arene moiety. Down-field resonances in the ¹³C NMR spectra of ⁴⁵

 $4a_1$ (160.32 ppm) and $4b_1$ (160.57 ppm) were attributable to the Ru-bound carbene carbon and suggested very similar donor abilities for the two triazolylidene ligands.

In contrast, species $4a_2$ and $4b_2$ displayed distinctively ⁵⁰ different NMR spectra consistent with C_1 symmetry. Two doublets ($4a_2$: 5.61 and 5.94 ppm; $4b_2$: 5.69 and 5.99 ppm) for the benzylic-CH₂ were observed in the ¹H NMR spectra of $4a_2$ and $4b_2$. Similarly, four aromatic hydrogen atoms of the arene moiety gave rise to four doublets ($4a_2$: 5.23, 5.27, 5.52 and 5.57 ppm; ⁵⁵ $4b_2$: 5.19, 5.24, 5.55 and 5.63 ppm). In the ¹³C NMR spectra of $4a_2$ and $4b_2$, the resonances for Ru-C(imidazolylidene) and Ru-C(C_6H_4) ($4a_2$: 176.09 and 180.83 ppm; $4b_2$: 175.95 and 180.91 ppm) were observed downfield of the corresponding Ru-C(imidazolylidene) resonances for $4a_2$ (160.32 ppm) and $4b_2$ ⁶⁰ (160.57 ppm). These data while similar to other triazolium-Ru complexes, ^{18,19-21} further indicated metallation of the C4-bound phenyl ring in $4a_2$ and $4b_2$, respectively.

Scheme 2 Synthesis of 4a₁, 4a₂, 4b₁, 4b₂.

The crystal structures of complex $4a_1$ (Figure 3a), $4a_2$ (Figure 65 3b) and $4b_2$ (Figure 3c) confirmed the connectivity. The geometry around the ruthenium metal centre in these halfsandwich complexes is pseudo-tetrahedral and are best described as three-legged "piano-stool" with the p-cymene being the "seat" 70 and the carbon [C(triazolylidene)] and two chlorine atoms, constituting the "legs". The Ru-C(triazolylidene) [2.084(4) Å] and Ru-Cl [2.4522(9) Å, 2.4163(9) Å] bond distances in $4a_1$ are consistent with analogous species reported previously; for example the Ru-C(triazolylidene) and Ru-Cl bond distances in ⁷⁵ [EtCH₂N₂(NMe)C₂Ph)]RuCl₂(*p*-cymene) are 2.061 Å and 2.4183(11), 2.466(12) Å, respectively.²⁰ In the cyclometalated species $4a_2$ the coordination sphere of $4a_2$ is completed by two carbon [C(triazolylidene) and $C(C_6H_4)$] and a chlorine atom. In $4a_2$ a five membered ring is formed by coordination of ⁸⁰ C(triazolylidene) and C(C₆H₄). In $4a_2$ the Ru-C(C₆H₄) bond of 2.103(2) Å is longer than the Ru-C(triazolylidene) bond which is 2.0431(4) Å. A similar trend was observed in the analogous cyclometalated species $[(C_6H_3Me_2)N_2(NMe)C_2C_6H_4)]RuCl(p$ cymene)]. ¹⁹ In both $4a_1$ and $4a_2$, the pendant mesityl group on 85 the triazolylidene moiety is oriented away from the metal center. As expected, the molecular structure of the cyclometalated complex $4b_2$ is very similar to that of $4a_2$. To best of our knowledge, three analogous cyclometalated- triazolylidene ruthenium complexes have been reported; one which is ⁹⁰ metallated at the phenyl ring on C4 of the triazolylidene,¹⁹ and two others metallated at the phenyl ring on the corresponding N1.5, 19

35

Fig. 3 POV-ray depiction of molecular structure of (a) $4a_1$, (b) $4a_2$ and (c) $4b_2$. All hydrogen atoms are omitted for clarity. C, black; Cl, green; N, blue; Ru, purple. Selected bond lengths (Å) and angles (deg): $4a_1$: Ru-Cl 5 = 2.4522(9), Ru-Cl = 2.4163(9), Ru-C(triazolylidene) = 2.084(4); Cl-Ru-C(triazolylidene) = 97.0(1), Cl-Ru-C(triazolylidene) = 83.66(9), Cl-Ru-Cl = 85.12(9), $4a_2$: Ru-Cl = 2.4398(6), Ru-C(C₆H₄) = 2.103(2), Ru-C(triazolylidene) = 2.0431(4); C(triazolylidene)-Ru-C(C₆H₄) = 77.22(8), C(triazolylidene)-Ru-Cl = 88.72(6), C(C₆H₄)-Ru-Cl = 84.64(6), $4b_2$: Ru-10 C(centroid) = 1.735, Ru-Cl = 2.4212(9), Ru-C(C₆H₄) = 2.101(3), Ru-C(triazolylidene)-Ru-Cl = 87.41(9), C(C₆H₄)-Ru-Cl = 83.8(1).

The reaction of **3c** with $[\operatorname{RuCl}_2(p\text{-cymene})]_2$ was monitored by NMR spectroscopy revealing the presence of the major product ¹⁵ was the analog of **4a**₁ and **4b**₁; however, two minor byproducts were also seen. Column chromatography (stationary phase: silica gel, eluent: 9/1 mixture of CH₂Cl₂/acetone) was performed to separate these products. Two yellow bands separated quickly in the column followed by a dark orange band. These species were ²⁰ subsequently isolated and identified. The first yellow band was found to be a C(sp²)-H activated product **4c**₃ (2 %), the second band was another C(sp²)-H activated product **4c**₂ (4 %) and the third band was the expected ruthenium(II) triazolylidene complex **4c**₁ (79 %) (Scheme 3). ¹H and ¹³C NMR spectroscopy were ²⁵ consistent with the C_s symmetry of $4c_1$ and the C_1 symmetry of $4c_2$ and $4c_3$. While the ¹H NMR resonances were consistent with formulations, it is noteworthy that a singlet (6.11 ppm) was observed for the benzylic-CH₂ of $4c_1$ whereas $4c_2$ and $4c_3$ displayed two doublets ($4c_2$: 5.73 and 5.93 ppm; $4c_3$: 5.03 and ³⁰ 5.28 ppm) for the benzylic-CH₂ fragments. Similarly the ¹³C NMR resonances for the the triazolylidene-C of $4c_1$, appeared at 162.17 ppm, while the corresponding Ru-C signals were seen at 177.85 and 180.87 ppm for $4c_2$ and 167.33 and 168.32 ppm for ; $4c_3$.

Scheme 3 Synthesis of 4c₁, 4c₂ and 4c₃.

