This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Hydrometallation of amino-trialkylnylsilanes - intramolecular M-N interactions (M = Al, Ga) and potential activation of Si-N bonds†

Werner Uhl*, a Jörg Bohnemann, a Benedikt Kappelt, a Alexander Hepp a and Marcus Layh a

Received

Hydrometallation of a pyrrolidyl functionalised trialkylnylsilane, H₈C₄Si(C≡C₃CMe₃)₃, with equimolar quantities of H-M(CMe₃)₂ (M = Al, Ga) resulted in the formation of mixed alkenyl-dialkylnylsilanes (3a, 3b) which have a Lewis-acidic Al or Ga atom in geminal position to the Si atom and form four-membered M-N-Si-C heterocycles by a strong interaction of the amine N atoms with the Lewis-acidic metal atoms. This interaction results in a concomitant lengthening and weakening of the Si-N bonds. Dual hydrometallation afforded alkynyl-dialkenylsilanes (4a, 4b) with two Lewis-acidic metal atoms. Al-N and Ga-N interactions to one of the Lewis-acidic centers led again to the formation of M-N-Si-C heterocycles. The second Al atom of 4a interacted with C-H bonds of the vinylic tert-butyl group, while the Ga atom of 4b was coordinated to the α-C atom of the remaining alkynyl substituent. Dual hydrometallation of the corresponding pyrrolyl-trialkylnylsilane resulted in compounds with different structures (5a, 5b) due to the delocalisation of the lone pair of electrons at nitrogen in the aromatic ring.

aInstitut für Anorganische und Analytische Chemie der Universität Münster, Corrensstraße 30, D-48149 Münster, Germany. E-mail: uhlw@uni-muenster.de
†Electronic supplementary information (ESI) available. CCDC 992855 – 992861. For ESI and crystallographic data in CIF or other electronic format see DOI:
One metal atom is coordinated to the α-C atom of the alkynyl group, the other has a close contact to a C-H bond of the pyrrole ring. The synthesis of $4b$ gave an unprecedented bicyclic by-product (6) which has a Ga-H-Ga 3c-2e bond. It was formally formed by hydrogallation of the trialkyne with the sesquihydride $[\text{H}_2\text{Ga-CMe}_3]_2[\text{H-Ga(CMe}_3)_2]$ and was also obtained by the selective reaction with this starting material.

Introduction

The activation of σ-bonds in catalytic or stoichiometric reactions is in the focus of current research interests. In recent groundbreaking investigations it was shown that frustrated Lewis-pairs (FLPs) based on main-group elements are extraordinarily suitable for an application in such processes.\(^1\) They unite Lewis-basic and –acidic centers in single molecules or bimolecular systems and are extremely valuable for the dipolar activation or coordination of small molecules. However, frustration is not a necessary prerequisite of this outstanding reactivity and active Lewis-pairs have been reported in which inter- or intramolecular adduct formation does not significantly influence specific secondary reactions.\(^1\) More recently, aluminium was introduced as a new and very effective Lewis-acid which due to its inherently high polarising capability does not require activation by electron withdrawing substituents.\(^2\) The applicability of Al-based FLPs in various secondary reactions has been impressively demonstrated independently by several research groups.\(^3,4\) One aspect was the intramolecular σ-bond activation in highly functionalised compounds which had donor groups attached to Si or Ge atoms and co-
ordinatively unsaturated Lewis-acidic Al or Ga atoms in the same molecule. These compounds were easily synthesised by hydrometallation\(^5\) of silyl- or germylalkynes \(R'_{n}E(C≡C-R)_{4-n}\) (\(E = \text{Si, Ge}; R = \text{alkyl, aryl}; R' = \text{alkyl, NR}, \text{Cl}\)) with Group 13 element hydrides \(\text{HMR}_2\) (\(M = \text{Al, Ga}\)) and had the Si or Ge atoms in a geminal arrangement to the three-coordinate Al or Ga atoms. Alkenyl or mixed alkenyl-alkynyl silanes\(^6\)\(^-\)\(^{10}\) and germanes\(^10\)\(^-\)\(^{14}\) were formed of which the latter were found to be of particular interest. The high polarity of the \(E-C_\alpha(\text{alkynyl})\) bond and the resulting large partial negative charge of the \(C_\alpha\) atom leads to a close intramolecular contact between \(C_\alpha\) and the neighbouring electropositive, Lewis acidic metal atom (A, Scheme 1) while the presence of electron donor atoms such as N or Cl (D) resulted in strong intramolecular M-D contacts (D = N, Cl) with the formation of four-membered E-C-M-D heterocycles (B). The described interactions result in an activation of the E-C and E-D bonds as evident from a lengthening of these bonds and supported by quantum chemical calculations\(^{14}\).

Synthetic applications were the synthesis of sila-\(^7\)\(^,\)\(^9\) and germacyclobutenes\(^12\) (C) starting with A via thermally induced 1,1-carbometallation, a spontaneous tert-butyl-chlorine exchange (B, D = Cl),\(^9\) the facile insertion of isocyanates and –thiocyanates into activated E-N bonds\(^{14}\) and the formation of a new Ge-C≡C-Ph moiety by C-H bond activation and a unique exchange of an alkynyl against a NR\(_2\) group.\(^{14}\) These results demonstrate impressively the highly promising properties of these functionalised compounds which may find wide application in secondary reactions: (i) They form fascinating structures with diverse, interesting and unique structural motifs which verify intramolecular σ-bond activation by M-X interactions. (ii) The activated compounds may undergo rearrangement reactions which lead to the formation of heterocycles\(^7\)\(^,\)\(^9\)\(^,\)\(^{12}\) or unusual exchange products.\(^9\)\(^,\)\(^{14}\) (iii) The intramolecular Lewis-acid-base interactions
give access to compounds that feature strained rings. Cleavage of the M-X bonds in these rings results in a situation with free Lewis-acidic and –basic centers which is similar to that of FLPs and may allow the application of these compounds for the activation or coordination of e.g. heterocumulenes or terminal alkynes.\(^{14}\) (iv) The weakening of the E-X bonds facilitates insertion reactions.\(^{14}\) (v) Further weakening and finally breaking of the E-X bonds with the migration of X to the Lewis-acidic center may result in the formation of silyl or germyl cations.\(^{15}\) In this article we report on the syntheses of aminotrialkynylsilanes and their hydrometallation reactions with H-M(CMe\(_3\))\(_2\) (M = Al, Ga). The expected products are promising candidates for studying the above stated possible reactivity patterns.

![Scheme 1](image)

Scheme 1 (E = Si, Ge; M = Al, Ga)

Results and Discussion

Pyrrolyl-trialkynylsilane, C\(_4\)H\(_4\)N-Si(C≡C-CMe\(_3\))\(_3\) (2), was obtained in high yield from the amine C\(_4\)H\(_4\)NH, SiCl\(_4\) and *in situ* generated LiC≡C-CMe\(_3\) (Scheme 2) following a procedure developed previously for the synthesis of the pyrrolidyl analogue C\(_4\)H\(_6\)N-
Si(C≡C-CMe₃)₃. The trichloride intermediate 1 was isolated as an extremely water sensitive and corrosive, colourless liquid, while the trialkyne silane 2 is a moderately air-sensitive, colourless solid. The molecular structure of compound 2 is shown in Figure 1. The Si atom is coordinated by the pyrrolyl group and three ethynyl substituents in a tetrahedral fashion. The ethynyl groups have C≡C bond lengths in the characteristic range of about 120 pm. Compared to standard values of around 177 pm in compounds with N-Si[C(sp³)]₃ groups the Si-N bond length of 174.4(2) pm is relatively short which may be caused by the bonding of the Si atom to three hard sp-hybridised C atoms. An even shorter Si-N distance has been observed in the pyrrolidyl compound C₄H₈N-Si(C≡C-CMe₃)₃ (169.6(2) pm) in which a saturated N-heterocycle is attached to silicon. In the latter case the lone pair of electrons at nitrogen may interact with the Si atom by hyperconjugation and hereby strengthen the Si-N bond. There is no comparable effect in compound 2 because the lone pair is delocalised in the aromatic ring. The N atoms of both compounds have a planar coordination with a sum of all angles of 360°. The most acute of these angles in 2 (105.9(2)°) expectedly includes the C atoms of the aromatic ring. The ethynyl groups of 2 showed characteristic resonances in the ¹³C NMR spectrum at δ = 112.6 (β-C) and 76.8 (α-C) and two absorptions in the IR spectrum at 2207 and 2160 cm⁻¹.

Scheme 2.
Figure 1. Molecular structure and atomic numbering Scheme of compound 2. Displacement ellipsoids are drawn at the 40% level. Hydrogen atoms are omitted for clarity. Selected bond lengths (pm): Si(1)–N(1) 174.4(2), Si(1)–C(11) 180.6(2), Si(1)–C(21) 181.0(2), Si(1)–C(31) 181.2(2), C(11)–C(12) 119.8(3), C(21)–C(22) 120.1(2), C(31)–C(32) 119.8(3).

