This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Retrosynthetic approach to design of molybdenum-magnesium oxoalkoxides

Denis A. Kuznetsov,* Ivan V. Fedyanin, Konstantin A. Lyssenko, and Tamara A. Bazhenova

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

DOI: 10.1039/b000000x

The reaction of MoCl₅ methanolysis in the presence of magnesium ions was shown to produce an extensive row of heterobimetallic Mg-Mo(V, VI) oxomethoxides of different nuclearity ranging from 4 for [Mg(CH₂OH)₂Mo₂O₆(CH₃O)₈] (1) to 26 for [Mg(DMF)₂(CH₂OH)₆][Mo₂₂Mg₉O₄₈(CH₃O)₂₃(DMF)₆] (2) with the latter possessing a ring morphology. Examination of [Mo₂O₈(OCH)₂Mg₆(CH₂OH)₈] (3), [MoO₂(OC₂H₅)₃Mg₂(DMF)₄] (4a), and [MoO₄(OC₂H₅)₂Mg₂(DMF)₈] (5a) X-ray structures revealed the presence of the well known tetranuclear core {MoO₄(OCH)₂}²⁺ thus the similar reactivity patterns leading to their formation were assumed. For convenient synthesis of such heterobimetallic oxoalkoxides, the retrosynthetic approach based on speculative deconstruction of a target molecule onto simpler fragments was suggested and successfully employed. Namely, the reaction of the stoichiometric amounts of appropriately chosen Mo(V), Mo(VI) and Mg²⁺ synthons led to their assembling resulted in formation of heterometallic clusters 3, 5a and [MoO₂(OC₂H₅)₃Mg₆(CH₂OH)₈] 2CH₂OH (4b) characterized by means of elemental analysis, UV-Vis, IR spectroscopy, and X-ray crystallography.

Introduction

Efficient catalytic dinitrogen reduction on a well defined metal site is a long-standing goal in the field of synthetic inorganic chemistry that still remains if not elusive but obscure despite a number of remarkable achievements providing insights on ligation, activation, and stoichiometric [1] transformations of N₂ on mononuclear and polynuclear metal centres and even on a possibility of a catalytic production of NH₃ [2-4] and its derivatives [5] on a single metal site [6]. Due to the fact that both industrial and biological dinitrogen reduction to ammonia are based on the cooperation of multiple metal sites in the course of activation and hydrogenation of N₂, protic nitrogen fixing systems suggested by Shilov and co-workers [7] which employ polynuclear methoxide complexes of low valence molybdenum, represent the most appropriate model for the both processes. Besides the highest activity of the protic systems [7] among known ones in terms of the number of catalytic cycles and reaction rates (the latter being close to those observed for nitrogenase enzyme [8]), another strong evidence supporting the reliability of the model comes from the comparative kinetic study of catalytic behaviour of the active site of enzyme, the iron-molybdenum cofactor (FeMoco), extracted from the MoFe protein, and that of a synthetic complex, that clearly demonstrates very similar patterns for both polynuclear compounds [9].

Unfortunately, a little is known on the structures of the active sites in the protic systems that makes elucidation of the mechanistic details of N₂ transformations on a polynuclear complex impossible. This stimulates us to undertake a detailed investigation of the catalytic system preparation procedure [10], the general description of which could be summarized as follows: MoCl₅ methanolysis reaction in the absence/presence of Mg²⁺ in a weakly alkaline media followed by the reduction of the obtained mixture by the strong reducing agent (Na/Hg, Eu/Hg, Ti³⁺, etc.) Data on how the MoCl₅ methanolysis reaction is influenced by the ratio and the nature of an alkaline agent are presented in [11].

Herein we report our results on the synthesis and structures of the novel polynuclear magnesium-molybdenum oxoalkoxides formed in the reaction: MoCl₅ + Mg²⁺ + CH₃OH + NaOCH₃. We were able to improve the initially exploited synthetic methodology as the retrosynthetic philosophy seemed to be and then proved to be the effective and convenient strategy for the synthesis of complex heterometallic structures from simpler compounds.

