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In NHC pincer complexes incorporatig a hemilabile donor 

site, there exists an equilibrium between the true pincer form 

and a pseudopincer coordination isomer. The influence of the 

NHC moieties on this isomerism has been studied by DFT 

calculations. 10 

Tridentate, pincer and pincer-type ligands have gained 
increasing popularity due to the robustness and thermal 
stability the rigid, κ3-mer or κ3-(pseudo)-mer coordination 
geometry these ligands confer to their complexes. Transition 
metal complexes incorporation pincer ligands have been 15 

shown to be versatile and useful catalysts in organic 
synthesis.1 Beyond catalysis, pincer complexes have also been 
utilized successfully for the development of new materials.2 
The fine-tuning of steric and electronic properties of pincer 
ligands - be it by modifications in the backbone or changes to 20 

the nature of the donor sites - has attracted considerable 
research interest, in order to provide coordination spheres for 
each and every application.3 While catalysis often involves the 
coordinations sites on the metal centre not occupied by the 
pincer ligand, there are also cases in which partial 25 

decoordination of a hemilabile donor takes place. The 
advantage is the rapid creation of a coordinatively and 
electronically unsaturated metal centre, open for incoming 
substrates, while retaining the tethered donor functionality in 
the vicinity in order to allow for rapid recoordination and 30 

stabilisation of the active species. As a result, highly active, 
yet stable catalysts are obtained.4 Frequently, the donor 
functionalities in the sidechains of the pincer ligands are the 
hemilabile sites,5 but cases in which the central donor moiety 
exhibits hemilabile behaviour have been reported as well.6 35 

However, to control hemilabile behaviour, the governing 
geometric and electronic factors still need to be understood.7 
 N-heterocyclic carbenes (NHCs) have become ubiquitously 
employed ligands for transition metal catalysts due to their 

strong σ-basicity, the robustness of their complexes, and the 40 

ease with which they can be synthesized.8 Their steric bulk 
and electronic properties can be fine-tuned rapidly by 
modifying the backbone and side chains,9 and additional 
donor functionalities can be introduced in the side chains, 
which gives rise to chelating and pincer-type ligands. Donor 45 

moieties based on heteroatoms such as nitrogen, oxygen, 
phosphorous, and sulfur have been reported.10,11 Especially the 
soft thioether functionalities are know to exhibit hemilabile 
behavior in their complexes.12 
 It has been shown that in the presence of coordinating 50 

counteranions, complexes of CSC pincer ligands are isolated 
either as κ2-trans-C,C pseudo-pincer complexes or in their κ3-
mer-C,S,C pincer form.13 The electron-donating abilities of 
the carbene moieties were suggested to have a pivotal 
influence on this isomerism. To study this electronic effect, 55 

we examined the electronic properties of NHCs with markedly 
different donor strenghts and the preference for either the 
pincer or the pseudo-pincer form by means of computational 
methods. 
 The relative Gibbs free energies ∆G of a neutral 60 

pseudopincer species A and the corresponding cationic pincer 
C and a bromide ion are difficult to obtain due to the 
significant impact of solvatation on the ion pair. Instead, the 
Gibbs free energy ∆GR of the reaction of a pincer and 
pseudopincer complex was used as an indication of preference 65 

for the pincer form (Scheme 1). During this fictitious reaction, 
the number of ionic species stays constant throughout the 
reaction, and solvatation effects as well as the Gibbs free 
energy of the bromide counteranion can be neglected as they 
are almost identical for starting materials and products. 70 

 The resulting scale of pincer preference energy is arbitrary 
in the sense that the absolute values will depend on the choice 
of reference system. We decided to use complexes B and D 
featuring dichloroimidazolin-2-ylidene moieties as probe. 
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Scheme 1 Homodesmotic pincer/pseudo-pincer exchange reaction 
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 This system was the most weakly donating ligand under 
scrutiny, and the respective complexes are known to prefer the 
pseudopincer form. A negative value for ∆GR will thus signify 
a higher preference for the pincer form in comparison to the 
reference system. Both the pincer and pseudopincer forms of 5 

all examined complexes were optimised at the B3LYP/cc-
pVDZ level of theory,14,15,16 and their respective Gibbs free 
energies calculated at the same level of theory (see 
Supplementary Information for computational details). 
 To avoid the influence of variations in steric bulk 10 

associated with changing the substituents at nitrogen and to 
limit computational cost, NHC side chains were simplified to 
sterically unassuming methyl groups, and the effect of five 
vastly different NHC backbones (cf. figure 2) was examined, 
two of which have already been studied experimentally.13 15 