Hydrometallation of \(\text{C}_4\text{H}_8\text{N-Si(≡C-CMe}_3) \text{3} \) with one equivalent of \(\text{H-M(CMe}_3)_2 \) (M = Al, Ga) in toluene afforded the cis-addition products 3 (3a, M = Al; 3b, M = Ga) in high yields of approximately 80% ((i) in Scheme 3, cis refers to the positions of Al or Ga and H atoms across the C=C bond). The reactions were regiospecific with the electropositive metal atoms bound to the C atom connected to the Si atom (partial negative charge at C caused by the electronegativity difference between C and Si) and stereospecific (cis) as a result of the concerted nature of the addition reaction. Rearrangement to the thermodynamically favoured trans isomer was shown to require the presence of a free coordination site on the metal atom to facilitate rearrangement via a bimolecular process.\(^{17}\) The presence of four-coordinate metal centres in 3a and 3b was consequently found to stabilise the cis-hydrometallation products and increase the activation energy for the transformation to the trans products.
Scheme 3. (i) to (v) refer to the discussion in the text)

The corresponding 1 : 2 addition products 4 (pyrrolidyl; (ii) in Scheme 3) and 5 (pyrrolyl; Scheme 4) were obtained accordingly in high yields (except 4b) from the reaction of $\text{C}_4\text{H}_8\text{N-Si(C=CCMe}_3\text{)}_3$ and $\text{C}_4\text{H}_4\text{N-Si(C=CCMe}_3\text{)}_3$ (2), respectively, with two equivalents of $\text{H-M(CMe}_3\text{)}_2$. The comparatively low yield of compound 4b is due to the formation of a mixture of 3b, 4b and 6 in a NMR spectroscopically determined ratio of 0.26, 0.52 and 0.22. After fractional recrystallisation of the mixture analytically pure 4b was isolated in 40% yield. When the stoichiometric ratio of the starting materials was
increased to a ratio of 1 : 3 (silane to hydride), the resonances of the monoaddition product 3b disappeared and the NMR spectroscopically determined content of the condensation product 6 (elimination of Ga(CMe3)3, identified by NMR, c.f. ref. 18, 19) in the mixture increased to 44% (56% compound 4b). Fractional crystallisation resulted in 28% yield of the pure product 6 ((iii) in Scheme 2). Surprisingly the product ratio (4b : 6) did essentially not change when 3.2 or 4.5 equivalents of H4Ga(CMe3)2 were applied. Formally the formation of 6 may be rationalised by the addition of a sesquihydride of the type [H-Ga(CMe3)2][H2Ga-CMe3] to the pyrrolidylsilane C4H8N-Si(C≡C-CMe3)3. A dimer of this unusual sesquihydride was recently synthesised in our group on a facile route by the treatment of Ga(CMe3)3 with the gallane-amine adduct H3Ga—NMe2Et.20 Its reaction with the alkynylsilane afforded selectively compound 6 which was isolated after recrystallisation from pentafluorobenzene in 62% yield. Compounds 4b and 6 were both found to be thermally unstable in solution and reacted on heating by elimination of H4Ga(CMe3)2 or formally the unknown dihydride H2Ga-CMe3, respectively, to the 1 : 1 addition product 3b ((iv and v in Scheme 2) and minor quantities of unidentified decomposition products.

Scheme 4.
The particularly interesting structural motif of the monohydrometallation products 3a and 3b is the relatively strong intramolecular interaction between the pyrrolidine nitrogen atoms attached to silicon and the coordinatively unsaturated Al or Ga atoms which results in essentially planar four-membered Si-C-M-N heterocycles (puckering angles and other relevant parameters are summarised in Table 1 and Fig. 2). Ring closure leads to four-coordinate metal atoms, and the coordinative saturation of the metal atoms helps to stabilise the cis configuration in the olefin substituents. The endocyclic angles in the heterocycle are around 95° for C and Si, close to 90° for N and close to 81° for the metal atoms. In particular the acute angle at the sp²-hybridised C atoms indicates a considerable ring strain in the molecules which is important for the future application of these compounds in secondary reactions. Ring opening may result in a situation similar to those of FLPs¹-⁴ which have a unique capability for the dipolar activation of small molecules. Only recently we have applied masked FLPs based on strained heterocycles with relatively weak Al-N interactions for the efficient activation of terminal alkynes, heterocumulenes or cyanamides.²¹ The M-N bond lengths of 3a and 3b (208.5(1) and 222.3(2) pm) are at the long side of values typically observed for M-N-M²¹,²² or Si-N→M²³ bridges. In few cases these Si-N→M interactions resulted in the formation of four-membered heterocycles similar to 3a and 3b.²³ Because of the lower electronegativity of Al, the more pronounced charge separation in Al-X bonds and the higher Lewis acidity of Al compared to Ga the M-N distances are shorter in the Al compound 3a. The coordination of the N atom to the metal atom results in a considerable lengthening of the corresponding Si-N bond by more than 12 pm compared to that of the starting trialkynylsilane C₄H₈N-Si(C≡C-CMe₃)₃ (169.6(2) vs. 183.7(1) and 181.5(2) pm). Only recently we have shown for related germanium compounds¹⁴ that this elongation corre-
sponds to an activation of the E-N bonds and increases their reactivity considerably (c.f. introduction). A further weakening of the Si-N bond may result in the formation of silyl cations15 or may at least facilitate insertion reactions into the Si-N bonds. The metal atoms in 3a and 3b deviate from the plane of the three adjacent C atoms by 46.4 (Al) and 41.0 pm (Ga).

Figure 2. Molecular structure and atomic numbering Scheme of compound 3a; a similar structure was observed for 3b. Displacement ellipsoids are drawn at the 40 % level. Hydrogen atoms (except H(12), arbitrary radius) are omitted for clarity. Selected bond lengths (pm) and angles (°) of 3a (M = Al) [3b (M = Ga)]: Si(1)–N(1) 183.7(1) [181.5(2)], C(21)–C(22) 119.8(2) [119.7(3)], C(31)–C(32) 120.2(2) [120.0(3)], M(1)–C(11) 200.0(1) [201.6(2)], M(1)–C(CMe$_{3}$) av. 201.8 [202.2], M(1)–N(1) 208.5(1) [222.3(2)], C(11)–Si(1)–N(1) 94.05(5) [96.35(7)], Si(1)–N(1)–M(1) 90.37(5) [88.81(6)], N(1)–M(1)–C(11) 81.96(5) [79.44(6)], M(1)–C(11)–Si(1) 93.43(6) [95.21(8)].

In the molecular structure of the 1 : 2 hydroalumination product 4a (M = Al; Fig. 3) the Si atom is bonded to two alkenyl groups, an intact alkynyl substituent and the pyrrolidyl group. The crystals of the Ga analogue 4b were of poor quality. The structure
could not be refined to acceptable \(R \) values, but the preliminary results confirmed unambiguously the overall geometry of the molecule as shown in Scheme 3 and deduced from NMR spectra. A Si-C-M-N heterocycle similar to 3a and 3b is formed by an interaction of the N with the unsaturated Al atom (Al-N: 210.2(2) pm; Si-N 186.2(2) pm; Al 49.7 pm above the \(C_3 \) plane; see Table 1 and Fig. 3). The alkenyl group involved in this heterocycle has a \textit{cis}-configuration. Interestingly, the second olefin unit of 4a adopts the thermodynamically favoured \textit{trans}-configuration. It is bonded to a terminal, nearly planar Al(CMe\(_3\))\(_2\) group that surprisingly does not interact with the \(C_\alpha \) atom of the remaining alkynyl substituent as was observed in 5 and several related compounds\(^6,^7,^10\) which typically showed Al\(\cdots C_\alpha \) contacts between 245 – 265 pm and a pronounced pyramidalisation of the metal atoms in the direction of the \(C_\alpha \) atoms of the alkyne (Al 20 – 30 pm above the \(C_3 \) planes). Instead of these interactions we find two short Al(1)\(\cdots \)H contacts (233 and 246 pm) to a methyl group of the vinylic \textit{tert}-butyl substituent at C(121) and an concomitant pyramidalisation in that direction (\(d = 12 \) pm) as opposed to the direction of \(C_\alpha \). Interactions of this type between Main-Group metal atoms and C-H bonds (\textit{pseudo}-agostic, anagostic) are well-known in the literature.\(^{24}\)
Figure 3. Molecular structure and atomic numbering Scheme of compound 4a. Displacement ellipsoids are drawn at the 40 % level. Hydrogen atoms (except H(12) and H(22), arbitrary radii) and a molecule of cocrystallised pentafluorobenzene are omitted for clarity. Selected bond lengths (pm) and angles (°): Si(1)–N(1) 186.2(2), C(31)–C(32) 119.9(3), Al(1)–C(11) 197.3(2), Al(1)–C(CMe₃) av. 199.7, Al(2)–C(21) 199.5(2), Al(2)–C(CMe₃) av. 203.1, Al(1)–N(1) 210.2(2), C(21)–Si(1)–N(1) 93.19(9), Si(1)–N(1)–Al(2) 90.20(8), N(1)–Al(2)–C(21) 82.07(9), Al(2)–C(21)–Si(1) 94.2(1).