Our interest to the synthesis of heterometallic alkoxides was also stimulated by their growing application as Single Source Precursors [12] in MOCVD and sol-gel technology since they combine such valuable assets as the mild decomposition...
Fig. 1 ORTEP representation of the molecular structures of [Mo$_6$O$_{16}$(OCH$_3$)$_4$Mg$_2$(DMF)$_8$](5a) (A), [Mo$_6$O$_{12}$(OCH$_3$)$_{12}$Mg$_2$(DMF)$_4$](4a) (B), [Mo$_6$O$_{12}$(OCH$_3$)$_{16}$Mg$_4$(CH$_3$OH)$_6$](3) (C) (p=50%) (hydrogen atoms of methyl groups and =CHN(CH$_3$)$_2$ substituents at O(11) and O(11A) in 5a are omitted from the considerations of clarity). Atomic coordinates and numbering scheme for 3 are taken from ref. [18].

conditions and feasibility to control the ratio of all the desired elements. Here, for instance, we show that the Mg/Mo ratio in the complexes we synthesized ranges from 0.27 to 1. Moreover, the scope of application of Mo-Mg oxo-compounds is not limited by N$_2$ activation since mixed Mo-Mg oxides are known to be effective heterogeneous catalysts for alkane dehydrogenation [13].

Results and Discussion

MoCl$_5$ methanolysis in the presence of Mg$^{2+}$. Descriptions of the 3, 4a and 5a structures and their analysis from the point of view of retrosynthetic philosophy

In the course of our step-by-step investigation of the structure of complexes obtained during the catalytic system preparation procedure (see above), we have studied the reaction of MoCl$_5$ + Mg$^{2+}$ interaction with methanol in a weakly alkaline media provided by NaOCH$_3$, according to the general scheme:

$$\text{MoCl}_5 + x \text{Mg}^{2+} + \text{CH}_3\text{OH} + >5 \text{M}^+\text{A}^- \rightarrow \text{“Mo-Mg oxomethoxides”}$$

The only structurally characterized Mo-Mg cluster isolated under the certain conditions (eq.1: $x = 0.6$, M$^+\text{A}^-$ = NaOH) is $\{[\text{Mg}_2\text{MoO}_2(\text{MeO})_6(\text{MeOH})_2]^2[\text{Mg}(\text{MeOH})_6]^5\}^6\text{MeOH}$ [10, 14], which was shown to be the high valence precursor of the catalytic active species. It was demonstrated that besides the complex above, a number of other compounds of unknown structures with different Mg/Mo ratio were formed in the course of (MoCl$_5$ + Mg$^{2+}$) methanolation at $x = 0.6$, M$^+\text{A}^-$ = NaOCH$_3$, whose reduction leads to formation of the complexes active in N$_2$ reduction as well [15]. Therefore, we decided to undertake a detailed study of this reaction with an intention to structurally characterize the high valence catalyst precursors and to shed some light on the reactivity patterns that take place in these systems, for being able to provide an alternative route to their syntheses. We believe that understanding the factors affecting the structure of formed compounds, could provide an opportunity to control their catalytic properties by means of fine-tuning of the catalysts’ precursors structures.

The first step was to reproduce the certain reaction conditions ($x = 0.6$, M$^+\text{A}^-$ = NaOCH$_3$ [15]) outlined in eq.1 to obtain the structural information on the compounds thus formed. By
means of recrystallization and extraction procedures we were able to isolate and then structurally characterize a row of heterobimetallic molybdenum-magnesium oxomethoxides of different geometry and nuclearity [16]. Despite apparent structural diversity, it is possible to rationalize their structures in terms of different Mo- and Mg-containing “building blocks” which they are composed of. As an example, centrosymmetric molecules 5a, 3, 4a (fig. 1), 4b (see below), can be visualized as consisting of well known [11,17] tetranuclear core \{MoO₃(OCH₃)₃\}²⁺ (fig. 2), representing two Mo⁶-Mo⁷ dimers interconnected through the agency of doubly bridged methoxide groups and μ₁-oxo atoms. This core has six coordination vacancies on molybdenum atoms which are occupied with oxygen atoms of Mo⁶⁺- and/or Mg-containing moieties.

In case of 4a the coordination environment of Mo atoms of the central \{Mo₄\} moiety is supplemented by coordination of 3 methoxy groups (6 total) provided by \{MoO₂(OCH₃)₂\}²⁻ and \{Mg(DMF)₂(OCH₃)\}²⁻ species, both are in octahedral environment, which are interconnected in turn in edge-sharing (μ₁-OCH₃) mode. In 3 the ligation of molybdenum atoms of \{Mo₄\} is essentially the same as in 4a, except the \{Mg(OCH₃)₂(CH₂OH)₂\}²⁻ moiety is present instead of \{MoO₂(OCH₃)₂\}²⁻ fragment. To the virtually planar Mg(μ-OCH₃)₂Mg cycle, the \{MoO₂(OCH₃)₂\} moiety is attached in bidentate fashion, thus resulting in an incomplete (due to the lack of one vertex) cubane subunit (for detailed description of the structure 3 see ref. [18]).