 
Fig. 1 Optimised pseudo-pincer and pincer geometries based on the 

dichloromidazolin-2-ylidene moiety 

 The optimised structures are comparable to the reported 
molecular structures.13 All complexes have a distorted square 20 

planar coordination geometry of the palladium center 
(Figure 1). In the pincer complexes, the metallacycles adopt a 
distorted boat conformation and the planes defined by the 
NHC rings are almost coplanar, while they showed a twist of 
26-43° in the corresponding pseudopincer forms. From these 25 

optimized structures, ∆GR can be obtained. 
 No experimental donor strength values are available for the 
ligands in the calculated complexes. However, it has been 
shown that the Kohn-Sham eigenvalue of the σ-lone pair 
orbital ε(σ-HOMO) correlates well with the donor strength.17 30 

To limit computational cost, orbital energies were calculated 
for truncated ligands at the B3LYP/auc-cc-pVTZ//B3LYP/cc-
pVDZ level (Figure 2).14,16,18 In all cases, the highest orbital 

with σ-symmetry was found to be the lone pair at Ccarbene 
(Figure 3). 35 
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Fig. 2 Truncated ligands with different NHC moieties 

 
Fig. 3 σ-HOMO of NHCs 1 (HOMO-1) and 5 (HOMO) 

 Orbital energies for the σ-lone pair orbital were found to 40 

range from -6.56 to -5.52 eV, and confirmed the expected 
increase in donor strength from 1 to 5 (Table 1). The 
preference for the pincer form, represented by ∆GR of the test 
reaction, increased in the same order, and Figure 4 shows the 
strong correlation between donor strength and ∆GR (R2 = 45 

0.9931). 

Table 1. ε(σ-HOMO) of the truncated ligand and ∆GR 

NHC moiety ε(σ-HOMO) [eV] ∆GR [kJ/mol] 

Cl2-imidazole -6.56 0.0 
1,2,4-triazole -6.52 -5.4 

Imidazole -6.12 -26.5 
Imidazoline -5.94 -32.8 

Pyrazole -5.52 -57.0 
 

 It is apparent that more strongly donating carbene moieties 
in the CSC ligand favour the pincer form. The cationic pincer 50 

complexes are better stabilised by stronger NHCs than the 
neutral pseudopincer form, and this difference in stabilization 
increases with the donor strength. Additionally, entropy and 
solvation also favour the formation of the ionic pincer over 
the pseudopincer form. On the other hand, the neutral 55 

pseudopincer complexes are preferred if the NHC moieties 
transfer less electron density towards the metal atom due to 
the fact that bromide is a better ligand than the thioether. 
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 In a more formalistic approach, the [PdBr(NHC)2]
+ 

fragment can be understood as a Lewis acid interacting with a 
either the thioether moiety or a bromido ligand as a Lewis 
base. The internal charge redistribution in the Lewis acid upon 
charge transfer from the Lewis base is energetically more 5 

favourable with more weakly donating NHC moieties, which 
allows the coordination of the more strongly donating 
bromido ligand. 19 
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Fig. 4 Correlation ε(σ-HOMO) [eV] and ∆GR [kJ/mol] 10 

 In summary, the relationship between donor strength and 
pincer/pseudo-pincer isomerism has been unambigously 
demonstrated in good agreement with experimental 
observations. Calculated or experimentally determined ε(σ-
HOMO) values can thus serve as indication for the 15 

hemilability of the central donor site in similar complexes, 
allowing for a more rational ligand design and the synthesis of 
taylor-made pincer complexes. 
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École polytechnique for support from the international 20 

internship program and the National University of Singapore 
and the Singapore Ministry of Education for financial support 
(WBS R-143-000-410-112) and a SINGA scholarship for 
J.C.B. This work was performed using HPC resources from 
GENCI-CINES (Grant 2013-x086894). 25 
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