The formulations of $4c_2$ and $4c_3$ were further confirmed cyrystallographically (Figure 4). In the case of $4c_2$ there are two molecules in asymmetric unit. The structure of complex $4c_2$ is ⁴⁰ very similar to that of $4a_2$ and $4b_2$, whereas in complex $4c_3$, the triazolylidene moiety is connected to the metal centre by two Ru-C bonds [Ru-C(triazolylidene): 2.033(6) Å, Ru-C(C₆H₄): 2.098(7) Å] thus forming a six membered metallocyclic ring which adopts a boat conformation. Both Ru-C [Ru-C(triazolylidene) and Ru-⁴⁵ C(C₆H₄)] bonds in $4c_2$ are slightly longer than those in $4c_3$,

⁴⁵ C(C₆H₄)] bonds in 4c₂ are slightly longer than those in 4c₃, whereas the reverse is observed for Ru-Cl bonds. In both cases, the uncoordinated phenyl ring is oriented away from the metal centre. It is noteworthy that in a recent publication, Fukuzawa *et al.* have described the synthesis of 4c₁¹⁹ in 97% yield from the ⁵⁰ reaction of the in situ generated silver(I)-carbene complex with [RuCl₂(*p*-cymene)]₂. In addition, Kilpin and Dyson *et al.* obtained 4c₁ in a similar procedure in 56 % yield.²¹ In either of these previous publications the metallated species were not described. Conceptually similar metallated NHC products have ⁵⁵ been observed for Fe,²²⁻²³ Co,²⁴ Rh,²⁵ Ir,²⁶⁻²⁷ Ni,²⁸ Pd,²⁹ Pt³⁰⁻³¹ and Ru.³²⁻³⁶ In the case of triazolylidene complexes, such species are less common. Nonetheless the groups of Abrecht,^{17, 37} Fukuzawa^{19, 38} and others³⁹ have described related metallated triazolylidene of Ir, Pd and Ru complexes.

⁶⁰ It is interesting to note that complexes **4a**₂, **4b**₂ and **4c**₂ and **4c**₃ proved stable to hydrogen (4 atm) at 45 °C for several days. Similarly, all attempts to convert **4a**₁ to **4a**₂ with various bases were unsuccessful. However, on heating to 45 °C for three days, a new species was beginning to emerge. After 22 days, complex ⁶⁵ **4a**₁ was completely converted to a new species **5a**. ¹H and ¹³C NMR spectra were consistent with the displacement of the *p*cymene ligand by the pendant mesityl group of the triazolylidene moiety. The metal-bound mesityl group in **5a** gives rise to an upfield ¹H NMR resonance at 5.25 ppm for the aromatic mesityl ⁷⁰ hydrogens. Similarly the benzylic-CH₂ fragment is shifted upfield to 5.33 ppm. The ¹³C NMR resonance observed at 165.41 ppm is attributable to the Ru-bound triazolylidene carbon. Single crystal X-ray analysis of **5a** (Figure 5) confirms that the mesityl group of the triazolylidene moiety is indeed bound to the ruthenium center

- s in an η⁶-fashion. The distance from the Ru to the centroid of the arene ring is 1.679 Å, similar to that seen for the *p*-cymene-Ru distance in the precursor $4a_1$ (1.668 Å). The Ru-Cl [2.419(2) and 2.424(2) Å] and Ru-C [2.070(9) Å] bond distances fall in the expected range. The planes of the five-membered triazolylidene
- ¹⁰ ring and six-membered mesityl ring are oriented an angle of 71.63° with respect to each other. The displacement of coordinated *p*-cymene moiety is well precedented in the literature.⁴⁰⁻⁴⁷ Certainly *p*-cymene fragments has been displaced by phosphines, bis-phosphines or donor solvent such as ¹⁵ acetonitrile but in addition, intramolecular displacement of *p*-
- cymene moiety by the pendant arene rings attached to the already coordinated ligands has also been previously observed.

Fig. 4 POV-ray depiction of molecular structure of (a) $4c_2$ and (b) $4c_3$. All ²⁰ hydrogen atoms are omitted for clarity. C, black; Cl, green; N, blue; Ru, purple. Selected bond lengths (Å) and angles (deg): $4c_2$: Ru-Cl = 2.421(1) and 2.424(1), Ru-C(C₆H₄) = 2.087(5) and 2.099(2), Ru-C(triazolylidene) = 2.041(5) and 2.035(5); C(triazolylidene)-Ru-C(C₆H₄) = 76.6(2) and 77.0(2), C(triazolylidene)-Ru-Cl = 85.0(1) and 84.4(2), 25 C(C₆H₄)-Ru-Cl = 87.4(1) and 86.5(1), $4c_3$: Ru-Cl = 2.428(5), Ru-C(C₆H₄) = 2.098(7), Ru-C(triazolylidene) = 2.033(6); C(triazolylidene)-Ru-C(C₆H₄) = 85.2(3), C(triazolylidene)-Ru-Cl = 89.0(2), C(C₆H₄)-Ru-Cl = 85.8(2).

30

Scheme 4 Synthesis of 5a.

Fig. 5 POV-ray depiction of molecular structure of 5a. All hydrogen atoms are omitted for clarity. C, black; Cl, green; N, blue; Ru, purple. Selected bond lengths (Å) and angles (deg): Ru-C(centroid) = 1.679, Ru-35 Cl = 2.419(2), Ru-Cl = 2.424(2), Ru-C(triazolylidene) = 2.0701(88); Cl-Ru-C(triazolylidene) = 89.8(2), Cl-Ru-C(triazolylidene) = 92.9(2), Cl-Ru-Cl = 89.5(1), C(centroid)-Ru-C(triazolylidene) = 121.32, C(centroid)-Ru-Cl = 125.87, C(centroid)-Ru-Cl = 126.90.

Catalytic Oxidations The catalytic oxidation of amine to imine ⁴⁰ using molecular oxygen as primary oxidant has attracted considerable attention.^{18, 48-50} Indeed, Ru-NHC half-sandwich complexes have been previously shown to be effective for the oxidative homocoupling of primary amines.²⁰ The ability of the complex **4a**₁, **4b**₁, **4c**₁ and **5a** to act as similar catalysts for the ⁴⁵ oxidative homocoupling of benzyl amines in the presence of molecular oxygen was evaluated. To this end, reactions were performed in toluene-d₈ at 150 °C and using a catalyst loading of 5 mol %. After 24 h, the reaction mixtures were cooled to 25 °C and the products analyzed by NMR spectroscopy (Table 1). ⁵⁰ Using benzyl amine as the substrate, conversions to Nbenzylidenebenzylamine were achieved in 72-83% yields. The catalytic activity of all of these catalysts was increased when electron donating substituents such as Me and OMe were

incorporated on the aryl group of the amines.

 $\label{eq:constraint} \begin{array}{c} \textbf{Table 1} \mbox{ Catalytic Oxidative Homocoupling of Benzylic Amines to } \\ Imines^a \end{array}$

R	cat	Conv. (%)	cat	Conv. (%)	cat	Conv. (%)	cat	Conv. (%)
Н	4a ₁	78	4b ₁	72	4c1	79	5a	83
Me	$4a_1$	82	$4b_1$	82	4c1	83	5a	93
OMe	4a ₁	88	$4b_1$	90	4c ₁	87	5a	95
Br	$4a_1$	73	$4b_1$	71	4c1	72	5a	75
Cl	$4a_1$	64	$4b_1$	66	4c1	64	5a	70

^{*a*}Conditions: 0.20 mmol of substrate and 5 mol% of catalyst in toluene- D_8 (2 mL) at 150 °C for 24 h. Yields were determined by ¹H NMR ⁶⁰ spectroscopy.

Conversely, the electron withdrawing substituents, Br and Cl reduced the catalytic activity. Complex $4a_1$, $4b_1$ and $4c_1$ displayed very similar reactivity, whereas complex 5a gave slightly better conversions. This infers that altering the aryl ⁶⁵ substituents on the imidazolylidene moiety has little impact on the catalytic activity. The small increase in activity seen with 5a is attributed to the lesser steric congestion about the ruthenium centre resulting from the constrained nature of the chelating

ligand.