The molecular structures of the related pyrrolyl analogues 5 (Fig. 4) differ from those of 3 and 4 in so far as the Si-C-M-N heterocycles of the latter compounds are not formed which is essentially caused by the negligible basicity of the nitrogen atoms and the delocalisation of the lone pair of electrons into the aromatic system. Instead the atom Al(2) interacts with the atom C(41) of the pyrrolyl ring with a relatively short intramolecular Al(1)···C(41) distance of 239.4(2) pm (Al···H 216 pm). The corresponding Ga···C distance in 5b (260.5(2) pm; Ga···H 240 pm) is expectedly much longer. The resulting structures may be described by a five-membered Al-C-Si-N-C heterocycle in an envelope conformation in which the atoms Si(1), C(21), M(2) and C(41) (M = Al, Ga) deviate only slightly from a coplanar arrangement [max. deviation from plane 5 pm for C(21) in 5a and 4 pm for Ga(2) in 5b]. The observed η¹-coordination (contact distances to other ring atoms are at least 50 (Al) or 40 (Ga) pm longer) of the pyrrole ring is very rare. Typical bonding modes between pyrrole substituents and metal atoms vary between η²- and η⁵-coordination.²⁵ As a consequence of this contact the Si(1)-N(1) distances are lengthened to 180.1(2) (5a) and 179.2(1) pm (5b) if compared to the free alkynylsilane 2, and the metal atoms are 39.3 and 31.4 pm above the plane of the three adjacent C atoms. The second metal atom (Al(1), Ga(1)) has a relatively short contact to
the Cα atom of the unreacted alkyne substituent (M(1)···C(31) 253 (5a) and 277 pm (5b)) which leads to an essentially planar four-membered M-Cα-Si-C heterocycle and a pyramidalisation of the metal atoms in the direction of Cα (Al 35.2, Ga 26.5 pm above the C3 plane). In agreement with the above mentioned stabilising effect of four-coordinate Al or Ga atoms both olefinic substituents adopt a cis configuration. Overall geometry and bond lengths in these parts of the molecules compare well with those in related hydrometallated alkynylsilanes or –germanes.6-14

Figure 4. Molecular structure and atomic numbering Scheme of compound 5a; a similar structure was observed for 5b. Displacement ellipsoids are drawn at the 40 % level. Hydrogen atoms (except H(12) and H(22), arbitrary radii) are omitted for clarity. Selected bond lengths (pm) of compound 5a (M = Al) [5b (M = Ga)]: Si(1)–N(1) 180.1(2) [179.2(1)], C(31)–C(32) 120.8(2) [120.1(2)], M(1)–C(11) 200.0(2) [201.0(2)], M(1)–C(CMe3) av. 199.6 [av. 200.8], M(2)–C(21) 200.5(2) [201.1(2)], Al(2)–C(CMe3) av. 200.5 [av. 201.4], M(2)–C(41) 239.4(2) [260.5].

The unusual and unexpected molecular structure of compound 6 (Fig. 5) is complicated. It may be described as a bicyclic system with a six-membered N-Si-C-Ga-H-Ga het-
erocycle in a chair conformation which is bridged by the C_α atom of one of the alkenyl groups (C(11)) and has Si(1) and Ga(1) as the bridgehead atoms. Both Ga atoms are connected by a 3c-2e Ga-H-Ga bonding interaction. Ga(1) is additionally coordinated to a CMe$_3$ group, the atom N(1) and the alkenyl C atom C(11), Ga(2) to two CMe$_3$ groups and the C_α atom of the second alkenyl group C(21). A terminal alkynyl group (C≡C 120.4(2) pm) is bonded to Si(1) and deviates only slightly from linearity (Si-C≡C 177.1(1), C≡C-C 177.2(1)$^\circ$). The typical (see above) Si-N-Ga-C heterocycle is formed by a Ga(1)-N(1) bonding interaction, but in contrast to the almost planar rings of the analogous structures discussed above it is folded across the C(11)···N(1) axis with a relatively large puckering angle of 34.9$^\circ$. The bond lengths in the four-membered heterocycle are similar to those in the previously discussed compounds. But the Ga(1)-N(1) distance (210.31(9) pm) is the shortest one observed so far in this type of compounds and is in the range of Ga-N-Ga or Si-N\rightarrowGa bridges.22,23 The Si(1)-N(1) bond is long (183.9(1) pm) compared to the pyrrolidyl starting material. The Ga-H distances are with 161(2) and 188(2) pm in the characteristic range of Ga-H-Ga bridges.$^{20,26-28}$ The shorter distance involves the sterically less shielded Ga-CMe$_3$ group in which the Ga atom (Ga(1)) is coordinated by the electronegative N atom. Both olefinic substituents adopt the cis configuration with Ga and H at the same side of the C≡C bond.
Figure 5. Molecular structure and atomic numbering Scheme of compound 6. Displacement ellipsoids are drawn at the 40% level. Hydrogen atoms (except H(1), H(12) and H(22), arbitrary radii) are omitted for clarity. Selected bond lengths (pm) and angles (°) of 6: Si(1) –N(1) 183.9(1), C(31)–C(32) 120.4(2), Ga(1)–C(CMe\textsubscript{3}) 198.6(1), Ga(1)–N(1) 210.31(9), Ga(2)–C(21) 203.6(1), Ga(2)–C(CMe\textsubscript{3}) av. 202.8, C(11)–Si(1)–N(1) 90.95(5), Si(1)–N(1)–Ga(1) 87.51(4), N(1)–Ga(1)–C(11) 79.94(4), Ga(1)–C(11)–Si(1) 90.53(5).

The spectroscopic characterisation of compounds 2 to 6 supported the information from crystal structure determinations and demonstrated that the molecular structures of these compounds are largely retained in solution. The ν\textsubscript{C≡C} stretching vibrations in the IR spectra were recently shown to allow a differentiation between terminal and bridging alkynyl groups in aluminium or gallium functionalised mixed alkenyl-alkynylsilanes or -germanes. The absorptions of bridging alkyynes are characteristically shifted by approximately 30 – 50 cm-1 to lower wavenumbers as compared to terminal groups. Pertinent data is summarised in Table 1 from which is evident that the values for terminal alkynyl substituents in compounds 3\textsubscript{a}, 3\textsubscript{b}, 4\textsubscript{a} and 6 are very similar to those in the trialkynyl starting materials, while the alkynyl substituents that show an
interaction between Al or Ga and Cα atoms in their crystal structures have significantly lower values (\textit{5a, 5b}). Interestingly the stretching vibrations observed for the gallium compound \textit{4b} indicate an alkynyl-Ga interaction although it was clearly excluded by the crystal data for the Al analogue \textit{4a}. The latter showed instead an interaction of the Al atom to a methyl group of the vinylic \textit{tert}-butyl substituent. The results of the IR spectrum of \textit{4b} may indicate that the weaker Lewis-acid Ga prefers the close contact to the ethynyl group over a Ga···H interaction. Regrettably the crystal structure determination of \textit{4b} was of insufficient quality, and the preliminary data must therefore be handled with care. But it seems that indeed the Ga atom approaches the ethynyl group, which is a remarkable proof for the importance and relevance of these IR parameters.

Another important spectroscopic parameter for the assignment of the molecular structures is the value of the $^3J_{\text{SiH}}$ coupling constants between silicon and the vinylic H atom which allows the convenient differentiation between \textit{cis}- ($^3J_{\text{SiH}} > 20 \text{ Hz}$; Si and H in \textit{trans}-position) and \textit{trans}-hydrometallation products ($^3J_{\text{SiH}} < 20 \text{ Hz}$; Si and H in \textit{cis}-position) in solution.6-10,17 Based on this indicator (Table 1) and in agreement with the solid state structures all compounds with the exception of \textit{4a} adopted in solution a \textit{cis} configuration for their olefinic substituents. Only compound \textit{4a} featured a \textit{cis}- ($^3J_{\text{SiH}} = 29.8 \text{ Hz}$) and a \textit{trans}-substituent ($^3J_{\text{SiH}} = 15.8 \text{ Hz}$), while its gallium analogue \textit{4b} has two \textit{cis}-configured ethenyl groups.

The coordination of N to the Al or Ga atoms resulted for compounds \textit{3a} and \textit{3b}, as discussed above, in the formation of Si-C-M-N heterocycles. In solution the ring plane becomes a virtual mirror plane that is approximately perpendicular to the pyrrolidine ring. As a consequence only a single resonance was observed in the NMR spectra for both \textit{tert}-butyl substituents of the M(CMe$_3$)$_2$ and Si(C≡C-CMe$_3$)$_2$ groups. In case of the
gallium compound 3b only two further sets of signals were observed for the pyrrolidine substituent (NCH$_2$ and CH$_2$) at room temperature while in 3a four magnetically inequivalent protons were visible representing the different environments for protons in the vicinity of Al or Si. In the case of the gallium derivative 3b the Ga-N bond is longer than the Al-N bond of 3a and the protons equilibrate by a fast inversion of the pyrrolidyl ring and a possible rotation about the Si-N bond after cleavage of the weak Ga-N bonding interaction. When 3b was slowly cooled to 200 K both 1H NMR signals began to broaden. The resonance of the NCH$_2$ protons split into two signals with chemical shifts ($\delta = 3.94$ and 2.66) similar to those of the Al compound at room temperature. The resonance for the CH$_2$ protons disappeared in the baseline but did not resolve into two signals at 200 K. This observation is consistent with a deceleration of the structural change in the pyrrolidine heterocycle. Based on a coalescence temperature of $T_C = 210$ K the free activation energy $\Delta G^\#$ for this process was estimated to be 40 kJ/mol.29

The molecular structures of compounds 4a and 4b contain a chiral Si atom which should result in complicated NMR spectra with resonances for six or seven different tert-butyl groups. The real figure depends on the strength of the secondary metal-carbon or metal-hydrogen interactions (see discussion of the molecular structures) and the barrier of rotation about the M-C bonds between the three-coordinate Al or Ga atom (schematic drawings in Scheme 3) and the vinylic C atom. In accordance with this expectation seven tert-butyl resonances were detected for the Al compound 4a. The hydrogen atoms of the C=CH and NCH$_2$ groups were also found to be magnetically inequivalent. In the 1H NMR spectrum we observed a significant shift of the resonance of the vinylic tert-butyl group to a higher field compared to 3 or 5 (Table 1). The unusual chemical shift may be caused by the interaction of the CMe$_3$ group with Al(1) as found
in the solid state and was similarly reported for agostic interactions in transition metal compounds. Six resonances with a singlet for two equivalent tert-butyl groups resulted for 4b, but only upon cooling of a sample in toluene to about 0 °C. At room temperature broad resonances occurred and four sharp singlets with an integration ratio of 2:2:2:1 were observed above 50 °C. The latter resonance belongs to the alkynyl tert-butyl group. Obviously the alkenyl groups became equivalent at elevated temperature which may be explained by a fast exchange of the N atom between both Ga atoms. This exchange process made both Ga(CMe₃)₂ groups equivalent, but due to a hindered rotation about the Ga-C(vinyl) bond the tert-butyl groups of a single GaR₂ group were inequivalent. The activation energy for this process was calculated from the NMR data to 59 kJ/mol.