A remarkable feature of the structures 3 and 4a is that the substitution of molybdenum for magnesium has only a slight effect on the geometry of complex. Thus, the only significant deviation in the bond lengths within \{(OCH₃)₂Mg(μ-OCH₃)₂M(OCH₃)\}²⁻ moiety (M = \{Mg(OCH₃)(CH₂OH)₂\}²⁻, [MoO₂(OCH₃)₂]²⁻) is an elongation of the M-O bonds trans- to terminal Mo=O groups in 4a. The other bond distances have essentially the same values. Such a notable feature provides the basis for the isomorphous substitution reactions which are proved to be applicable for the synthesis of heterometallic alkoxides [19].

In 5a the tetranuclear \{Mo₄\} core is ligated by the two molybdate MoO₄²⁻ moieties in a bidentate manner. Remaining sites are occupied by the bridging methoxide groups connected with magnesium atoms that additionally coordinate μ₁-O groups of the Mo-Mo moieties. Octahedral coordination of magnesium atoms is supplemented by binding of four dimethylformamide molecules. In contrast to the other mixed valence compounds obtained, 5a is the only structure containing the tetrahedrally coordinated Mo atoms ligated exclusively by the oxo-groups.

Structural description of a ring-shaped \{Mg(DMF)₃(CH₂OH)₃\}_2[Mo₂MgO₄(OCH₃)₁₆(DFM)₈] (2) polyoxometallate

The structure 2 is quite remarkable in a sense that it represents a rare polyoxometallate containing discrete main group metal polyhedra incorporated into a polymolybdenum framework. An independent part of this centrosymmetric molecule could be described as consisting of three types of Mo-containing building blocks: \{Mo₂\}, \{Mo₁\} and \{Mg\}. \{Mo₂\} unit corresponds to two \{MoO₂(OCH₃)₂\}_²⁻ moieties fused through the linkage of μ₁-methoxy and μ₁-oxo groups, with the latter replacing one of the μ₂-OCH₃ ligands in the \{Mo₄O₆(OCH₃)₂\}²⁻ fragment (fig. 2). \{Mo₁\} unit is the common MoO₂(μ₂-O)₂(OCH₃)₂²⁻ edge-sharing dimeric species [17c,e, 20], while the \{Mg\} is an octahedrally coordinated \{MoO₄L₄\}²⁻ moiety. The pairs of \{Mo₂\}, \{Mo₁\} and \{Mg\} units, along with four Mg²⁺ atoms, are interconnected through the agency of oxo and methoxy bridges, giving rise to a ring-shaped bimetallic anionic polyoxometallate species (fig. 3) bicapped with two \{Mg(CH₂OH)₃(DFM)₈\}²⁻ moieties. (For the detailed discussion on the magnesium counterion coordination see Supplementary.)

Comments on Mo⁶⁺ formation

There is no unequivocal explanation of how a Mo⁶⁺ appears in the reaction conditions described above neither from our work nor from the literature, despite the documented evidences that Mo⁵⁺ methanolysis may be accompanied with the formation of Mo⁶⁺
Fig. 5 Scheme of 4b formation depicting its aggregation from “building units” (corresponding synthons are shown).

Fig. 4 ORTEP view of 4b (ρ=50%). Hydrogen atoms of methyl groups and cocrystallized solvent molecules are omitted.

species [17b, 21]. Taking into account the fact that the oxidation reaction strongly accelerates in the presence of water [17b], one can suppose that oxidation of a metal proceeds through the formation of the hydroxo coordinated Mo-species. Such species can be deprotonated more easily in an alkaline media (in comparison with the reaction of dealkylation of alkoxo species), thus transforming into the o xo species, that makes a metal centre more nucleophilic and, hence, more susceptible to oxidation. It might be assumed that such Mo–5 oxo-hydroxo compounds (which could be produced in the reaction of Mo–5 with traces of moisture inevitably present in a solvent) could function as reducing agents in a metal mediated reduction of solvent protons producing H₂, while themselves oxidizing to Mo–6. Though further experiments are required to prove this point, we strongly believe that intrinsic reactivity of the system is responsible for the observed transformations, rather than reactants contamination (which was assumed [17b, 21] to be the reason of this redox process).