Table 2 Catalytic Oxidation of Benzylic Alcohols to Benzaldehydes^a

R	cat	Conv. (%)	cat	Conv. (%)	cat	Conv. (%)	cat	Conv. (%)
C ₆ H ₅	4a ₁	59	4b ₁	54	4c ₁	44	5a	63
$4-Br(C_6H_4)$	4a ₁	48	$4b_1$	45	$4c_1$	34	5a	54
$4-Cl(C_6H_4)$	4a ₁	35	$4b_1$	32	4c1	27	5a	40
$4-OMe(C_6H_4)$	4a ₁	63	$4b_1$	65	$4c_1$	54	5a	66
BrCH ₂ (CH ₂) ₉	$4a_1$	34	$4b_1$	29	4c1	21	5a	37

^{*a*}Conditions: 0.20 mmol of substrate and 5 mol% of catalyst in toluene- D_8 s (2 mL) at 110 °C for 24 h. Yields were determined by ¹H NMR spectroscopy.

The catalysis of similar oxidation of benzyl alcohols have been previously described by related Ru-complexes incorporating the ¹⁰ NHC, IBu ligand¹⁸ and by triazolium complexes R"N₂(NR)C₂R')RuCl₂(*p*-cymene) (R = Me, Et). In the latter case, the reactivity of these catalysts showed a correlation with the nature of the substituents on N1 and C4 position of the triazolylidene moiety.²⁰ More recently, cationic Ru(η^6 -arene) ¹⁵ complexes have been shown to be highly effective catalysts for aerobic oxidation of a variety of alcohols.⁵¹ In a similar fashion the complexes **4a**₁, **4b**₁, **4c**₁ and **5a** were also evaluated for aerobic oxidation of alcohols (Table 2). Using a benzyl alcohol as substrate these catalysts effect moderate conversions to

²⁰ benzaldehyde in yields ranging from 44 to 63%. As with the amine oxidation, electron donating groups on the aryl ring of the aldehyde resulted in increased conversion, while electron withdrawing substituents reduced the activity.

Experimental section

- ²⁵ **General Procedures.** Syntheses were carried out partly under an atmosphere of dry, oxygen free nitrogen atmosphere employing an Innovative Technology glove box and a Schlenk vacuum-line and partly in an air atmosphere. Dry solvents were used for some reactions and purification, while solvents used for other reactions
- ³⁰ and purifications were used as received from suppliers. Dry solvents (hexanes and CH₂Cl₂) were obtained from a Grubbs-type column system manufactured by Innovative Technology and dispensed into thick-walled Schlenk glass flasks equipped with Teflon-valve stopcocks and stored over molecular sieves. CH₃CN
- ³⁵ was stored over CaH₂, distilled and degassed before use. Deuterated solvents (CDCl₃, CD₂Cl₂ and toluene-D₈) were dried over the appropriate agents, vacuum-transferred into storage flasks with Teflon stopcocks, and degassed accordingly. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Bruker 400 MHz
- ⁴⁰ spectrometer. Chemical shifts are given relative to SiMe₃ and referenced to the residual solvent signals. Chemical shifts are reported in ppm. Mass spectra were measured on a AB Sciex QStar and were reported in the form m/z (%) [M⁺] where "m/z" is the mass observed, the intensities of the most intense peaks are
- ⁴⁵ reported, and "M⁺" is the molecular ion peak. Combustion analyses were performed in house, employing a Perkin-Elmer CHN Analyzer. All reagents were purchased from Aldrich and were used as received. **1c**, **2c** and **4c**₁ were previously reported

and were synthesized use slight modifications of the literature ⁵⁰ methods.^{19, 21}As repeated elemental analysis of **3a**, **3b** and **3c** failed to produce acceptable results, HRMS was performed as a further characterization.

Synthesis of $[RCH_2N_3C_2HPh]$ (R = C₆H₂Me₃ 1a, C₆H₂*i*Pr₃ 1b, 55 Ph 1c). These compounds were prepared in similar methods and thus only a general preparation is detailed. An equimolar mixture of appropriate chloro-derivative (60.0 mmol), phenylacetylene (60.0 mmol) and NaN₃ (60.0 mmol) with CuI (1 mol%) in distilled water (140 mL) was stirred at elevated temperature (65 60 °C for 1a and 100 °C for 1b and 1c) for 16 h resulting in grey chunks of solid. The solid was washed with distilled water (3 x 100 mL) and hexane (3 x 50 mL) and air-dried. The dry solid was dissolved in CH₂Cl₂ (200 mL) resulting in a pale yellow solution, which was washed with dilute NH4OH (5 x 30 mL) and distilled 65 water (3 x 50 mL). After the solution was dried over MgSO₄, all volatiles were removed under high vacuum yielding an off-white solid. The solid was dissolved in minimum amount of CH₂Cl₂. The solution was added dropwise to hexanes (1000 mL) while stirring vigorously, which resulted in white precipitate. The 70 precipitate was filtered off and dried under high vacuum to give pure product.

1a: A mixture of 2,4,6-trimethylbenzyl chloride (10.121 g, 60.0 mmol), phenylacetylene (6.132 g, 60 mmol), NaN₃ (3.903 g, 60.0 ⁷⁵ mmol) and CuI (0.113 g, 0.60 mmol) yielded 1a (14.48 g, 87%). ¹H NMR (CDCl₃): δ 2.30 (s, 3H, CH₃), 2.31 (s, 6H, CH₃), 5.57 (s, 2H, CH₂), 6.94 (s, 2H, Ar-H), 7.23-7.38 (m, 4H, Ar-H), 7.74 (s, 1H, Ar-H), 7.76 (s, 1H, triazole-H). ¹³C NMR (CDCl₃): δ 20.59 (CH₃), 21.95 (CH₃), 49.19 (CH₂), 119.48, 126.53, 128.28, 128.91, ⁸⁰ 129.63, 130.62, 131.59, 138.77, 139.95, 148.46 (Ar-C and triazole-C). Anal. Calcd for C₁₈H₁₉N₃ (277.36): C, 77.95; H, 6.90; N, 15.15. Found: C, 77.70; H, 7.01; N, 15.09.

1b: A mixture of 2,4,6-triisopropylbenzyl chloride (15.171 g, so 60.0 mmol), phenylacetylene (6.130 g, 60.0 mmol), NaN₃ (3.902 g, 60.0 mmol) and CuI (0.114 g, 0.60 mmol) yielded **1b** (19.09 g, 88%). ¹H NMR (CDCl₃): δ 1.10 (d, ³J = 7 Hz, 12H, CH₃ of *i*Pr), 1.19 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 2.84 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 3.08 (sept, ³J = 7 Hz, 2H, CH of *i*Pr), 5.58 (s, 2H, ⁹⁰ CH₂), 7.02 (s, 2H, Ar-H), 7.12-7.29 (m, 4H, Ar-H), 7.64 (s, 1H, Ar-H), 7.66 (s, 1H, triazole-H). ¹³C NMR (CDCl₃): δ 24.82 (CH₃ of *i*Pr), 25.16 (CH₃ of *i*Pr), 30.53 (CH of *i*Pr), 35.23 (CH of *i*Pr), 47.32 (CH₂), 119.69, 122.77, 125.31, 126.54, 128.87, 129.61, 131.62, 148.23, 149.37, 151.22 (Ar-C and triazole-C). Anal. ⁹⁵ Calcd for C₂₄H₃₁N₃ (361.52): C, 79.73; H, 8.64; N, 11.62. Found: C, 79.68; H, 8.70; N, 11.70.