At room temperature, the ¹H NMR spectra of the pyrrolyl derivatives 5a and 5b showed one signal for the NCH and CH protons of the pyrrolyl group, respectively, and two equivalent vinyl substituents, but two signals for the magnetically inequivalent CMe₃ groups at the metal atoms. This is consistent with a dynamic behaviour similar to that of 4b with the α-C atom and the pyrrolyl ring alternatively coordinated to both Ga atoms. When compound 5a was cooled to 200 K this process became slow on the NMR timescale (c.f. Fig. 3) and as a consequence all four H atoms on the pyrrolyl substituent and all seven CMe₃ groups became inequivalent. The chemical shifts of the four pyrrolyl H atoms cover a broad range between δ = 6.16 and 7.50. Based on averaged data of all involved H atoms ∆G° was estimated to 50 kJ/mol.

The hydride adduct 6 showed a characteristic broad resonance for the bridging hydride at δ = 3.76 in the ¹H NMR spectrum. The molecular backbone with a rigid bicycle (Fig. 5) resulted in all CMe₃ groups, the vinylic hydrogen atoms and all eight protons of
the pyrrolidine heterocycle being magnetically inequivalent. Broad absorptions in the IR spectra at 1886 and 1614 cm\(^{-1}\) were in the characteristic range of Ga-H stretching vibrations and may verify the asymmetric Ga-H-Ga bridge.\(^{27,28,30}\)

Conclusion

Hydrometallation of amino-tri(tert-butylethynyl)silanes with one or two equivalents of H-E(CMe\(_3\))\(_2\) (M = Al, Ga) afforded mixed alkenyl-dialkynyl- and dialkenyl-alkynylsilanes by the reduction of up to two of their C≡C triple bonds. The highly functionalised products have Lewis-acidic Al and Ga atoms in a geminal arrangement to the central four-coordinate Si atoms. The polarising capability of the coordinatively unsaturated Al and Ga atoms resulted in a fascinating variety of different intramolecular interactions. Depending on the molecular structures, the substitution pattern and the metal atoms close contacts have been observed to the N atom of the pyrrolidyl rings, the α-carbon atoms of the ethynyl groups which carry a relatively high partial negative charge, C-H bonds of a vinylc tert-butyl group or a C-H bond of the aromatic pyrolyl ring. Particularly interesting are naturally those contacts which result in a potential activation by weakening and lengthening of specific bonds. Relatively strong interactions were observed to ethynyl C and amine N atoms which may facilitate (i) ring closure by 1,1-carbometallation or (ii) coordination and insertion of dipolar substrates. With their unique properties these compounds do not only possess fascinating molecular struc-
tures, but are also highly promising starting materials for interesting secondary reactions.

Experimental Section

All procedures were carried out under an atmosphere of purified argon in dried solvents (\(n\)-hexane with LiAlH\(_4\); Et\(_2\)O and toluene with Na/benzophenone; 1,2-difluorobenzene and pentafluorobenzene with molecular sieves). \(n\)-BuLi and H-C\(\equiv\)C-CMe\(_3\) were used as purchased. Pyrrole was distilled at atmospheric pressure. SiCl\(_4\) was distilled and stored over Mg metal. H\(_8\)C\(_4\)N-Si(C\(\equiv\)C-CMe\(_3\))\(_3\), \(^9\)H-Al(CMe\(_3\))\(_2\), \(^{20,31}\)H-Ga(CMe\(_3\))\(_2\) and the sesquihydride [H-Ga(CMe\(_3\))\(_2\)]\(_2\)[H\(_2\)Ga-CMe\(_3\)]\(_2\) were obtained according to literature procedures. Microanalyses were carried out by the microanalytical laboratory of the Westfälische Wilhelms-Universität Münster. NMR spectra were recorded in C\(_6\)D\(_6\) or C\(_7\)D\(_8\) using the following Bruker instruments: Avance I (\(^1\)H, 400.13; \(^{13}\)C, 100.62 MHz, \(^{29}\)Si, 79.49 MHz, \(^{15}\)N, 40.54 MHz) or Avance III (\(^1\)H, 400.03; \(^{13}\)C, 100.59 MHz) and referenced internally to residual solvent resonances (chemical shift data in \(\delta\)). \(^{13}\)C NMR spectra were all proton decoupled. The assignment of NMR spectra is based on HSQC, HMBC, DEPT135, \(^1\)H/\(^{29}\)Si HMBC, \(^{29}\)Si\(^1\)H; DEPT and H,H ROESY data. IR spectra were recorded as paraffin mulls between CsI plates on a Shimadzu Prestige 21 spectrometer, electron impact mass spectra with a Finnigan MAT 95 mass spectrometer.
Pyrrolyl-trichlorsilane (I). A solution of n-BuLi (50.3 mL, 100.6 mmol, 2 M in hexane) was added dropwise under strict exclusion of light to a solution of pyrrole (6.74 g, 7 mL, 100.6 mmol) in Et₂O (75 mL) at -78 °C over a period of 1 h. The mixture was stirred for 1 h, the cooling bath was removed and the mixture was allowed to warm to room temperature overnight. The resulting suspension was cooled to -78 °C and added to a cooled solution (-78 °C) of excess SiCl₄ (25.64 g, 17.3 ml, 150.9 mmol) in Et₂O (100 mL) over a period of 2.5 h. Slow addition was achieved by means of a PTFE transfer cannula (30 cm, inner diameter 0.1 cm) and by careful adjustment of argon-pressure in regular intervals. The reaction mixture was stirred for another hour and then allowed to slowly warm to room temperature overnight. Volatiles were removed in vacuo und the obtained residue was distilled at 110 °C / 3.5 x 10⁻¹ mbar to give compound I as a colourless, hygroscopic and no longer light sensitive liquid (d = 1.36 g/mL). Yield: 12.53 g (62%). Microanalysis: not possible; compound is extremely hygroscopic, corrosive and damages CHN analysator. \(^1\)H NMR (C₆D₆, 400.03 MHz, 300 K): \(\delta = 6.78\) (2 H, \(\text{pseudo-t}\), outer line spacing 3 Hz, NCH), \(6.25\) (2 H, \(\text{pseudo-t}\), outer line spacing 3 Hz, NCCH). \(^{13}\)C NMR (C₆D₆, 100.61 MHz, 300 K): \(\delta = 123.3\) (NCH), 114.6 (NCCH). \(^{29}\)Si NMR (C₆D₆, 79.47 MHz, 300 K): \(\delta = -24.6\). \(^{15}\)N NMR (C₆D₆, 40.54 MHz, 300 K): \(\delta = 158\). IR (cm⁻¹; paraffin; CsI plates): 1763 m, 1719 w, \(1576\) s, \(1570\) s, \(1560\) s \(\nu(CN)\), \(\nu(CC)\) (pyrrole); \(1464\) vs, \(1404\) w, \(1375\) m (paraffin); \(1287\) vw, \(1209\) vs, \(1198\) vs, \(1082\) vs, \(1043\) s, \(953\) vw, \(932\) w, \(870\) vw, \(814\) w, \(785\) w; \(733\) vs (paraffin); \(617\) vs, \(594\) s, \(575\) vs, \(511\) vw, \(474\) w \(\nu(SiN)\), \(\nu(SiCl)\). Mass spectrum (EI⁺; 30 eV; 298 K): \(m/z\) (%) = 198 (1.0), \(200\) (0.8) [M⁺ – H], \(163\) (1.3), \(165\) (0.6) [M⁺ – H – Cl], \(129\) (1.6), \(131\) (0.4) [M⁺ – 2Cl], \(67\) (100) [C₄H₄NH⁺].
Pyrrolyl-tri(tert-butylethynyl)silane (2). A solution of n-BuLi (37.1 mL, 59.3 mmol, 1.6 M in hexane) was added to a solution of H-C≡C-CMe$_3$ (4.86 g, 7.25 mL, 59.3 mmol) in Et$_2$O (100 mL) at -78 °C over a period of 1 h. The mixture was allowed to warm to room temperature overnight yielding a yellow solution, which was added to a solution of 1 (3.96 g, 19.8 mmol) in Et$_2$O (75 mL) at -110 °C over a period of 3 h. The mixture was stirred for 3 h at the same temperature and allowed to slowly warm to room temperature overnight. The volatiles were removed *in vacuo*, the residue was treated with *n*-hexane (75 mL) and filtered. The filter cake was washed with *n*-hexane (25 mL) and the combined pale yellow filtrate was concentrated to give compound 2 as a colourless solid after recrystallisation from *n*-hexane at -30 °C. Yield: 5.45 g (82%). M.P.: 138 °C. Microanalysis: found C 78.3, H 9.2, N 4.1; C$_{22}$H$_{31}$NSi (337.57) requires C 78.3, H 9.3, N 4.2. 1H NMR (C$_6$D$_6$, 400.13 MHz, 300 K): δ = 7.50 (2 H, *pseudo*-t, outer line spacing 3 Hz, NC$_2$H), 6.56 (2 H, *pseudo*-t, outer line spacing 3 Hz, NCC$_3$H), 0.99 (27 H, s, CMe$_3$). 13C NMR (C$_6$D$_6$, 100.61 MHz, 300 K): δ = 124.2 (NCH), 118.5 (NCCCH), 112.6 (Si-C≡C), 76.8 (Si-C≡C), 30.1 (CMe$_3$), 28.4 (CMe$_3$). 15N NMR (C$_6$D$_6$, 40.53 MHz, 300 K): δ = 158. IR (cm$^{-1}$; paraffin, CsI plates): 2207 s, 2160 s ν(C≡C); 1736 w, 1701 m, 1578 s, 1570 s, 1540 m, 1541 m, 1522 vw, 1518 vw ν(CN), ν(CC) (pyrrole); 1458 vs, 1375 vs, 1364 s (paraffin); 1294 m, 1252 m δ(CH$_3$); 1198 s, 1113 w, 1082 s, 1069 s, 1045 s, 1030 m sh, 951 s, 930 s, 889 vw, 874 w, 835 m, 781 vs, 762 vs δ(CH), ν(CC); 729 vs (paraffin); 625 s, 592 s, 563 vs, 511 m, 467 s, 419 w ν(SiN), ν(SiC), δ(CC). Mass spectrum (EI$^+$; 20 eV; 298 K): m/z (%) = 337 (100) [M$^+$], 322 (11) [M$^+$ – CH$_3$], 280 (7) [M$^+$ – CMe$_3$], 271 (6) [M$^+$ – C$_4$H$_4$N].