Retrosynthetic strategy to preparation of Mo-Mg oxomethoxides [Mo₆O₁₂(OCH₃)₁₆Mg₄(CH₂OH)₁₂] (3), [Mo₆O₁₂(OCH₃)₁₂Mg₂(CH₂OH)₁₂]·2CH₂OH (4b), and [Mo₆O₁₂(OCH₃)₆Mg₂(DMF)₁₂] (5a)

Unfortunately, originally exploited synthetic pathway to Mo-Mg oxomethoxides based on (MoCl₅ + Mg²⁺) methanalysis reaction (eq.1) was found to be rather inconvenient due to low and uncontrollable yields of the products and tedious work-up [16].
To study the reactivity of this type of compounds further, it was necessary to elaborate an alternative strategy to their syntheses. As it was underlined, a speculative deconstruction of a complex compound into the smaller “building blocks” could be effectively utilized for a description of its structural peculiarities. The most prominent advantage of this strategy came with the finding that such building blocks could be considered as retrons in what is usually referred to as retrosynthesis [22].

Inspired with the known tendency of alkoxo compounds to aggregate into complicated structures from the smaller ones, including heterometallic (often in a rather unpredictable manner despite attempts to rationalize the reactivity of alkoxides [19, 23]), and taking into account the known reactivity [18] of Mo–Mo containing dimeric complex [Na(CH₃OH)Mo₂O₂(OCH₃)₇] [11], we were intrigued to examine whether the retrosynthetic strategy can be employed in the preparation of Mo–Mg complexes obtained in the reaction of the metal chlorides methanolysis.

Summarizing the structural features of 3, 4a (and 4b [24], see fig. 4 and Table 1) and 5a, one might repeat that these compounds could be considered as consisting of different Mo⁵⁺, Mo⁶⁺ and Mg²⁺ containing moieties. Schemes of formation of 3 and 4b depicting deconstruction of the complex molecule onto corresponding retrons and demonstrating the synthetic equivalents of the latter are shown on Fig. 5 and Fig. 6, respectively [25].

Thus, the reaction of the stoichiometric amounts of Mo⁵⁺ and Mo⁶⁺ (in a form of [Na(CH₃OH)Mo₂O₂(OCH₃)₇] and MoO₂Cl₂, respectively) with either 1 or 2 equivalents of Mg(OCH₃)₂ [26] per Mo⁵⁺-Mo⁶⁺ unit and water (apparently hydrolyzing methoxo-bridged [Mo₂O₂(OCH₃)₇] dimers) leads to the formation of clusters 4b or 3, according to eq. 2 and 3.

\[
2 \text{Mo}^{VI} \text{O}_2 \text{Cl}_2 + 2 \text{Mg(OCH}_3)_2 + 2 [\text{Na(CH}_3\text{OH)Mo}^{V} \text{O}_2 \text{O}_2(\text{OCH}_3)_7] + 4 \text{H}_2\text{O} \rightarrow [\text{MO}^{V} \text{O} \text{O}_2(\text{OCH}_3)_7]_2 \text{MO}^{VI} \text{O}_2 \text{Mg}_2(\text{CH}_3\text{OH})_6 (4b) + 2 \text{NaCl} + 2 \text{HCl} + 4 \text{CH}_3\text{OH} \quad (2)
\]

\[
2 \text{Mo}^{VI} \text{O}_2 \text{Cl}_2 + 4 \text{Mg(OCH}_3)_2 + 2 [\text{Na(CH}_3\text{OH)Mo}^{V} \text{O}_2 \text{O}_2(\text{OCH}_3)_7] + 4 \text{H}_2\text{O} \rightarrow [\text{MO}^{V} \text{O} \text{O}_2(\text{OCH}_3)_7]_2 \text{MO}^{VI} \text{O}_2 \text{Mg}_4(\text{CH}_3\text{OH})_6 \quad (3) + 2 \text{NaCl} + 2 \text{HCl} + 4 \text{CH}_3\text{OH} \quad (3)
\]

It is clear from the eq. 2 and 3 that outcome of the process markedly depends on the alkalinity of the media in the initial stage of the reaction (i.e. Mg(OCH₃)₂/MoO₂Cl₂ ratio taken). This
is due to the fact that it is alkalinity of the media that influences an equilibrium shift in the reaction $[{\text{Mg}}]^{2+} \leftrightarrow [{\text{Mg(μ-OCH}_3)_2}\text{Mg}]^{2+}$. In close to neutral media $[{\text{Mg}}]^{2+}$ predominates that results in formation of $4b$, while under strongly alkaline conditions dimeric species $[{\text{Mg(μ-OCH}_3)_2}\text{Mg}]^{2+}$ (which are the “half” of magnesium methoxide $[{\text{Mg(OMe)}_6}(\text{MeOH})_3]$ molecule) are more stable and 3 is the main isolable product.

