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A new family of Ln7 clusters with an ideal D3h metal-
centered trigonal prismatic geometry, and SMM and 
photoluminescence behaviors† 

Eleni C. Mazarakioti,a Katye M. Poole,b Luis Cunha-Silva,c George Christoub and 
Theocharis C. Stamatatos*a

The first use of the flexible Schiff base ligand N-salicylidene-
2-aminocyclohexanol in metal cluster chemistry has afforded 
a new family of Ln7 clusters with ideal D3h point group 
symmetry and metal-centered trigonal prismatic topology; 
solid-state and solution studies revealed SMM and 
photoluminescence behaviors.  

One of the current major challenges in molecular nanoscience 
is the synthesis of new polynuclear metal complexes (clusters) 
exhibiting more than one physical property within the same 
entity. Of significant importance is the combination of their 
magnetic properties with one or more additional properties, 
such as conductivity,1 chirality2 and luminescence.3 This is due 
to the fact that such multifunctional (or ‘hybrid’) molecular 
magnetic materials can find potential applications in the fields 
of molecular electronics and spintronics.4 Molecular electronics 
is undoubtedly an emerging area of research which is based on 
the construction and fabrication of molecular species with 
intriguing magnetic properties, pronounced stability, 
robustness, and capability to be deposited on electrical 
conducting surfaces.5 Such deposition of ‘hybrid’ molecular 
materials is actually one of the ultimate goals, but at the same 
time one of the most difficult challenges for synthetic chemists 
to unravel.6 It primarily requires the molecules to retain their 
structures and properties in solution, and subsequently to allow 
anchoring of the peripheral sites.    
 The unique electronic and physical properties of the 4f-
metal ions render polynuclear lanthanide(III) metal clusters as 
excellent candidates for  the construction of dual-acting 
molecular species. In particular, 4f-metal clusters have shown a 
remarkable ability to act as single-molecule magnets (SMMs)7 

when the f-block ions are highly anisotropic and carry a 
significant spin (i.e., DyIII, TbIII, HoIII, ErIII). SMMs derive their 
properties from the combination of a large magnetic moment in 
the ground state with a large magnetoanisotropy originating 

from the substantial, unquenched orbital angular momenta.7,8 
An appreciable number of 4f-metal clusters with various 
interesting structural topologies and SMM behaviors have been 
reported to date, from linear9a and linked-triangular9b to more 
complex ones such as cubanes,9c trigonal prismatic9d and disc-
like.9e 
 Polynuclear 4f-metal complexes have also shown intense, 
sharp and long-lived emissions, which make these compounds 
particularly interesting for a variety of optical uses such as 
display devices and luminescent sensors.10 This is also applied 
to the ‘magnetic’ TbIII- and DyIII-based clusters which show 
photoluminescence properties with metal-centered emissions at 
different regions of the visible spectrum. Due to the forbidden 
electronic transitions between the 4f orbitals on symmetry 
grounds, which lead to poor absorption cross-sections, 
population of the emitting levels of the LnIII ion is best 
achieved by employing light-harvesting ligands.11  
 It therefore becomes apparent that one of the most 
important factors for the construction of new 4f-metal clusters 
with dual physical properties, unprecedented topologies and 
possible structural integrity in solution is the choice of the 
primary organic bridging/chelating ligand. This often dictates 
not only the topology and the number of paramagnetic metal 
ions present, but also the nature of the intramolecular magnetic 
exchange interactions and the efficiency of metal ion’s 
sensitization by the intramolecular energy transfer from the 
ligand’s triplet state (‘antenna’ effect). A family of such 
potentially multi-acting organic ligands is Schiff bases, and 
particularly the ones which are based on the scaffold of N-
salicylidene-o-aminophenol (saphH2, Scheme 1). The latter is a 
well-explored precursor in coordination chemistry because of 
the ability of the relatively soft N atom and the two hard, upon 
deprotonation, O atoms to bind to a single or multiple metal 
centers. However, the employment of saphH2 ligand in 4f-metal 
chemistry has been limited to mono- and dinuclear 
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Fig. 2 Plots of χΜT vs T for complexes 1-3. 