Compound 3a. A solution of C$_4$H$_8$N-Si(C≡C-CMe$_3$)$_3$ (0.349 g, 1.02 mmol) in toluene (10 mL) was treated at room temperature with a solution of H-Al(CMe$_3$)$_2$ (0.145 g, 1.02
mmol) in toluene (25 mL). The mixture was stirred for 30 min. The volatiles were removed in vacuo to give an amorphous solid which was recrystallised from a small quantity of 1,2-difluorobenzene at -15 °C. Compound 3a was obtained as a colourless solid which slowly decomposed in vacuo. Yield: 0.436 g (88%). M.p.: 127 °C. Microanalysis: found C 73.8, H 11.3, N 2.8; \[C_{30}H_{54}AlNSi (483.81)\] requires C 74.5, H 11.2, N 2.9.

\[^1H\] NMR (C\(_6\)D\(_6\), 400.03 MHz, 300 K): \(\delta = 7.29 \) (1 H, s, \(^3J_{HSi} = 31.5 \) Hz, C=CH), 3.90 and 2.83 (4 H, m br, NC\(_2\)H\(_2\)), 1.78 and 1.51 (4 H, m br, NCC\(_2\)H\(_2\)), 1.38 (18 H, s, Al(CMe\(_3\))\(_2\)), 1.32 (9 H, s, C=CCMe\(_3\)), 1.04 (18 H, s, C≡C CMe\(_3\)).

\[^{13}C\] NMR (C\(_6\)D\(_6\), 100.59 MHz, 300 K): \(\delta = 171.2 \) (C≡C), 143.6 (br, C≡C-H), 120.3 (C≡C-CMe\(_3\)), 77.9 (C≡C-CMe\(_3\)), 52.9 (NCH\(_2\)), 40.1 (C=CCMe\(_3\)), 32.3 (Al(CMe\(_3\))\(_2\)), 30.2 (C≡C-CMe\(_3\)), 29.9 (C≡C-CMe\(_3\)), 28.5 (C≡C-CMe\(_3\)), 24.2 (NCCH\(_2\)), 17.7 (br, AlCMe\(_3\)).

\[^{29}Si\] NMR (C\(_6\)D\(_6\), 79.47 MHz, 300 K): \(\delta = -39.5\). IR (cm\(^{-1}\); paraffin, CsI plates): 2199 s, 2154 vs \(\nu(C=\equiv C)\); 1605 vs, 1560 m \(\nu(C=C)\); 1458 vs, 1379 vs (paraffin); 1304 w, 1294 w, 1254 s \(\delta(CH_3)\); 1202 s, 1179 w, 1103 w, 1070 m, 1045 m, 1028 s, 1007 m, 962 m sh, 943 s, 916 s, 885 m, 847 vw, 808 s, 775 s \(\delta(CH)\), \(\nu(CC)\), \(\nu(CN)\); 721 s (paraffin); 664 w, 592 s, 557 m, 473 m, 436 m, 420 m \(\nu(SiC)\), \(\nu(SiN)\), \(\nu(AlN)\), \(\nu(AlC)\), \(\delta(CC)\). Mass spectrum (EI+; 20 eV; 298 K): \(m/z\) (%) = 426 (100) [M\(^+\) – CMe\(_3\)], 356 (19) [M\(^+\) – NC\(_4\)H\(_8\) – CMe\(_3\)], 331 (9) [M\(^+\) – NC\(_4\)H\(_8\) – HC≡CCMe\(_3\)].

Compound 3b. A solution of C\(_4\)H\(_8\)N-Si(C≡C-CMe\(_3\))\(_3\) (0.350 g, 1.04 mmol) in toluene (10 mL) was treated at room temperature with a solution of H-Ga(CMe\(_3\))\(_2\) (0.190 g, 1.02 mmol) in toluene (25 mL). The mixture was stirred for 30 min. Removal of all volatiles in vacuo yielded a colourless oil which was recrystallised from a small quantity of 1,2-difluorobenzene at -15 °C to give compound 3b as a colourless solid which slowly decomposed in vacuo. Yield: 0.412 g (76%). M.p.: 89 °C. Microanalysis: found C 68.3, H
Compound 4a. A solution of C₄H₈N-Si(C≡C-CMe₃)₃ (0.356 g, 1.04 mmol) in toluene (10 mL) was treated at room temperature with a solution of H-Al(CMe₃)₂ (0.304 g, 2.14 mmol) in toluene (25 mL). The mixture was stirred for 2 d. All volatiles were removed \textit{in vacuo} and the residue was treated with a small quantity of pentafluorobenzene. Filtration to remove small quantities of solid material, concentration of the filtrate and storing the solution at -30 °C yielded colourless crystals of compound 4a. Yield: 0.531 g (81%). M.p.: 171 °C. Microanalysis: found C 72.2, H 11.7, N 2.2; [C₃₈H₇₃Al₂NSi (626.09)] requires C 72.9, H 11.8, N 2.2. ¹H NMR (C₆D₆, 400.13 MHz, 300 K): δ = 7.41 (1 H, s, ν(GaC), ν(CC), δ(C)).
$J_{\text{HSi}} = 29.8$ Hz, \textit{cis}-C=CH), 7.21 (1 H, s, $J_{\text{HSi}} = 15.8$ Hz, \textit{trans}-C=CH), 3.76 and 3.08 (each 1 H, m, NC(1)H$_2$), 3.43 and 2.78 (each 1 H, m, NC(4)H$_2$), 1.66 (2 H, m, NC(1)C(2)H$_2$), 1.58 (2 H, m, NC(4)C(3)H$_2$), 1.38 and 1.36 (each 9 H, s, \textit{cis}-Al(CMe$_3$)$_2$), 1.26 and 1.20 (each 9 H, s, \textit{trans}-Al(CMe$_3$)$_2$), 1.18 (9 H, s, C≡C=CCMe$_3$), 1.14 (9 H, s, C≡CCMe$_3$), 0.92 (9 H, s, \textit{cis}-4C=CCMe$_3$), 1.12 (9 H, s, \textit{trans}-4C=CCMe$_3$), 0.92 (9 H, s, C≡C=CCMe$_3$), 1.14 (9 H, s, C≡C=CCMe$_3$).

13C NMR (C_6D_6, 100.61 MHz, 300 K): δ = 175.7 (\textit{trans}-C=CCMe$_3$), 171.2 (\textit{cis}-C=CCMe$_3$), 145.4 (br, \textit{cis}-C=CCMe$_3$), 138.3 (br, \textit{trans}-C=CCMe$_3$), 122.0 (C≡CCMe$_3$), 82.2 (C≡CCMe$_3$), 53.3 (NC(1)H$_2$), 51.7 (NC(4)H$_2$), 39.2 (\textit{cis}-C=CCMe$_3$), 38.8 (\textit{trans}-C=CCMe$_3$), 32.9 and 31.9 (\textit{cis}-Al(CMe$_3$)$_2$), 31.2 and 31.1 (\textit{trans}-Al(CMe$_3$)$_2$), 30.3 (C≡CCMe$_3$), 28.7 (C≡CCMe$_3$), 27.2 (\textit{trans}-C=CCMe$_3$), 25.5 (NC(1)C(2)H$_2$), 25.4 (NC(4)C(3)H$_2$), 19.4 and 17.7 (br, \textit{cis}-AlCMe$_3$), 18.4 (\textit{trans}-Al(CMe$_3$)$_2$). 29Si NMR (C_6D_6, 79.49 MHz, 300 K): δ = -24.0. IR (cm$^{-1}$; paraffin, CsI plates): 2187 w, 2145 m ν(C≡C); 1699 w, 1599 vs, 1580 s, 1558 vs, 1549 vs ν(C=C); 1454 vs, 1373 vs (paraffin); 1294 w, 1250 s δ(CH$_3$); 1202 s, 1072 w, 1038 s, 1007 m, 1001 m, 932 m, 851 w, 810 m, 783 w, 766 m, 746 m δ(CH), ν(CC), ν(CN); 719 vs (paraffin); 667 m, 610 m, 590 m, 567 m, 501 sh, 486 s, 451 w, 436 w ν(SiC), ν(SiN), ν(AlN), ν(AlC), δ(CC). Mass spectrum (EI+; 20 eV; 353 K): m/z (%) = 568 (100) [M$^+$ – CMe$_3$], 512 (14) [M$^+$ – CMe$_3$ – butene], 426 (45) [M$^+$ – Al(CMe$_3$)$_2$ – butane].