The same reaction scheme as for $4b$ synthesis seemed to be applicable to the preparation of $5a$, but except instead of MoO_2Cl_2, molybdate was used as a source of Mo. This suggestion was justified since we were able to synthesize $5a$ in such a manner. Additionally, using the same synthetic approach, we were able to obtain compound $[\text{Mo}_2\text{O}_2(\text{OCH}_3)_2\text{Mg}_2(\text{DMF})_2(\text{CH}_3\text{OH})_2]_2$ ($5b$) which differs from $5a$ in ligation of magnesium ions and in crystal packing (Fig.7).

Unfortunately, yield of $5a$ synthesized according to this scheme appeared to be poorly reproducible. Yet we were lucky to find that dissolution of either $4a$ or $4b$ in DMF leads to theirs high yield transformation into $5a$. One may speculate that the mechanism of the latter reaction includes dissociation of $4a$ or $4b$ into species structurally close to those proposed as retons in $4b$ formation scheme, (fig.5) since the conversion of $4a$ (or $4b$) into $5a$ represents essentially the rearrangement of the molecule accompanied with dealkylation of some methoxo groups. Almost complete transformation could be rationalized in terms of Le Chatellier’s principle since $5a$ is completely insoluble in DMF.

Mo(V, VI)-Mg oxomethoxides as precursors of N$_2$ fixing catalysts

Investigation of structural and electronic properties of the compounds obtained upon reduction of the high valence precursors as well as exploration of alternative synthetic schemes leading to polymeric low valence molybdenum (and molybdenum-magnesium) oxomethoxides are in progress. The next step of the study presented here is the reduction of the synthesized compounds and testing of the products as the catalysts of dinitrogen reduction in methanol. Preliminary studies have demonstrated very inspiring results as the products of the reduction of certain compounds described above were active in
Table 2 Crystallographic data for 2, 4a, 4a·2CH₃OH, 4b, 5a, 5b.