 Variable-temperature direct current (dc) magnetic 
susceptibility studies were carried out on freshly prepared, 
crystalline samples of complexes 1-3 in the temperature range 
5.0-300 K under an applied field of 0.1 T. The obtained data for 
all studied compounds are shown as χΜT vs T plots in Fig. 2. 
The experimental χΜT values at room temperature are in good 
agreement with the theoretical ones (55.13 cm3Kmol-1 for 1; 
82.74 cm3Kmol-1 for 2; 99.19 cm3Kmol-1 for 3) for seven non-
interacting GdIII (8S7/2, S = 7/2, L = 0, g = 2), TbIII (7F6, S = 3, L 
= 3, g = 3/2) and DyIII (6H15/2, S = 5/2, L = 5, g = 4/3) ions. For 
the isotropic GdIII

7 (1), the χΜT product remains almost constant 
at a value of ~54 cm3Kmol-1 from 300 K to ~50 K and then 
steadily decreases to a minimum value of 40.82 cm3Kmol-1 at 
5.0 K indicating the presence of weak intramolecular 
antiferromagnetic exchange interactions between the seven 
GdIII centers and/or zero-field splitting. For the anisotropic 
TbIII

7 (2) and DyIII
7 (3) complexes, the thermal evolution of the 

magnetic susceptibility is similar, in which the χΜT product 
remains essentially constant at a value of ~81 and ~92 
cm3Kmol-1 from 300 K to ~140 K and then rapidly decreases to 
a minimum value of 55.63 and 73.79 cm3Kmol-1 at 5.0 K, 
respectively. Such low temperature decrease of the χΜT product 
is mainly due to depopulation of the excited Stark sublevels of 
the TbIII and DyIII ions and the weak antiferromagnetic 
interactions between the metal centers which cannot be 
quantified due to the strong orbital momentum.7,8 
 The field dependence of magnetization measurements at 
low temperatures show all the expected characteristics for 
polynuclear, weakly coupled Ln(III) clusters. Briefly, the lack 
of saturation in magnetization for complexes 2 and 3 (Fig. S2) 
indicates the presence of magnetic anisotropy and/or population 
of low-lying excited states. In the case of 1, the magnetization 
reaches a saturation of 48.9 μB at the highest fields (Fig. S3), 
which is in excellent agreement with the expected value of 49 
μB for seven non-coupled GdIII ions. The slight deviation of M 
vs H for 1 at low temperatures and small magnetic fields is due 
to the population of low-lying excited states with S larger than 
the ground state. 
 Alternating current (ac) magnetic susceptibility studies have 
been also carried out in order to investigate the magnetization 
dynamics of the anisotropic TbIII

7 and DyIII
7 clusters under a 

zero dc magnetic field. Complex 3 shows strong frequency-

dependent out-of-phase χ′′M tails of signals at temperatures 
below ~10 K (Fig. 3), indicative of the slow magnetization 
relaxation of an SMM with a small energy barrier for 
magnetization reversal. This is most likely due to the fast 
tunneling which is usually observed in high-nuclearity and 
high-symmetry DyIII SMMs,9e,20 and mainly originates from 
single-ion effects of the individual DyIII Kramer ions.7,8 There 
were no out-of-phase ac signals down to 1.8 K for the TbIII

7 
analogue (Fig. S4). In an attempt to quantify the energy barrier 
and relaxation time for 3, and given the absense of χ′′ peak 
maxima, we decided to apply the below equation recently 
developed by Bartolomé et al.21 

ln(χ′′/χ′) = ln(ωτ0) + Ea/kBT 
Considering a single relaxation process, the least-squares fits of 
the experimental data (Fig. S5) gave an energy barrier of ~1.2 
cm-1 (~1.7 K) and a relaxation time of 0.2 × 10-6 s which is 
consistent with the expected τ0 values for a fast relaxing SMM. 

 
Fig. 3 The out-of-phase (χ′′M) vs T ac susceptibility signals for 3 in a 3.5 G field 
oscillating at the indicated frequencies.  