1c: A mixture of benzyl chloride (7.595 g, 60.0 mmol), phenylacetylene (6.128 g, 60.0 mmol), NaN₃ (3.903 g, 60.0 mmol) and CuI (0.115 g, 0.60 mmol) yielded 1a (12.82 g, 91%). ¹H NMR (CDCl₃): δ 5.57 (s, 2H, CH₂), 7.28-7.42 (m, 8H, Ar-H), 7.66 (s, 1H, Ar-H), 7.79 (s, 1H, Ar-H), 7.81 (s, 1H, triazole-H).

Synthesis of $[RCH_2N_2(NMe)C_2Ph)][OTf] R = C_6H_2Me_3$ 2a, ¹⁰⁵ C₆H₂*i*Pr₃ 2b, Ph 2c). These compounds were prepared in similar methods and thus only a general preparation is detailed. MeOTf (16.5 mmol) was added dropwise to a solution of 1,2,3-triazole (15.0 mmol) in CH₂Cl₂ (30 mL) at 25 °C The reaction mixture was stirred for 24 h resulting in a colorless solution. All volatiles were removed under high vacuum resulting in a colorless oil ⁵ which solidified on standing. The solid was washed with hexane (3 x 20 mL) and dried under vacuum to give pure product.

2a: 1a (4.161 g, 15.0 mmol) and MeOTf (2.710 g, 16.5 mmol) yielded **2a** (6.410 g, 96%). ¹H NMR (CDCl₃): δ 2.29 (s, 3H, ¹⁰ CH₃), 2.36 (s, 6H, CH₃), 4.21 (s, 3H, N-CH₃), 5.81 (s, 2H, CH₂), 6.94 (s, 2H, Ar-H), 7.47-7.65 (m, 5H, Ar-H), 8.39 (s, 1H, triazolium-H). ¹³C NMR (CDCl₃): δ 20.63 (CH₃), 21.92 (CH₃), 39.60 (N-CH₃), 53.12 (CH₂), 122.75, 125.48, 128.74, 130.36, 130.47, 130.70, 132.69, 139.60, 141.19, 144.24 (Ar-C and ¹⁵ triazolium-C). Anal. Calcd for C₂₀H₂₂F₃N₃O₃S (441.47): C, 54.41; H, 5.02; N, 9.52. Found: C, 53.94; H, 5.08; N, 9.34.

2b: 1b (5.424 g, 15.0 mmol) and MeOTf (2.710 g, 16.5 mmol) yielded **2b** (7.645 g, 97%). ¹H NMR (CDCl₃): δ 1.22 (d, ³J = 7

- ²⁰ Hz, 12H, CH₃ of *i*Pr), 1.27 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 2.92 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 3.22 (sept, ³J = 7 Hz, 2H, CH of *i*Pr), 4.24 (s, 3H, N-CH₃), 5.93 (s, 2H, CH₂), 7.12 (s, 2H, Ar-H), 7.49–7.65 (m, 5H, Ar-H), 8.40 (s, 1H, triazolium-H). ¹³C NMR (CDCl₃): & 24.70 (CH₃ of *i*Pr), 25.12 (CH₃ of *i*Pr), 30.69 (CH of *i*Pr)
- 25 iPr), 35.25 (CH of iPr), 39.66 (N-CH₃), 51.29 (CH₂), 122.57, 122.75, 123.01, 128.64, 130.39, 130.57, 132.79, 144.29, 150.18, 152.46 (Ar-C, triazolium-C). Anal. Calcd for C₂₆H₃₄F₃N₃O₃S (525.63): C, 59.41; H, 6.52; N, 7.99. Found: C, 59.82; H, 6.35; N, 8.01.
- **2c: 1c** (3.532 g, 15.0 mmol) and MeOTf (2.709 g, 16.5 mmol) yielded **2c** (5.712 g, 95%). ¹H NMR (CDCl₃): δ 4.22 (s, 3H, N-CH₃), 5.76 (s, 2H, CH₂), 7.35-7.61 (m, 10H, Ar-H), 8.66 (s, 1H, triazolium-H). ¹³C NMR (CDCl₃): δ 39.56 (N-CH₃), 58.45 (CH₂),

30

- $_{35}$ 122.72, 129.28, 130.29, 130.36, 130.56, 130.62, 130.86, 132.10, 132.79, 144.41 (Ar-C and triazolium-C). Anal. Calcd for $\rm C_{17}H_{16}F_{3}N_{3}O_{3}S$ (399.39): C, 51.12; H, 4.04; N, 10.52. Found: C, 50.98; H, 4.16; N, 10.60.
- ⁴⁰ Synthesis of $[RCH_2C_2N_2(NMe)Ph)_2Ag][AgCl_2]$ ($R = C_6H_2Me_3$ 3a, $C_6H_2iPr_3$ 3b, Ph 3c). These compounds were prepared in similar methods and thus only a general preparation is detailed. A mixture of triazolium salt (7.00 mmol), Ag₂O (3.9 mmol) and NMe₄Cl (7.7 mmol) in a 1:1 mixture of CH₂Cl₂ (15 mL) and
- ⁴⁵ CH₃CN (15 mL) was stirred at 25 °C for 24 h under dark resulting in yellow solution with grey precipitate. All volatiles were removed under vacuum to give a grey solid which was extracted with CH₂Cl₂ (30 mL). The solution was concentrated to approximately one fourth its original volume and filtered through
- ⁵⁰ a plug of Celite. The solution was added dropwise to well-stirred hexanes (30 mL). yelding a sticky precipitate with pale yellow solution. The solution was discarded and the solid was dried under vacuum resulted in a foamy solid. The solid was dissolved in minimum amount of CH₂Cl₂ (ca. 4-5 mL) and the solution was
- ⁵⁵ added dropwise to well-stirred hexanes (30 mL) to give an offwhite solid with colorless solution. The liquid was removed by cannula and the solid was dried under high vacuum to give pure product.

- ⁶⁰ **3a: 2a** (3.115 g, 7.06 mmol), Ag₂O (0.901 g, 3.88 mmol) and NMe₄Cl (0.852 g, 7.77 mmol) yielded **3a** (2.857 g, 93%). ¹H NMR (CDCl₃): δ 2.21 (s, 6H, CH₃), 2.25 (s, 12H, CH₃), 4.07 (s, 6H, N-CH₃), 5.49 (s, 4H, CH₂), 6.83 (s, 4H, Ar-H), 7.41-7.54 (m, 10H, Ar-H). ¹³C NMR (CDCl₃): δ 20.36 (CH₃), 21.02 (CH₃),
- $_{65}$ 37.63 (N-CH₃), 53.91 (CH₂), 127.36, 127.46, 129.17, 129.40, 129.56, 130.16, 138.16, 139.14 (Ar-C), 148.72 (Ag-C). MS (70 eV, ESI): m/z (rel intens) 689 (100) [C₃₈H₄₂N₆Ag⁺]. HRMS (ESI; m/z): calcd for C₃₈H₄₂N₆Ag, 689.2516; found, 689.2539.
- ⁷⁰ **3b**: **2b** (3.680 g, 7.00 mmol), Ag₂O (0.893 g, 3.85 mmol) and NMe₄Cl (0.844 g, 7.70 mmol) yielded **3b** (3.088 g, 85%). ¹H NMR (CDCl₃): δ 1.10 (d, ³J = 7 Hz, 24H, CH₃ of *i*Pr), 1.22 (d, ³J = 7 Hz, 12H, CH₃ of *i*Pr), 2.88 (sept, ³J = 7 Hz, 2H, CH of *i*Pr), 3.23 (sept, ³J = 7 Hz, 4H, CH of *i*Pr), 4.07 (s, 6H, Me), 5.61 (s, ⁷⁵ 4H, CH₂), 7.04 (s, 4H, Ar-H), 7.41–7.60 (m, 10H, Ar-H). ¹³C NMR (CDCl₃): δ 23.80 (CH₃ of *i*Pr), 24.12 (CH₃ of *i*Pr), 30.13 (CH of *i*Pr), 34.29 (CH of *i*Pr), 37.64 (N-CH₃), 52.14 (CH₂), 121.71, 124.60, 127.38, 129.23, 129.37, 130.30, 148.64 (Ar-C), 150.38 (Ag-C). MS (70 eV, ESI): m/z (rel intens) 857 (100) ⁸⁰ [C₅₀H₆₆N₆Ag⁺]. HRMS (ESI; m/z): calcd for C₅₀H₆₆N₆Ag,