<table>
<thead>
<tr>
<th>Complex</th>
<th>2</th>
<th>4a</th>
<th>4a·2CH₃OH</th>
<th>4b</th>
<th>5a</th>
<th>5b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₆₈H₁₈₉Mg₆Mo₂₂N₁₂O₹₃</td>
<td>C₂₃H₂₃Mg₂Mo₆N₄O₂₈</td>
<td>C₁₆H₂₃Mg₂Mo₆N₄O₂₈</td>
<td>C₁₆H₂₃Mg₂Mo₆O₃₀</td>
<td>C₂₈H₂₃Mg₂Mo₆N₄O₃₀</td>
<td>C₂₆H₂₃Mg₂Mo₆N₄O₃₀</td>
</tr>
<tr>
<td>Formula weight</td>
<td>4942.78</td>
<td>1481.05</td>
<td>1545.14</td>
<td>1380.92</td>
<td>1589.16</td>
<td>1424.95</td>
</tr>
<tr>
<td>T, K</td>
<td>100(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P₁</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
<td>R3</td>
</tr>
<tr>
<td>Z/Z’</td>
<td>2/0.5</td>
<td>1/0.5</td>
<td>2/0.5</td>
<td>2/0.5</td>
<td>2/0.5</td>
<td>9/1</td>
</tr>
<tr>
<td>a, Å</td>
<td>16.983(2)</td>
<td>9.6698(6)</td>
<td>7.9676(8)</td>
<td>8.8482(10)</td>
<td>12.086(2)</td>
<td>39.690(4)</td>
</tr>
<tr>
<td>b, Å</td>
<td>24.133(3)</td>
<td>11.2114(7)</td>
<td>17.3716(18)</td>
<td>28.556(3)</td>
<td>13.745(3)</td>
<td>39.690(4)</td>
</tr>
<tr>
<td>c, Å</td>
<td>21.952(3)</td>
<td>13.5351(8)</td>
<td>19.067(2)</td>
<td>9.6563(11)</td>
<td>17.615(4)</td>
<td>9.2538(9)</td>
</tr>
<tr>
<td>α, °</td>
<td>90</td>
<td>100.7970(10)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, °</td>
<td>90.464(2)</td>
<td>104.1670(10)</td>
<td>94.353(2)</td>
<td>105.008(2)</td>
<td>106.75(3)</td>
<td>90</td>
</tr>
<tr>
<td>γ, °</td>
<td>90</td>
<td>114.3590(10)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>V, Å³</td>
<td>8996.7(18)</td>
<td>1225.11(13)</td>
<td>2631.4(5)</td>
<td>2356.6(5)</td>
<td>2802.2(10)</td>
<td>12624(2)</td>
</tr>
<tr>
<td>dₘ, g cm⁻³</td>
<td>1.825</td>
<td>2.007</td>
<td>1.950</td>
<td>1.946</td>
<td>1.883</td>
<td>1.687</td>
</tr>
<tr>
<td>μ, cm⁻¹</td>
<td>15.83</td>
<td>16.03</td>
<td>14.99</td>
<td>16.59</td>
<td>14.1</td>
<td>13.96</td>
</tr>
<tr>
<td>2θmax, °</td>
<td>54</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>Reflections collected/independent</td>
<td>75322/19607</td>
<td>20020/7107</td>
<td>28396/7675</td>
<td>39675/5148</td>
<td>19548/8112</td>
<td>42295/8154</td>
</tr>
<tr>
<td>Observed reflections [I>2σ(I)]</td>
<td>12030</td>
<td>6066</td>
<td>6229</td>
<td>4143</td>
<td>7287</td>
<td>6224</td>
</tr>
<tr>
<td>Number of refined parameters</td>
<td>933</td>
<td>299</td>
<td>318</td>
<td>263</td>
<td>336</td>
<td>297</td>
</tr>
<tr>
<td>R₁</td>
<td>0.0644</td>
<td>0.0306</td>
<td>0.0315</td>
<td>0.0579</td>
<td>0.0339</td>
<td>0.0375</td>
</tr>
<tr>
<td>wR₂</td>
<td>0.1933</td>
<td>0.0840</td>
<td>0.0647</td>
<td>0.1362</td>
<td>0.0922</td>
<td>0.1006</td>
</tr>
<tr>
<td>GOF</td>
<td>1.061</td>
<td>1.027</td>
<td>1.036</td>
<td>1.073</td>
<td>1.047</td>
<td>1.028</td>
</tr>
<tr>
<td>Residual density, eÅ⁻³ (dₘ/dₘₚ)</td>
<td>1.946/-0.888</td>
<td>1.420/-0.887</td>
<td>0.741/-0.694</td>
<td>1.742/-1.204</td>
<td>1.024/-0.815</td>
<td>2.038/-0.782</td>
</tr>
</tbody>
</table>

* Additional comments on 2, 4b, 5a crystallographic characterization are given in Supporting information; b We were unable to identify the solvent disordered in voids in 2 and in "channels" along the 3 axis in 5b. Randomly distributed residual peaks were removed using the SQUEEZE procedure. In both cases the crystals were obtained by recrystallization from a CH₃OH / DME / DMF (ca. 5:2:2) mixture. Since the real content of the voids is unknown we did not include the solvent into the total formula.

catalysis of N₂ reduction [27] (data not shown). These results clearly indicate that suggested step-by-step strategy based on the reproduction of the protic catalytic system preparation procedure, may be considered as an effective way to characterize the active sites functioning in these systems.

Conclusions

The reaction of (MoCl₅ + Mg²⁺) methanolysis in the presence of base leads to a row of the heterobimetallic Mg-Mo(V, VI)
oxomethoxides of different nuclearity characterized by means of elemental analysis, UV-Vis, IR spectroscopy, X-ray crystallography: [Mg(CH(OH)₂)₂MoO₄(OCH₃)₆] (1), [Mg(DMF)₃(CH(OH)₂)₂][Mo₂₂MgO₁₈(OCH₃)₂₀(DMF)₉] (2), [MoO₅(C₂H₅O)₃Mg₂(CH(OH)₆)] (3), [MoO₅(C₂H₅O)₃Mg₂(DMF)₉] (4a), [MoO₅(C₂H₅O)₃Mg₂(DMF)₉]·2CH₃OH (4a·2CH₃OH) and [MoO₅(CH₃O)₂Mg₂(DMF)₉] (5a). X-ray structures of 2, 4a, 4a·2CH₃OH, 5a, as well as [MoO₅(C₂H₅O)₃Mg₂(CH(OH)₂)] (4b) and [MoO₅(C₂H₅O)₃Mg₂(DMF)₉](CH(OH)₂) (5b) were determined for the first time. It was shown that 3 and 4b could be conveniently prepared from appropriate “building units” selected on a basis of examinations of their structures from the point of view of retrosynthetic philosophy.