Compound 4b. A solution of C$_4$H$_8$N-Si(C≡C-CMe$_3$)$_3$ (0.341 g, 1.00 mmol) in toluene (10 mL) was added at room temperature to a solution of H-Ga(CMe$_3$)$_2$ (0.368 g, 1.99 mmol) in toluene (25 mL). The mixture turned brown and was stirred for 3 d. All volatiles were removed \textit{in vacuo} and the oily residue was recrystallised from pentafluorobenzene at -45 °C to give a brownish solid which was found to be a mixture of 4b (ca. 60 %), 3b (ca. 10 %) and 6 (ca. 30 %). Repeated fractional crystallisation from pen-
tafluorobenzene at -45 °C yielded pure 4b as colourless crystals. Yield: 0.283 g (40%). M.p.: 125 °C. Microanalysis: found C 64.2, H 9.8, N 2.0; [C_{38}H_{73}Ga_{2}NSi (711.54)] re4quires C 64.1, H 10.3, N 2.0. \(^1\)H NMR (C\(_6\)D\(_6\), 400.13 MHz, 275 K): \(\delta = 6.84 (1 \text{ H, s, } \text{C}=\text{CCH})\), 6.48 (1 H, s, \(^3\)J\(_{\text{HH}}\) = 28.5 Hz, NGaC=CH), 3.38 and 3.32 (each 2 H, m, NC\(_2\)H\(_2\)), 1.64 and 1.63 (each 2 H, m, NCC\(_3\)H), 1.43 (18 H, s, Ga(CMe\(_3\))\(_2\)), 1.41 and 1.31 (each 9 H, s, NGa(CMe\(_3\))\(_2\)), 1.23 (9 H, s, NGaC=CCMe\(_3\)), 1.13 (9 H, s, C=CCMe\(_3\)), 1.12 (9 H, s, C=CCMe\(_3\)). \(^1\)H NMR (C\(_6\)D\(_6\), 400.13 MHz, 300 K): \(\delta = 6.82 (1 \text{ H, br, } \text{C}=\text{C(1)H})\), 6.48 (1 H, br, C=C(2)H), 3.36 (4 H, br, NCH), 1.66 (4 H, m, NCH\(_2\)CH), 1.40 (18 H, s, NGa(CMe\(_3\))\(_2\)), 1.36 (18 H, br, Ga(CMe\(_3\))\(_2\)), 1.17 (18 H, br, C=CCMe\(_3\)), 1.14 (9 H, s, C=CCMe\(_3\)). \(^1\)H NMR (C\(_6\)D\(_6\), 400.13 MHz, 350 K): \(\delta = 6.63 (2 \text{ H, br, } \text{C}=\text{CCH})\), 3.37 (4 H, pseudo-t, outer line spacing: 11.2 Hz, NCH), 1.71 (4 H, m, NCH\(_2\)CH), 1.36 (18 H, s, Ga(CMe\(_3\))\(_2\)), 1.18 (18 H, s, C=CCMe\(_3\)), 1.17 (9 H, s, C=CCMe\(_3\)). \(^1\)C NMR (C\(_6\)D\(_6\), 100.61 MHz, 275 K): \(\delta = 164.8\) (NGaC=CCMe\(_3\)), 164.1 (C=CCMe\(_3\)), 157.1 (C=CCMe\(_3\)), 142.5 (NGaC=CCMe\(_3\)), 122.7 (C=CCMe\(_3\)), 84.1 (C=CCMe\(_3\)), 52.0 (NCH\(_2\)), 39.1 (C=CCMe\(_3\)), 38.4 (NGaC=CCMe\(_3\)), 32.2 and 31.8 (NGaCMe\(_3\)), 31.0 (Ga(CMe\(_3\))\(_2\)), 30.6 (C=CCMe\(_3\)), 30.1 (NGaC=CCMe\(_3\)), 29.9 (C=CCMe\(_3\)), 29.7 (NGaCMe\(_3\); second resonance of this group not observed), 29.2 (Ga(CMe\(_3\))\(_2\)), 28.8 (C=CCMe\(_3\)), 25.8 (NCH\(_2\)). \(^2\)Si NMR (C\(_6\)D\(_6\), 79.49 MHz, 280 K): \(\delta = -29.1\). IR (cm\(^{-1}\); paraffin, CsI plates): 2151 m, 2133 m \(\nu(\text{C}=\text{C})\); 1576 vs sh, 1558 vs \(\nu(\text{C}=\text{C})\); 1458 vs, 1400 m, 1377 vs (paraffin); 1306 w, 1250 m \(\delta(\text{CH})\); 1202 m, 1169 w, 1111 vw, 1072 vw, 1049 w, 1030 vw, 1007 vw, 930 w, 880 vw, 851 vw, 812 m, 795 m, 762 w \(\delta(\text{CH})\), \(\nu(\text{CC})\), \(\nu(\text{CN})\); 719 s (paraffin); 706 m, 681 w, 650 vw, 623 vw, 592 vw, 559 m, 517 vw, 482 w, 467 m, 444 m \(\nu(\text{SiC})\), \(\nu(\text{SiN})\), \(\nu(\text{GaN})\), \(\nu(\text{GaC})\), \(\delta(\text{CC})\). Mass
spectrum (EI+; 20 eV; 298 K): \(m/z \) (%) = 654 (12) \([M^+ - \text{CMe}_3] \), 468 (100) \([M^+ - \text{Ga(CMe}_3)2 - \text{butane}] \).

Compound 5a. A solution of compound 2 (0.354 g, 1.05 mmol) in toluene (15 mL) was treated at room temperature with a solution of H-Al(\text{CMe}_3)2 (0.306 g, 2.15 mmol) in toluene (25 mL). The mixture was stirred for 16 h. The solvent was removed \textit{in vacuo} and the residue recrystallised from 1,2-difluorobenzene at -15 °C to give a colourless solid. Yield: 0.53 g (81%). M.p.: 158 °C. Microanalysis: found C 73.2, H 11.0, N 2.3; \(C_{38}H_{69}Al_2NSi \) (621.99) requires C 73.4, H 11.2, N 2.3.

\(^1H\) NMR (\(C_6D_6 \), 400.03 MHz, 300 K): \(\delta \) = 7.26 (2 H, s br, \text{NCH}), 6.97 (2 H, s, \(^3J_{HSi} \) = 30.8 Hz, \text{C=CH}), 6.75 (1 H, s br, \text{NCHCH}), 1.35 and 1.01 (each 18 H, s, Al(\text{CMe}_3)2), 1.12 (18 H, s, C=\text{CCMe}_3), 1.11 (9 H, s, C=\text{CCMe}_3). \(^1H\) NMR (toluene-d8, 400.13 MHz, 200 K): \(\delta \) = 7.50 (1 H, br, \text{NCH}), 7.20 (1 H, \text{pseudo-t}, outer line spacing: 3.0 Hz, \text{NCHCH}), 6.97 (1 H, br, \text{NCH}), 6.81 (1 H, \text{pseudo-t}, outer line spacing: 3.0 Hz, \text{NCHCH}), 6.16 (1 H, \text{pseudo-tr}, outer line spacing: 4.5 Hz, \text{NCHCH}), 1.44 and 1.43 (each 9 H, s, Al(\text{CMe}_3)2), 1.17 and 1.14 (each 9 H, s, C=\text{C-CCMe}_3), 1.04 and 1.03 (each 9 H, s, Al(\text{CMe}_3)2), 1.04 (9 H, s, C=\text{CCMe}_3). \(^{13}C\) NMR (\(C_6D_6 \), 100.59 MHz, 300 K): \(\delta \) = 169.1 (C=\text{CCMe}_3), 142.9 (br, C=\text{CCMe}_3), 130.3 (C=\text{C-CCMe}_3), 83.1 (C=\text{CCMe}_3), 39.4 (C=\text{CCMe}_3), 31.8 and 31.1 (Al(\text{CMe}_3)2), 30.4 (C=\text{C-CCMe}_3), 29.4 (C=\text{CCMe}_3), 29.3 (C=\text{CCMe}_3), 19.4 and 19.2 (br, Al(\text{CMe}_3)2), NCH, NCHCH not observed. \(^29Si\) NMR (\(C_6D_6 \), 79.47 MHz, 300 K): \(\delta \) = -39.0. IR (cm\(^{-1}\); paraffin, CsI plates): 2156 m, 2114 s \(v(\text{C=C}) \); 1784 vw, 1599 vs, 1558 vs \(v(\text{C=C}) \), pyrrole; 1458 vs, 1375 vs (paraffin); 1294 m, 1254 m, 1242 m \(\delta(\text{CH}_2) \); 1233 m, 1200 m, 1167 s, 1078 m, 1070 w, 1051 vs, 1028 m, 999 m, 939 s, 905 m, 889 s, 851 w, 810 vs, 762 m, 752 m \(\delta(\text{CH}) \), \(v(\text{CC}) \); 721 vs (paraffin); 691 m, 640 m, 629 s, 606 m, 583 m, 556 s, 538 m, 519 m, 469 s, 426 m \(v(\text{SiC}) \), \(v(\text{SiN}) \), \(v(\text{AlN}) \), \(v(\text{AlC}) \), \(\delta(\text{CC}) \). Mass
spectrum (EI+; 20 eV; 373 K): m/z (%) = 564 (58) [M+ – CMe3], 422 (100) [M+ – Al(CMe3)2 – butane].