3c: 2c (2.796 g, 7.00 mmol), Ag₂O (0.893 g, 3.85 mmol) and NMe₄Cl (0.844 g, 7.70 mmol) yielded **3c** (2.226 g, 81%). ¹H ⁸⁵ NMR (CDCl₃): δ 4.12 (s, 6H, N-CH₃), 5.51 (s, 4H, CH₂), 7.23-7.34 (m, 10H, Ar-H), 7.38-7.53 (m, 10H, Ar-H). ¹³C NMR (CDCl₃): δ 37.50 (N-CH₃), 59.57 (CH₂), 127.27, 128.44, 129.02, 129.07, 129.17, 129.39, 130.18, 134.19 (Ar-C), 149.15 (Ag-C). MS (70 eV, ESI): m/z (rel intens) 605 (100) [C₃₂H₃₀N₆Ag⁺].

90 HRMS (ESI; m/z): calcd for C₃₂H₃₀N₆Ag, 605.1577; found,

857.4394; found, 857.4402.

605.1581.

Synthesis of $[RCH_2N_2(NMe)C_2Ph)]RuCl_2(p-cymene) R = C_6H_2Me_3 4a_1, C_6H_2iPr_3 4b_1, Ph 4c_1), [RCH_2N_2(NMe) 95 C_2C_6H_4]RuCl(p-cymene) (R = C_6H_2Me_3 4a_2, C_6H_2iPr_3 4b_2, Ph 4c_2), and [(C_6H_4)CH_2N_2(NMe)C_2Ph)]RuCl(p-cymene) 4c_3. These compounds were prepared in similar methods and thus only a general preparation is detailed. 3a (0.905 g, 1.04 mmol) and [RuCl_2(p-cymene)]_2 (0.613 g, 1.00 mmol) yielded red solid 100 (1.166 g) as crude products mixture. Elution with a mixture of CH_2Cl_2/acetone (9/1) induced the separation of 4a_2 as the first yellow band and of 4a_1 as the second orange-red band. Removal of solvents under high vacuum yielded 4a_2 (0.040 g, 4%) as a yellow solid and 4a_1 (0.986 g, 83%) as an orange-red solid. X-ray 105 quality crystals of 4a_2 (yellow needles) and 4a_1 (orange blocks) were obtained by slow diffusion of Et_2O into the respective solution of compound in CH_2Cl_2.$

4a₁: ¹H NMR (CD₂Cl₂): δ 1.10 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 110 1.83 (s, 3H, Me), 2.20 (s, 6H, Me), 2.22 (s, 3H, Me), 2.55 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 3.51 (s, 3H, N-CH₃), 4.85 (d, ³J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.18 (d, ³J = 6 Hz, 2H, Ar-H of *p*cymene), 6.02 (s, 2H, CH₂), 6.84 (s, 2H, Ar-H), 7.35-7.45 (m, 3H, Ar-H), 7.46-7.53 (m, 2H, Ar-H). ¹³C NMR (CDCl₃): δ 18.87 115 (CH₃), 20.53 (CH₃), 21.20 (CH₃), 22.89 (CH₃), 31.18 (CH), 37.48 (N-CH₃), 54.13 (CH₂), 83.35 (Ar-C of *p*-cymene), 86.01 (Ar-C of *p*-cymene), 97.30 (Ar-C of *p*-cymene), 105.50 (Ar-C of *p*-cymene), 128.19, 128.70, 129.32, 129.54, 129.96, 132.36, 138.66, 139.17, 148.82 (Ar-C), 160.32 (Ru-C). Anal. Calcd for C₂₉H₃₅Cl₂N₃Ru (597.58): C, 58.29; H, 5.90; N, 7.03. Found: C, 5 58.43; H, 5.93; N, 6.95.

4a₂: ¹H NMR (CD₂Cl₂): δ 0.70 (d, ³J = 7 Hz, 3H, CH₃ of *i*Pr), 0.86 (d, ${}^{3}J = 7$ Hz, 3H, CH₃ of *i*Pr), 1.92 (s, 3H, CH₃), 2.15 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 2.23 (s, 3H, CH₃), 2.32 (s, 6H, CH₃), 10 4.01 (s, 3H, N-CH₃), 5.23 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*-cymene), 5.27 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*-cymene), 5.52 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of p-cymene), 5.57 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of pcymene), 5.61 (d, ${}^{2}J = 14$ Hz, 1H, CH of CH₂), 5.94 (d, ${}^{2}J = 14$ Hz, 1H, CH of CH₂), 6.82-6.95 (m, 4H, Ar-H), 7.19-7.26 (m, 1H, 15 Ar-H), 8.12-8.19 (m, 1H, Ar-H). ¹³C NMR (CDCl₃): δ 19.06 (CH₃), 20.50 (CH₃), 21.21 (CH₃), 22.06 (CH₃), 23.17 (CH₃), 31.64 (CH), 37.68 (N-CH₃), 51.57 (CH₂), 82.91 (Ar-C of pcymene), 87.27 (Ar-C of p-cymene), 89.54 (Ar-C of p-cymene), 92.51 (Ar-C of p-cymene), 99.53 (Ar-C of p-cymene), 102.73 20 (Ar-C of p-cymene), 120.97, 122.07, 126.86, 128.36, 129.45, 137.53, 139.13, 142.67, 152.10 (Ar-C), 176.09 (Ru-C), 180.83 (Ru-C). Anal. Calcd for C₂₉H₃₄ClN₃Ru (561.12): C, 62.07; H,

6.11; N, 7.49. Found: C, 61.91; H, 6.08; N, 7.57.

- ²⁵ **4b**₁: ¹H NMR (CD₂Cl₂): δ 1.11 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 1.13 (d, ³J = 7 Hz, 12H, CH₃ of *i*Pr), 1.20 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 1.80 (s, 3H, CH₃), 2.51 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 2.85 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 2.97 (sept, ³J = 7 Hz, 2H, CH of *i*Pr), 3.53 (s, 3H, N-CH₃), 4.89 (d, ³J = 6 Hz, 2H, Ar-H of
- ³⁰ *p*-cymene), 5.22 (d, ³J = 6 Hz, 2H, Ar-H of *p*-cymene), 6.04 (s, 2H, CH₂), 7.02 (s, 2H, Ar-H), 7.35-7.43 (m, 3H, Ar-H), 7.45-7.52 (m, 2H, Ar-H). ¹³C NMR (CDCl₃): δ 18.66 (CH₃), 22.92 (CH₃), 24.14 (CH₃), 24.45 (CH₃), 30.43 (CH), 31.32 (CH), 34.71 (CH), 37.35 (N-CH₃), 52.59 (CH₂), 83.79 (Ar-C of *p*-cymene), 85.83

³⁵ (Ar-C of *p*-cymene), 96.72 (Ar-C of *p*-cymene), 105.33 (Ar-C of *p*-cymene), 121.77, 126.16, 128.20, 129.54, 129.99, 132.41, 148.91, 149.55, 150.06 (Ar-C), 160.57 (Ru-C). Anal. Calcd for C₃₅H₄₇Cl₂N₃Ru (681.74): C, 61.66; H, 6.95; N, 6.16. Found: C, 61.48; H, 6.94; N, 6.21.