We believe the study presented here contributes to the continuing efforts in the nitrogenase modelling, since the combination of polynuclearity and bimetallic nature of the catalyst (that is exemplified here on the structure of precursors) remains the unique feature of the catalytic protic nitrogen fixing systems, that makes them the most reliable nitrogenase structural and functional models.

Experimental

General techniques

All procedures described below were carried out using standard Schlenk techniques under argon atmosphere. Commercially available MoCl₅ (Aldrich), MoO₂Cl₂ (Aldrich) were used without further purification. Methanol solution of Na(CH₃OH)MoO₅(OCH₃)₆ (NaMo) was prepared by vacuum transferring of CH₃OH to a solid sample of NaMo which was obtained as described [11]. Solution of Mg(CH₃OH)₂ was prepared by the reaction of magnesium turnings with methanol. Solution of NaOCH₂ was prepared by dissolving of sodium in CH₃OH. Methanol was dried upon boiling with magnesium methoxide followed by distillation and was stored under argon atmosphere.

Dimethylformamide (DMF) was distilled twice at reduced pressure. Diethyl ether was dried by distillation over LiAlH₄. Dimethoxyethane (DME) (≥ 99.5%, Aldrich) was used as received. DMF, diethyl ether and DME were stored over molecular sieves 4Å under argon atmosphere.

The infrared spectra were measured on solid samples using a Perkin Elmer Spectrum 100 Fourier Transform infrared spectrometer. UV-Vis spectra were recorded using HP 8451A DIODE ARRAY Spectrophotometer. Elemental analyses have been carried out by the Analytical Service at the Institute of Problems of Chemical Physics RAS. In case of CH₃OH containing compounds (3, 4b) convenient C, H, N analysis gave permanently low results of C content. In these cases Mo and Mg content was measured. Molybdenum content was determined spectrophotometrically in form of thioacetate complex. Magnesium content was determined by EDTA titration.

Preparations

[MoO₅(C₂H₅O)₃Mg₂(CH(OH)₆)] (3), 1.24 ml of a freshly prepared solution of MoO₂Cl₂ in CH₃OH (0.19 M, 0.236 mmol) were placed in a flask equipped with magnetic stirring bar and 0.75 ml of Mg(CH₃OH)₂ solution in methanol (0.78 M, 0.585 mmol) were added. Immediate precipitation of white solid was observed. Solution was then diluted with 4 ml of methanol. After 30 min of stirring to this slurry 10 ml of NaMo in CH₃OH were added ([Mo] = 0.047 M, 0.470 mmol) and resulting mixture was allowed to stir for 2 h. 0.47 ml of H₂O solution in CH₃OH (1M, 0.470 mmol) were then added. At this point the solution turned cloudy and change of colour from red to orange was observed. Following 30 min of stirring, yellow precipitate initially formed was mostly dissolved and mixture was filtered. From this solution orange crystallinic solid precipitated continuously in a course of ca. 3 weeks. Precipitate was washed with methanol (5 + 5 ml) and dried in vacuo. Isolated yield: 45–50% (per Mo³⁺). (After 2 days of standing the yield was 32%). IR (cm⁻¹): 2940 w, 2824 w, 1635 w, 1426 w, 1393 w, 1052 s, 1023 vs, 1012 vs, 955 vs, 929 s, 910 s, 880 vs, 749 m, 700 s. UV-Vis [DMF; λ max/nm (ε/M⁻¹ cm⁻¹)]: 304 (12540), 272 (10350). Calc. for C₂H₇O₃Mo₂Mg₆: (%) Mo, 37.1; Mg, 6.3. Found, (%): Mo, 36.7; Mg, 6.0. (For alternative preparative procedure starting from NaMo and MgMoO₃ oxoalkoxide see ref. [18]).