Compound 5b. A solution of C4H4N-Si(C≡CCMe3)3 2 (0.268 g, 0.79 mmol) in toluene (15 mL) was treated at room temperature with a solution of H-Ga(CMe3)2 (0.301 g, 1.66 mmol) in toluene (25 mL). The mixture was stirred for 16 h resulting in a colour change from colourless to deep orange. All volatiles were removed *in vacuo* and the residue was recrystallised from 1,2-difluorobenzene at 2 °C to give 4b as a colourless solid.

Yield: 0.445 g (80%). M.p.: 162 °C. Microanalysis: found C 64.3, H 9.8, N 1.9; [C38H60Ga2NSi (707.47)] requires C 64.5, H 9.8, N 2.0. 1H NMR (C6D6, 400.13 MHz, 300 K): δ = 7.20 (2H, pseudo-t, outer line spacing 3 Hz, NCH), 6.62 (2 H, pseudo-t, outer line spacing 3 Hz, NCHCH), 6.51 (2 H, s, 3JH, C=CH), 1.42 and 1.09 (each 18 H, s, Ga(CMe3)2), 1.19 (18 H, s, C≡CCMe3), 1.13 (9 H, s, C≡CCMe3). 13C NMR (C6D6, 100.61 MHz, 300 K): δ = 163.6 (C≡CCMe3), 146.3 (br, C=CCMe3), 122.7 (C≡CCMe3), 122.1 (br, NCH), 118.8 (NCCH), 83.1 (C≡CCMe3), 39.1 (C≡CCMe3), 31.9 and 31.1 (Ga(CMe3)2), 30.7 (C≡CCMe3), 29.9 and 29.3 (br, Ga(CMe3)2), 29.7 (C≡CCMe3), 28.8 (C≡CCMe3). 29Si NMR (C6D6, 79.49 MHz, 300 K): δ = -42.8. IR (cm−1; paraffin, CsI plates): 2168 m, 2129 s ν(C≡C); 1566 vs, 1497 m,sh ν(C=C); 1447 vs, 1377 vs (paraffin); 1304 vw, 1292 w, 1254 m, 1246 m δ(CH3); 1229 m, 1200 s, 1188 sh, 1179 vs, 1070 vs, 1049 vs, 1030 m, 1022 m, 1015 m, 1005 m, 939 m, 920 m, 907 m, 883 m, 856 vw, 841 w, 808 s sh, 800 s, 750 s δ(CH), ν(CC); 719 vs (paraffin); 675 m, 640 w, 627 m, 610 w, 588 vw, 561 s, 521 w, 471 m, 455 w sh, 428 m ν(SiC), ν(SiN), ν(GaN), ν(GaC), δ(CC). Mass spectrum (EI+; 20 eV; 298 K): m/z (%) = 650 (42) [M+ – CMe3], 464 (100) [M+ – Ga(CMe3)2 – butane].
Compound 6 (from [H-Ga(CMe₃)₂₂][H₂Ga-CMe₃]₂). A solution of C₄H₈N-Si(C≡C(CMe₃)₃) (0.164 g, 0.48 mmol) in toluene (15 mL) was added at room temperature to a solution of [H-Ga(CMe₃)₂₂][H₂Ga-CMe₃]₂ (0.200 g, 0.32 mmol; excess) in toluene (15 mL). The mixture was stirred for 3 d, the solvent was removed in vacuo and the residue recrystallised from pentafluorobenzene at -30 °C to give colourless crystals of compound 6. Yield: 0.196 g (62%).

Compound 6 (from H-Ga(CMe₃)₂). A solution of C₄H₈N-Si(C≡CCMe₃)₃ (0.364 g, 1.07 mmol) in toluene (20 mL) was treated at room temperature with a solution of H₄Ga(CMe₃)₂ (0.591 g, 3.20 mmol) in toluene (25 mL). The mixture was stirred for 3 d. Removal of all volatiles in vacuo yielded a pale yellow solid which was dissolved in a small quantity of pentafluorobenzene. The solution was concentrated and stored at -45 °C to give a colourless solid consisting of a mixture of 5b (ca. 33 %) and 6. Recrystallisation from pentafluorobenzene at -15 °C yielded as a first fraction compound 5b and from the mother liquor compound 6. Yield: 0.195 g (28%). M.p.: 130 °C. Microanalysis: found C 62.8, H 10.1, N 2.3; [C₃₄H₆₅Ga₂NSi (655.40)] requires C 62.3, H 10.0, N 2.1.

¹H NMR (C₆D₆, 400.13 MHz, 300 K): δ = 7.19 (1 H, s, ³J_HSi = 28.0 Hz, NGaC=CH), 6.97 (1 H, s, ³J_HSi = 24.0 Hz, (Me₃C)₂GaC=CH), 3.76 (1 H, s, GaH), 3.31 and 2.81 (each 1 H, m, NC(1)H₂), 3.21 and 2.93 (each 1 H, m, NC(4)H₂), 1.77 and 1.43 (each 1 H, m, NC(1)C(2)H₂), 1.58 and 1.44 (each 1 H, m, NC(4)C(3)H₂), 1.48 (9 H, s, NGa-CMe₃), 1.41 and 1.24 (each 9 H, s, Ga(CMe₃)₂), 1.41 (9 H, s, NGaC=CCMe₃), 1.27 (9 H, s, (Me₃C)₂GaC=CCMe₃), 1.12 (9 H, s, C≡CCMe₃). ¹³C NMR (C₆D₆, 100.61 MHz, 300 K): δ = 168.6 (NGaC=C) 165.6 ((Me₃C)₂GaC=C), 146.8 ((Me₃C)₂GaC=C), 144.8 (NGaC=C), 120.7 (C=CCMe₃), 82.6 (C=CCMe₃), 52.0 (NC(4)H₂), 49.5 (NC(I)H₂), 38.3 ((Me₃C)₂GaC=CCMe₃), 37.3 (NGaC=CCMe₃), 33.8 (NGa-CMe₃), 33.7
and 30.5 (Ga(CMe₃)₂), 32.4 (NGaC=CCMe₃), 30.2 (C≡CCMe₃), 30.0
((Me₃C)₂GaC=CCMe₃), 28.7 (C≡CCMe₃), 26.4 and 25.1 (GaCMe₃), 26.2
(NC(4)C(2)H₂), 25.2 (NGaCMe₃), 24.8 (NC(1)C(2)H₂). ²⁹Si NMR (C₆D₆, 79.49 MHz,
300 K): δ = -27.0. IR (cm⁻¹; paraffin, CsI plates): 2193 w, 2149 s ν(C≡C); 1886 w br,
1614 w br ν(Ga-H); 1531 m, 1510 w ν(C≡C); 1454 vs, 1377 vs (paraffin); 1304 vw,
1252 m δ(CH₃); 1202 m, 1179 m, 1136 vw, 1111 vw, 1070 s, 1053 m, 1007 m, 926 m,
833 w, 810 m, 793 m, 779 w, 764 w δ(CH), ν(CC), ν(CN); 718 m (paraffin); 681 w, 637
w, 525 m, 480 w, 463 m, 440 m ν(SiC), ν(SiN), ν(GaN), ν(GaC), δ(CC). Mass spectrum
(EI⁺; 20 eV; 298 K): m/z (%) = 598 (66) [M⁺ − CMe₃], 468 (8) [M⁺ − Ga(CMe₃)₂ − 2H],
412 (100) [M⁺ − Ga(CMe₃)₂ − butane].

X-Ray crystallography. Crystals suitable for X-ray crystallography were obtained by
recrystallisation from n-hexane (2), 1,2-difluorobenzene (3a, 3b, 4a, 4b) or pen-
tafluorobenzene (5a, 6). Intensity data was collected on Bruker APEX II, IPDS-II and
D8-Venture diffractometers with monochromated MoKα and CuKα radiation (2, 4a).
The collection method involved ω scans. Data reduction was carried out using the pro-
gram SAINT⁺. ³² The crystal structures were solved by Direct Methods using
SHELXTL. ³³,³⁴ Non-hydrogen atoms were first refined isotropically followed by aniso-
tropic refinement by full matrix least-squares calculation based on F² using
SHELXTL. ³³,³⁴ Hydrogen atoms were positioned geometrically and allowed to ride on
their respective parent atoms. Compound 6 crystallizes with one molecule of pen-
tafluorobenzene per formula unit, the solvent molecule is disordered statistically over all
F/H-positions. Two CMe₃ groups of compound 2 and one of compounds 3a, 3b, 4a and
4b were disordered and refined in split positions (2 0.45 : 0.32 : 0.23, 0.45 : 0.35 : 0.20;
3a 0.55 : 0.45; 3b 0.54 : 0.46; 4a 0.43 : 0.57; 4b 0.56 : 0.44). The interaction of methyl
hydrogen atoms with the aluminium atom Al(1) in compound 4a was verified by an analysis of the difference Fourier map. The positions of residual electron density found for all three hydrogen atoms bonded to C(121) were almost identical to the calculated, ideal ones which were applied for the final refinement of the structure. Molecular structures were drawn with the DIAMOND program package.\(^\text{35}\)

Crystal data for 2: C\textsubscript{22}H\textsubscript{31}NSi, \(M = 337.57\), orthorhombic, \(a = 10.0207(2)\ \text{Å}, b = 13.4721(2)\ \text{Å}, c = 16.8224(3)\ \text{Å}, \alpha = \beta = \gamma = 90^\circ, V = 2271.02(7)\ \text{Å}^3, T = 153(2)\ \text{K}\), space group \(P2_12_12_1\), \(Z = 4\), \(\mu_{\text{CuK}\alpha} = 0.906\ \text{mm}^{-1}\), 16167 reflections measured, 4542 independent reflections (\(R_{\text{int}} = 0.0322\)). The final \(R\) values were \(R_1 = 0.0390\) (\(I > 2\sigma(I)\)) and \(wR(F^2) = 0.0944\) (all data). The goodness of fit on \(F^2 = 1.059\).