- ⁴⁰ **4b**₂: ¹H NMR (CD₂Cl₂): δ 0.70 (d, ³J = 7 Hz, 3H, CH₃ of *i*Pr), 0.87 (d, ³J = 7 Hz, 3H, CH₃ of *i*Pr), 1.18 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 1.21 (d, ³J = 7 Hz, 12H, CH₃ of *i*Pr), 1.93 (s, 3H, CH₃), 2.15 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 2.86 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 3.24 (sept, ³J = 7 Hz, 2H, CH of *i*Pr), 4.04 (s, 3H, N-CH₃), 5.19 (d, ³J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.24 (d, ³J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.63 (d, ³J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.69 (d, ²J = 15 Hz, 1H, CH of CH₂), 5.99 (d, ²J = 15 Hz, 1H, CH of CH₂),
- ⁵⁰ 6.86-6.96 (m, 2H, Ar-H), 7.05 (s, 2H, Ar-H), 7.22-7.27 (m, 1H, Ar-H), 8.14-8.19 (m, 1H, Ar-H). ¹³C NMR (CDCl₃): δ 19.04 (CH₃), 21.98 (CH₃), 23.21 (CH₃), 24.11 (CH₃), 24.45 (CH₃), 30.13 (CH), 31.58 (CH), 34.76 (CH), 37.66 (N-CH₃), 49.76 (CH₂), 82.31 (Ar-C of *p*-cymene), 87.15 (Ar-C of *p*-cymene),
- ⁵⁵ 89.62 (Ar-C of *p*-cymene), 92.90 (Ar-C of *p*-cymene), 99.53 (Ar-C of *p*-cymene), 103.00 (Ar-C of *p*-cymene), 120.99, 121.90, 122.06, 125.66, 126.89, 142.70, 150.34, 152.20 (Ar-C), 175.95 (Ru-C), 180.91 (Ru-C). Anal. Calcd for C₃₅H₄₆ClN₃Ru (645.28):

C, 65.15; H, 7.19; N, 6.51. Found: C, 65.21; H, 7.11; N, 6.55.

- ⁶⁰ **4c**₁: ¹H NMR (CD₂Cl₂): δ 1.04 (d, ³J = 7 Hz, 6H, CH₃ of *i*Pr), 1.60 (s, 3H, CH₃), 2.49 (sept, ³J = 7 Hz, 1H, CH of *i*Pr), 3.65 (s, 3H, N-CH₃), 4.64 (d, ³J = 6 Hz, 2H, Ar-H of *p*-cymene), 5.05 (d, ³J = 6 Hz, 2H, Ar-H of *p*-cymene), 6.11 (s, 2H, CH₂), 7.22-7.48
- ⁶⁵ (m, 8H, Ar-H), 7.50-7.59 (m, 2H, Ar-H). ¹³C NMR (CDCl₃): δ 18.51 (CH₃), 22.67 (CH₃), 30.89 (CH), 37.62 (N-CH₃), 57.73 (CH₂), 82.76 (Ar-C of *p*-cymene), 86.11 (Ar-C of *p*-cymene), 97.41 (Ar-C of *p*-cymene), 106.42 (Ar-C of *p*-cymene), 128.26, 128.46, 128.88, 128.94, 129.40, 130.09, 132.39, 137.04, 148.72
 ⁷⁰ (Ar-C), 162.47 (Ru-C). Anal. Calcd for C₂₆H₂₉Cl₂N₃Ru (555.50): C, 56.22; H, 5.26; N, 7.56. Found: C, 56.05; H, 5.44; N, 7.51.

4c₂: ¹H NMR (CD₂Cl₂): δ 0.57 (d, ³J = 7 Hz, 3H, CH₃ of *i*Pr), 0.74 (d, ${}^{3}J = 7$ Hz, 3H, CH₃ of *i*Pr), 1.83 (s, 3H, CH₃), 1.98 (sept, $_{75}$ ³J = 7 Hz, 1H, CH of *i*Pr), 4.14 (s, 3H, N-CH₃), 4.81 (d, ³J = 6 Hz, 1H, Ar-H of *p*-cymene), 5.12 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*cymene), 5.32 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*-cymene), 5.47 (d, ${}^{3}J =$ 6 Hz, 1H, Ar-H of *p*-cymene), 5.73 (d, ${}^{2}J = 15$ Hz, 1H, CH of CH₂), 5.93 (d, ${}^{2}J = 15$ Hz, 1H, CH of CH₂), 6.84-6.96 (m, 2H, Ar-⁸⁰ H), 7.23-7.39 (m, 6H, Ar-H), 8.11-8.17 (m, 1H, Ar-H). ¹³C NMR (CDCl₃): δ 19.01 (CH₃), 21.98 (CH₃), 22.94 (CH₃), 31.37 (CH), 37.72 (N-CH₃), 56.29 (CH₂), 83.08 (Ar-C of *p*-cymene), 87.02 (Ar-C of p-cymene), 89.09 (Ar-C of p-cymene), 92.89 (Ar-C of p-cymene), 98.76 (Ar-C of p-cymene), 103.45 (Ar-C of p-85 cymene), 121.06, 122.12, 126.95, 127.76, 128.62, 129.32, 136.47, 137.63, 142.71, 152.58 (Ar-C), 177.85 (Ru-C), 180.87 (Ru-C). Anal. Calcd for C₂₆H₂₈ClN₃Ru (519.04): C, 60.16; H, 5.44; N, 8.10. Found: C, 60.20; H, 5.49; N, 7.99.

90 4c₃: ¹H NMR (CD₂Cl₂): δ 0.79 (d, ³J = 7 Hz, 3H, CH₃ of *i*Pr), 0.93 (d, ${}^{3}J = 7$ Hz, 3H, CH₃ of *i*Pr), 1.62 (s, 3H, CH₃), 2.16 (sept, ${}^{3}J = 7$ Hz, 1H, CH of *i*Pr), 3.79 (s, 3H, N-CH₃), 4.65 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*-cymene), 4.74 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*cymene), 4.85 (d, ${}^{3}J = 6$ Hz, 1H, Ar-H of *p*-cymene), 4.93 (d, ${}^{3}J = 6$ 95 6 Hz, 1H, Ar-H of *p*-cymene), 5.03 (d, ${}^{2}J = 14$ Hz, 1H, CH of CH_2), 5.28 (d, ²J = 14 Hz, 1H, CH of CH_2), 6.72-6.79 (m, 1H, Ar-H), 6.81-6.87 (m, 1H, Ar-H), 6.88-6.92 (m, 1H, Ar-H), 7.43-7.49 (m, 3H, Ar-H), 7.75-7.81 (m, 2H, Ar-H), 7.86-7.91 (m, 1H, Ar-H). ¹³C NMR (CDCl₃): δ 18.95 (CH₃), 22.71 (CH₃), 22.89 (CH₃), 100 31.69 (CH), 37.23 (N-CH₃), 59.68 (CH₂), 86.09 (Ar-C of pcymene), 87.66 (Ar-C of p-cymene), 87.98 (Ar-C of p-cymene), 97.21 (Ar-C of p-cymene), 105.75 (Ar-C of p-cymene), 121.63, 124.74, 125.55, 128.59, 129.38, 132.03, 138.46, 145.88, 148.60 (Ar-C), 167.33 (Ru-C), 168.32 (Ru-C). Anal. Calcd for ¹⁰⁵ C₂₆H₂₈ClN₃Ru (519.04): C, 60.16; H, 5.44; N, 8.10. Found: C, 60.11; H, 5.48; N, 8.13.