[MoO₅(C₂H₅O)₃Mg₂(CH(OH)₂)]·2CH₃OH (4b). 1.24 ml of a freshly prepared solution of MoO₂Cl₂ in CH₃OH (0.19 M, 0.236 mmol), 0.39 ml of Mg(CH₃OH)₂ solution in methanol (0.78 M, 0.304 mmol) and 4 ml of CH₃OH were consequently loaded into a flask equipped with magnetic stirring bar. After 30 min of stirring, to a pale-yellow solution obtained 10 ml of NaMo in CH₃OH were added ([Mo] = 0.047 M, 0.470 mmol). The resulting mixture was stirred for 2 h. 0.47 ml of H₂O solution in CH₃OH (1M, 0.470 mmol) were then added. Following stirring overnight, 0.06 ml of Mg(CH₃OH)₂ in methanol (0.78 M, 0.047 mmol) were added and after 30 min of stirring flask was left standing undisturbed for 4 days. Solution was decanted from orange precipitate formed. The latter was washed with methanol (5 + 5 ml) and dried in vacuo. Isolated yield: 51 + 56% per Mo³⁺. IR (cm⁻¹): 2939 w, 2828 w, 1638 m, 1452 w, 1032 s, 1012 s, 993 s, 956 s, 937 vs, 917 s, 898 s, 746 s, 695 s. Calc. for C₂H₇O₃Mo₂Mg₆ (corresponds to the loss of 50% of cocrystallized CH₃OH molecules), (%): Mo, 42.7; Mg, 3.6. Found, (%): Mo, 42.7; Mg, 3.9.

[MoO₅(C₂H₅O)₃Mg₂(DMF)₉] (5a). A sample of 4b (20 mg) was dissolved in 5 ml of DMF + DME + CH₃OH mixture (10:2:1 vol. %) forming orange solution from which orange crystals of 5a precipitated in a course of 2 weeks in >70% yield. Crystals were washed with DMF (3 + 3 ml) and then DME (3 ml) and dried in vacuo. IR (cm⁻¹): 2932 vw, 2817 vw, 1689 m, 1638 m, 1452 w, 1032 s, 1012 s, 993 s, 929 s, 898 s, 777 vs, 736 s, 686 s. UV-Vis [CH₃OH; λ max/nm (ε/M⁻¹ cm⁻¹)]: 306 (13340), 206 (96330). Calc. for C₂H₇O₃Na₂Mo₂Mg₆: (%) C, 21.15; H, 4.31; N, 7.05. Found, (%): C, 21.15; H, 4.31; N, 7.05.

X-ray crystallographic studies

Data collection for all samples except 4a·2CH₃OH was performed on a Bruker Apex II diffractometer, for 4a·2CH₃OH on a Bruker APEX DUO diffractometer (both equipped with CCD detectors, MoKα radiation, graphite monochromator, ω-2θ scans). The frames were integrated using the Bruker SAINT software package [28] using a narrow-frame integration algorithm. A semiempirical absorption correction was applied with the SADABS [29] (TWINABS [30] in the case of 5a) program using the intensity data of the equivalent reflections.
The structures were solved by a direct method and refined by the full-matrix least-squares technique against \(F_{\text{all}} \) in the anisotropic–isotropic approximation. The positions of hydrogen atoms, except those of the coordinated methyl moieties, were calculated geometrically and refined in the riding model with \(U_{\text{iso}} = 1.2U_{\text{eq}} \) (\(1.5U_{\text{eq}} \) for methyl groups) of the connected non-hydrogen atom. All calculations were performed with SHELX software package [31]. Detailed crystallographic information is given in Table 2.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (RFBR), project № 14-03-00810.

Notes and references

We could not synthesize 4a using retrosynthetic approach but we were able to prepare compound [Mo$_6$O$_{12}$(OCH$_3$)$_3$]$_2$Mg$_3$(CH$_3$OH)$_2$·2CH$_3$OH (4b) with isostructural Mo-O framework utilizing the suggested scheme.

Depiction of MgCl$_2$ and Mg(OCH$_3$)$_2$ as Mg-containing synthetic equivalents on figs. 5 and 6, respectively, is representation of the dominating form of the latter in the reaction conditions rather than displaying of the reagent used (see Discussion).

To neutralize HCl formed in the reactions of 4b and 3 formation (eq. 2 and 3, respectively), additional 0.5 equivalents of Mg(OCH$_3$)$_2$ per Mo5-Mo5 unit had being taken in the syntheses (see Experimental).

G.M. Sheldrick, SADABS v2008/1, Bruker/Siemens Area Detector Absorption Correction Program, 2008.

Facile synthetic strategy based on retrosynthetic philosophy was developed and employed for the preparation of the polynuclear Mo-Mg oxomethoxides - high valence precursors of N$_2$ fixing catalysts.