Crystal data for 3a: C\textsubscript{30}H\textsubscript{54}AlNSi, \(M = 483.81\), monoclinic, \(a = 28.593(1)\ \text{Å}, b = 15.1324(6)\ \text{Å}, c = 18.5944(8)\ \text{Å}, \alpha = 90^\circ, \beta = 124.746(1)^\circ, \gamma = 90^\circ, V = 6610.9(5)\ \text{Å}^3, T = 153(2)\ \text{K}\), space group \(C2/c\), \(Z = 8\), \(\mu_{\text{MoK}\alpha} = 0.113\ \text{mm}^{-1}\), 43426 reflections measured, 9237 independent reflections (\(R_{\text{int}} = 0.0249\)). The final \(R\) values were \(R_1 = 0.0487\) (\(I > 2\sigma(I)\)) and \(wR(F^2) = 0.1428\) (all data). The goodness of fit on \(F^2 = 1.034\).

Crystal data for 3b: C\textsubscript{30}H\textsubscript{54}GaNSi, \(M = 526.55\), monoclinic, \(a = 28.468(1)\ \text{Å}, b = 15.2259(7)\ \text{Å}, c = 18.6308(8)\ \text{Å}, \alpha = 90^\circ, \beta = 124.829(1)^\circ, \gamma = 90^\circ, V = 6629.0(5)\ \text{Å}^3, T = 153(2)\ \text{K}\), space group \(C2/c\), \(Z = 8\), \(\mu_{\text{MoK}\alpha} = 0.882\ \text{mm}^{-1}\), 36363 reflections measured, 6366 independent reflections (\(R_{\text{int}} = 0.0239\)). The final \(R\) values were \(R_1 = 0.0326\) (\(I > 2\sigma(I)\)) and \(wR(F^2) = 0.0920\) (all data). The goodness of fit on \(F^2 = 1.043\).

Crystal data for 4a·C\textsubscript{6}F\textsubscript{5}H: C\textsubscript{44}H\textsubscript{74}Al\textsubscript{2}F\textsubscript{5}NSi, \(M = 794.09\), orthorhombic, \(a = 20.7949(4)\ \text{Å}, b = 11.5692(2)\ \text{Å}, c = 40.0587(9)\ \text{Å}, \alpha = \beta = \gamma = 90^\circ, V = 9637.3(3)\ \text{Å}^3, T = 153(2)\ \text{K}\), space group \(Pbca\), \(Z = 8\), \(\mu_{\text{CuK}\alpha} = 1.169\ \text{mm}^{-1}\), 59102 reflections measure-
ured, 9671 independent reflections ($R_{\text{int}} = 0.1396$). The final R values were $R_1 = 0.0647$ ($I > 2\sigma(I)$) and $wR(F^2) = 0.1768$ (all data). The goodness of fit on $F^2 = 1.081$.

Crystal data for 5a: $C_{38}H_{69}Al_2NSi$, $M = 621.99$, monoclinic, $a = 12.6637(6)$ Å, $b = 16.9211(8)$ Å, $c = 19.3879(8)(3)$ Å, $\alpha = 90^\circ$, $\beta = 90.479(2)^\circ$, $\gamma = 90^\circ$, $V = 4154.4(3)$ Å3, $T = 153(2)$ K, space group $P2_1/n$, $Z = 4$, $\mu(\text{MoK}\alpha) = 0.122$ mm$^{-1}$, 34357 reflections measured, 10348 independent reflections ($R_{\text{int}} = 0.0721$). The final R values were $R_1 = 0.0504$ ($I > 2\sigma(I)$) and $wR(F^2) = 0.1332$ (all data). The goodness of fit on $F^2 = 1.021$.

Crystal data for 5b: $C_{38}H_{69}Ga_2NSi$, $M = 707.47$, monoclinic, $a = 12.6965(3)$ Å, $b = 16.9151(4)$ Å, $c = 19.3913(5)$ Å, $\alpha = 90^\circ$, $\beta = 90.589(1)^\circ$, $\gamma = 90^\circ$, $V = 4164.3(2)$ Å3, $T = 153(2)$ K, space group $P2_1/n$, $Z = 4$, $\mu(\text{MoK}\alpha) = 1.346$ mm$^{-1}$, 71404 reflections measured, 12161 independent reflections ($R_{\text{int}} = 0.0500$). The final R values were $R_1 = 0.0325$ ($I > 2\sigma(I)$) and $wR(F^2) = 0.0785$ (all data). The goodness of fit on $F^2 = 1.031$.

Crystal data for 6: $C_{34}H_{65}Ga_2NSi$, $M = 655.40$, orthorhombic, $a = 11.5215(2)$ Å, $b = 20.1495(4)$ Å, $c = 32.8729(6)$ Å, $\alpha = \beta = \gamma = 90^\circ$, $V = 7631.5(2)$ Å3, $T = 100(2)$ K, space group $Pbca$, $Z = 8$, $\mu(\text{MoK}\alpha) = 1.464$ mm$^{-1}$, 128527 reflections measured, 11143 independent reflections ($R_{\text{int}} = 0.0383$). The final R values were $R_1 = 0.0236$ ($I > 2\sigma(I)$) and $wR(F^2) = 0.0586$ (all data). The goodness of fit on $F^2 = 1.046$.

Further details of the crystal structure determinations are available from the Cambridge Crystallographic Data Center on quoting the depository numbers CCDC–992855 to –992861 (2, 3a, 3b, 4a, 4b, 5a, 6).

Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft for generous financial support.

Notes and references

Selected references:
g) C. Schenk, C. Drost, A. Schnepf, *Dalton Trans.* 2009, 773-776;

32 Saint+; Version 6.02 (includes Xprep and Sadabs), Bruker AXS INC., Madison, Wisconsin, USA, 1999; G. M. Sheldrick, SADABS, University of Göttingen, Germany, 1996.

Table 1. Selected structure, NMR and IR parameters

<table>
<thead>
<tr>
<th>Compound</th>
<th>M···N/C<sup>a</sup></th>
<th>M···C≡C</th>
<th>Si-C-M-N puckering angle (º)<sup>b</sup></th>
<th>C≡C(H)/Bu<sup>c</sup> (º)</th>
<th>J<sub>SiH</sub></th>
<th>IR ν(C≡C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>4</sub>H<sub>8</sub>N-Si(C≡C-CMe<sub>3</sub>)<sub>3</sub></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2199 / 2158</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2207 / 2160</td>
</tr>
<tr>
<td>3a</td>
<td>208.5(1)</td>
<td>-</td>
<td>4.8</td>
<td>1.32</td>
<td>31.5</td>
<td>2199 / 2154</td>
</tr>
<tr>
<td>3b</td>
<td>222.3(2)</td>
<td>-</td>
<td>4.7</td>
<td>1.36</td>
<td>29.0</td>
<td>2201 / 2154</td>
</tr>
<tr>
<td>4a</td>
<td>210.2(2)</td>
<td>(353.7)</td>
<td>6.0</td>
<td>0.92 / 1.18</td>
<td>29.8 / 15.8</td>
<td>2187 / 2145</td>
</tr>
<tr>
<td>4b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.13 / 1.23</td>
<td>28.5 / 24.1</td>
<td>2151 / 2133</td>
</tr>
<tr>
<td>5a</td>
<td>239.4(2)</td>
<td>252.8</td>
<td>-</td>
<td>1.12</td>
<td>30.8</td>
<td>2156 / 2114</td>
</tr>
<tr>
<td>5b</td>
<td>260.5</td>
<td>277.0</td>
<td>-</td>
<td>1.19</td>
<td>27.7</td>
<td>2168 / 2129</td>
</tr>
<tr>
<td>6</td>
<td>210.31(9)</td>
<td>-</td>
<td>34.9</td>
<td>1.27 / 1.41</td>
<td>28.0 / 24.0</td>
<td>2193 / 2149</td>
</tr>
</tbody>
</table>

^aPyrrolyl C atom; ^bacross the C(11)···N(1) axes
Graphical Abstract:

Hydrometallation of amino-trialkynylsilanes - intramolecular M-N interactions (M = Al, Ga) and potential activation of Si-N bonds

Werner Uhl, Jörg Bohnemann, Benedikt Kappelt, Alexander Hepp and Marcus Layh

Hydroalumination of amino-alkynylsilanes afforded highly functionalized alkenyl-alkynylsilanes with a fascinating diversity of intramolecular donor-acceptor interactions.
Hydrometallation of amino-trialkynylsilanes - intramolecular M-N interactions (M = Al, Ga) and potential activation of Si-N bonds

Werner Uhl, Jörg Bohnemann, Benedikt Kappelt, Alexander Hepp and Marcus Layh

Hydroalumination of amino-alkynylsilanes afforded highly functionalized alkenyl-alkynylsilanes with a fascinating diversity of intramolecular donor-acceptor interactions.