Synthesis of $[(C_6H_2Me_3)CH_2N_2(NMe)C_2Ph)]RuCl_2$ 5a. The following synthesis was performed under N₂ using dry solvents. ¹¹⁰ A solution of 4a (0.149 g, 0.25 mmol) in CH₂Cl₂ (5 mL) was stirred at 45 °C for 22 d. The orange-red solution turned into a red-brown solution. The solution was concentrated to ca. 1 mL and was added dropwise to hexanes while stirring vigorously, which resulted in an orange-brown precipitate with pale brown ¹¹⁵ solution. The solid was filtered off and dried under high vacuum to give 5a (0.107 g, 92%) as a pure compound. ¹H NMR $\begin{array}{l} ({\rm CD}_2{\rm Cl}_2): \delta \ 1.97 \ ({\rm s}, \ 6{\rm H}, \ {\rm CH}_3), \ 2.14 \ ({\rm s}, \ 3{\rm H}, \ {\rm CH}_3), \ 3.92 \ ({\rm s}, \ 3{\rm H}, \ {\rm N-CH}_3), \ 5.25 \ ({\rm s}, \ 2{\rm H}, \ {\rm CH}_2), \ 5.33 \ ({\rm s}, \ 2{\rm H}, \ {\rm Ar-H}), \ 7.22-7.34 \ ({\rm m}, \ 3{\rm H}, \ {\rm Ar-H}), \ 7.58-7.66 \ ({\rm m}, \ 2{\rm H}, \ {\rm Ar-H}). \ ^{13}{\rm C} \ {\rm NMR} \ ({\rm CD}_2{\rm Cl}_2): \ \delta \ 16.86 \ ({\rm CH}_3), \ 17.44 \ ({\rm CH}_3), \ 38.06 \ ({\rm N-CH}_3), \ 52.04 \ ({\rm CH}_2), \ 84.88, \ 89.66, \ \\ \\ \ 5 \ 97.34, \ 100.81, \ 126.57, \ 127.96, \ 129.80, \ 131.82, \ 146.72 \ ({\rm Ar-C}), \ 165.41 \ ({\rm Ru-C}). \ {\rm Anal.} \ {\rm Calcd} \ \ {\rm for} \ \ C_{19}{\rm H}_{21}{\rm Cl}_{2}{\rm N}_{3}{\rm Ru} \ (463.37): \ {\rm C}, \ 49.25; \ {\rm H}, \ 4.57; \ {\rm N}, \ 9.07. \ {\rm Found:} \ {\rm C}, \ 49.29; \ {\rm H}, \ 4.52; \ {\rm N}, \ 9.09. \end{array}$

General Procedure for Alcohol Oxidations. A mixture of ¹⁰ alcohol (0.2 mmol) and ruthenium complex (0.01 mmol) in toluene-D₈ was heated to 110 °C and stirred for 24 h. The reaction mixture was cooled down to 25 °C and analyzed by ¹H NMR spectroscopy.

 15 General Procedure for Oxidative coupling of Amines. A mixture of amine (0.2 mmol) and ruthenium complex (0.01 mmol) in toluene-D_8 was heated to 150 °C and stirred for 24 h. The reaction mixture was cooled down to 25 °C and analyzed by $^1\mathrm{H}$ NMR spectroscopy.

20

X-Ray Data Collection and Reduction Crystals were coated in Paratone-N oil in the glovebox, mounted on a MiTegen Micromount and placed under an N₂ stream, thus maintaining a dry, O2-free environment for each crystal. The data were ²⁵ collected on a Kappa Bruker Apex II diffractometer. Data collection strategies were determined using Bruker Apex 2 software and optimized to provide >96.6% complete data. In The data were collected at 150(±2) K for all. Data for compound $4c_3$ were collected with Cu radiation while the others were done with

³⁰ Mo radiation. The data integration and absorption corrections were performed with the Bruker Apex 2 software package.⁵²

X-Ray Data Solution and Refinement Non-hydrogen atomic scattering factors were taken from the literature tabulations.⁵³

- ³⁵ The heavy atom positions were determined using direct methods employing the SHELX-2013 direct methods routine. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least squares techniques on F,
- ⁴⁰ minimizing the function $\omega (F_o F_c)^2$ where the weight ω is defined as $4F_o^2/2\sigma$ (F_o^2) and F_o and F_c are the observed and calculated structure factor amplitudes, respectively. In the final cycles of each refinement, all non-hydrogen atoms were assigned anisotropic temperature factors in the absence of disorder or
- ⁴⁵ insufficient data. In the latter cases atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the carbon to which they are bonded assuming a C-H bond length of 0.95 Å. H-atom temperature factors were fixed at 1.20 times the isotropic temperature factor of the C-atom to
- ⁵⁰ which they are bonded. The H-atom contributions were calculated, but not refined. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of no chemical significance. For more information see Supporting ⁵⁵ Information.

Summary and conclusions

A series of bis(1,2,3-triazolylidene) silver(I) complexes 3a, 3b

and **3c** have been shown to react with $[RuCl_2(p-cymene)]_2$ to form the ruthenium(II)(η^6 -arene)(1,2,3-triazolylidene) complexes

- $_{60}$ as well as the related cyclometalated byproducts. These compounds could be separated by column chromatography. The cyclometalated complexes $4a_2,\ 4b_2,\ 4c_2$ and $4c_3$ are the newest examples of C-H activated triazolylidene ligands complexes. Despite the apparent relation, the ruthenium(II)(η^6 -arene)(1,2,3-
- ⁶⁵ triazolylidene) complexes could not be thermally converted to the metalated analogs. Instead, heating for several weeks resulted in the displacement of *p*-cymene ligand by the pendant mesityl group (**5a**) of the triazolylidene moiety. These compounds exhibited modest catalytic activity for the oxidation of alcohols ⁷⁰ and oxidative coupling of benzyl amines. We are continuing to study the utility of 1,2,3-triazolylidene in catalytic applications and the results of these studies will appear in due course.

Acknowledgement. The financial support of LANXESS Inc., the 75 NSERC of Canada, and the Ontario Centres of Excellence are gratefully acknowledged. DWS is grateful for the award of a Canada Research Chair.