 The solution characterization of the free ligand sachH2 and 
complexes 1-3 included UV/Vis, electrospray mass 
spectrometry (ES-MS) and excitation/emission studies in low-
concentration (~10-5 M) MeCN solutions. Such studies have 
been performed in order to probe the integrity of the structures 
of 1-3 in solution and elucidate any possible photophysical 
properties. The absorption spectrum of sachH2 exhibits three 
bands located at 215, 255 and 314 nm, which are characteristic 
of Schiff-based complexes,22 and can be mainly assigned to π 
→ π* transitions. In all complexes 1-3 these bands have been 
shifted to slightly higher wavenumbers (222, 265 and 340 nm, 
respectively) consistent with coordination of the ligand to the 
metal centers (Fig. S6). 
 The negative ion electrospray mass spectrum (ES-MS) of 
the representative Gd7 compound 1 in MeCN shows a strong 
intensity peak at 2811 m/z which can be assigned to the singly 
charged anion [Gd7(OH)6(CO3)3(sach)4(sachH)2(MeCN)3]

-, 
with the volatile coordinating MeOH molecules of the solid-
state cluster being partially replaced by three terminal MeCN 
groups (Fig. S7).23 Isotopic pattern of the molecular ion was 
used to justify further the compositional assignment. Taking 
into advantage the characteristic isotopic patterns of molecules 
containing 4f-elements, a good agreement was observed 
between the experimentally determined isotopic pattern for 1 
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and its theoretical one (Fig. S8).24 Complexes 2 and 3 showed 
similar compositions allowing us to confirm the structural 
integrity of 1-3 in MeCN. 
 In light of the stability of complexes 1-3 in MeCN, we 
decided to perform photophysical studies in solution. The free 
sachH2 ligand shows a broad blue-shifted, fluorescence 
emission at 466 nm upon maximum excitation at 310 nm (Fig. 
S9). The observed emission band is not concentration-
dependent and is typical for organic molecules containing 
aromatic fragments.25 As expected, the Gd7 complex did not 
produce any metal-centered emission since the emissive state of 
Gd3+ is too high to accept energy transfer. Indeed, this state 
(6P7/2) lies at >30000 cm-1, while that of Tb3+ (5D4) is located at 
~20500 cm-1.11,25 Thus, upon excitation at 340 nm, the Tb7 
complex 2 exhibits a strong green luminescence emission with 
sharp and narrow bands (Fig. 4, top) which can be ascribed to 
the characteristic 5D4 → 7FJ (J = 3; 622 nm, J = 4; 583 nm, J = 
5; 546 nm, J = 6; 490 nm) transitions of TbIII.26 This means that 
the sachH2 ligand promotes an efficient energy transfer to the 
TbIII ions and can be considered as a prominent “antenna”, 
although some ligand fluorescence is still observed as a broad 
band at ~430 nm which is due to back-energy transfer from 
TbIII.27 In case of Dy7 complex 3, a strong blue emission is 
clearly observed upon maximum excitation at 340 nm (Fig. 4, 
bottom). The broad band at ~438 nm is assigned to a strong 
energy transfer from DyIII to the ligand’s excited state(s) 
leading to a ligand fluorescence, whereas the shoulder at 474 
nm and the narrow band at 575 nm are ascribed to the 
characteristic 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 emission 
transitions of DyIII ions.28     

 

 
Fig. 4 Room temperature emission spectra for 2 (top) and 3 (bottom) in MeCN 
(10-5 M). The excitation wavelength was 340 nm in both cases. 

Conclusions 

We have shown herein that flexible analogues of the well-
known bulky ligand N-salicylidene-o-aminophenol, such as that 
of N-salicylidene-2-aminocyclohexanol, can lead to high-
nuclearity and high-symmetry 4f-metal clusters with 
unprecedented topologies and interesting magneto-optical 
properties. The reported heptanuclear compounds are very rare 
examples of polynuclear 4f-metal species which retain their 
structural conformations in solution. This can potentially allow 
us to deposit the reported materials on a variety of surfaces, a 
perspective which is related to the field of molecular 
electronics. We are currently trying to (i) modify sachH2 ligand 
by replacing the para-H atom with an anchoring -SR site, and 
(ii) synthesize the pure cis- and trans-sachH2 ligands and 
subsequently isolate and use the corresponding enantiomers in 
an attempt to prepare chiral SMMs.  
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Graphical Abstract 

 

A new family of emissive Ln7 clusters with ideal D3h metal-centered trigonal prismatic topology 

and SMM behavior has been obtained. 
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