Notes and references

85

- Department of Chemistry, University of Toronto, 80 St George St, 80 Toronto, Ontario, Canada, M5S3H6; Tel: 01-416-946-3294; E-mail: dstephan@chem.utoronto.ca
- † Electronic Supplementary Information (ESI) available: CIF for all structural studies have been deposited. CCDC: 998715-998720 See DOI: 10.1039/b000000x/
- V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
- C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057-3064.
- 90 3. J. E. Hein and V. V. Fokin, *Chem. Soc. Rev.*, 2010,, **39**, 1302-1315.
 - 4. L. Liang and D. Astruc, *Chem. Soc. Rev.*, 2011, **255**, 2933-2945.
 - 5. K. F. Donnelly, A. Petronilho and M. Albrecht, *Chem. Commun.*, 2012.
- 6. R. H. Crabtree, Coord. Chem. Rev. , 2013, 257, 755-766.
- 95 7. M. Melaimi, M. Soleilhavoup and G. Bertrand, Angew. Chem. Int. Ed., 2010, 49, 8810-8849.
- 8. A. Krüger and M. Albrecht, Aust. J. Chem., 2011, 64, 1113-1117.
- 9. M. Albrecht, *Chimia* 2009, **63**, 105-110.
- 10. P. L. Arnold and S. Pearson, *Coord. Chem. Rev.*, 2007, **51**, 596-609.
- 100 11. J. D. Crowley, A.-L. Lee and K. J. Kilpin, Aust. J. Chem., 2011, 64, 1118-1132.
 - 12. P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc., 2008, 130, 13534-13535.
- 13. G. Guisado-Barrios, J. Bouffard, B. Donnadieu and G. Bertrand, *Angew. Chem. Int. Ed.*, 2010, **49**, 4759-4762.
 - J. Bouffard, B. K. Keitz, R. Tonner, G. Guisado-Barrios, G. Frenking, R. H. Grubbs and G. Bertrand, *Organometallics*, 2011, 30, 2617-2627.
- 15. T. Karthikeyan and S. Sankararaman, *Tetrahedron Lett.*, 2009, **50**, 5834-5837.
 - T. Nakamura, K. Ogata and S. i. Fukuzawa, *Chem. Lett.*, 2010, **39**, 920-922.
 - 17. R. Lalrempuia, N. D. McDaniel, H. Mueller-Bunz, S. Bernhard and M. Albrecht, *Angew. Chem. Int. Ed.*, 2010, **49**, 9765-9768.
- 115 18. A. Prades, E. Peris and M. Albrecht, Organometallics, 2011, 30, 1162-1167.
 - 19. K. Ogata, S. Inomata and S. Fukuzawa, *Dalton Trans.*, 2013, **42**, 2362-2365.
- 20. D. Canseco-Gonzalez and M. Albrecht, Dalton Trans., 2013, 42, 120 7424-7432.
 - 21. K. J. Kilpin, S. Crot, T. Riedel, J. A. Kitchen and P. J. Dyson, *Dalton Trans.*, 2014, **43**, 1443-1448.

Dalton Transactions

95

100

105

- 22. Y. Ohki, T. Hatanaka and K. Tatsumi, J. Am. Chem. Soc., 2008, 130, 17174-17186.
- 23. J. M. S. Cardoso and B. Royo, Chem. Commun., 2012, 48, 4944-4946. 5 24. A. A. Danopoulos and P. Braunstein, Dalton Trans., 2013, 42, 7276-
- 7280. 25. A. Labande, N. Debono, A. Sournia-Saquet, J.-C. Daran and R. Poli,
- Dalton Trans., 2013, 42, 6531-6537. 26. C. Y. Tang, N. Phillips, M. J. Kelly and S. Aldridge, Chem.
- Commun., 2012, 48, 11999-12001. 10
- 27. X. Liu and P. Braunstein, Inorg. Chem., 2013, 52, 7367-7379.
- 28. A. M. Oertel, J. Freudenreich, V. R. J. Gein, L. F. Veiros and M. J. Chetcuti, Organometallics, 2011, 30.
- 29. J. H. Lee, K. S. Yoo, C. P. Park, J. M. Olsen, S. Sakaguchi, G. K. S. Prakash, T. Mathew and K. W. Jung, Adv. Synth. Catal., 2009, 351, 15 563-568
- 30. O. Rivada-Wheelaghan, B. Donnadieu, C. Maya and S. Conejero, Chem. Eur. J., 2010, 16, 10323-10326.
- 31. O. Rivada-Wheelaghan, M. A. Ortuño, J. Díez, A. Lledó and S. Conejero, Angew. Chem. Int. Ed., 2012, 51, 3936-3939.
- 32. S. Burling, E. Mas-Marza, J. E. V. Valpuesta, M. F. Mahon and M. K. Whittlesey, Organometallics, 2009, 28, 6676-6686.
- 33. M. J. Chilvers, R. F. R. Jazzar, M. F. Mahon and M. K. Whittlesey, Adv. Svnth. Catal., 2003, 345, 1111-1114.
- 25 34. S. Burling, M. F. Mahon, B. M. Paine, M. K. Whittlesey and J. M. J. Williams, Organometallics, 2004, 23, 4537-4539.
- 35. C. Zhang, Y. Zhao, B. Li, H. Song, S. Xu and B. Wang, Dalton Trans., 2009, 5182-5189.
- 36. C. Zhang, B. Li, H. Song, S. Xu and B. Wang, Organometallics, 2011, 30, 3029-3036. 30
- 37. A. Petronilho, M. Rahman, J. A. Woods, H. Al-Sayyed, H. Müller-Bunz, J. M. D. MacElroy, S. Bernhard and M. Albrecht, Dalton Trans., 2012, 41, 13074-13080.
- 38. K. F. Donnelly, R. Lalrempuia, H. Müller-Bunz and M. Albrecht, Organometallics, 2012, 31, 8414-8419.
- 39. R. Saravanakumar, V. Ramkumar and S. Sankararaman, Organometallics, 2011, 30, 1689-1694.
- 40. S. Zhang and W. Baratta, Organometallics, 2013, 32, 3339-3342.
- 110 41. E. F. Flegeau, C. Bruneau, P. H. Dixneuf and A. Jutand, J. Am. Chem. Soc., 2011, 133, 10161-10170. 40
- 42. R. Lalrempuia, P. J. Carroll and M. R. Kollipara, J. Chem. Sci., 2004, 116, 21-27.
- 43. D. A. Freedman, S. Kruger, C. Roosa and C. Wymer, Inorg. Chem., 115 2006, 45, 9558-9568.
- 45 44. C. Albrecht, S. Gauthier, J. Wolf, R. Scopelliti and K. Severin, Eur. J. Inorg. Chem., 2009, 1003-1010.
- 45. S. Doherty, J. G. Knight, C. R. Addyman, C. H. Smyth, N. A. B. Ward and R. W. Harrington, Organometallics, 2011, 30, 6010-6016.
- 120 46. D. Jan, L. Delaude, F. Simal, A. Demonceau and A. F. Noels, J. Organomet. Chem., 2000, 606, 55-64. 50
- 47. B. Çetinkaya, S. Demir, I. Özdemir, L. Toupet, D. Sémeril, C. Bruneau and P. H. Dixneuf, Chem. Eur. J., 2003, 9, 2323-2330.
- 48. G. B. Chu and C. B. Li, Org. Biol. Chem., 2010, 8, 4716-4719.
- S. M. Landge, V. Atanassova, M. Thimmaiah and B. Torok, 125 49. Tetrahedron Lett., 2007, 48, 5161-5164. 55
- 50. G. Jiang, J. Chen, J. S. Huang and C. M. Che, Org. Lett., 2009, 11, 4568-4571.
- 51. F. Saleem, G. K. Rao, A. Kumar, G. Mukherjee and A. K. Singh, Organometallics, 2013, 32, 3595-3603.
- 60 52 , Bruker AXS Inc. , 2013.
- 53. D. T. Cromer and J. T. Waber, Int. Tables X-Ray Crystallography, 1974.

Dalton Transactions Accepted Manuscript

135

130

70

65

TOC graphic

