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Cu2ZnSnSe4 is a prospective material as absorber in thin film solar cells due to its many advantages including direct band 
gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe 
nanoparticles have been synthesized by hot-injection method using bis-(triethylsilyl) selenide [(Et3Si)2Se] as selenium source 
for the first time. The energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-10 

ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase 
polycrystalline and size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy 
measurement ruled out the existence of any secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and 
precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied using Raman spectroscopy. 
UV-vis-NIR data indicates that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for 15 

photovoltaic applications.   

 
1. Introduction   
 
Photovoltaic (PV) devices based on thin films of light absorbing 20 

materials such as amorphous silicon, CdTe, and Cu(In,Ga)Se2 

(CIGS) technologies have been successfully developed over recent 
years and are being commercialized.1,2 Among these, CIGS-based 
devices, which have now demonstrated ~ 20% at the laboratory 
level, are the most efficient of all thin film solar cells.3 However, 25 

increasing prices of the rare metals such as Indium and Gallium 
have highly affected the cost/efficiency ratio of PV devices based 
on CIGS. As an alternative material for CIGS, the application of 
Cu2ZnSnSe4 (CZTSe) in thin film solar cells has been explored 
over the years. 4,5  30 

Cu2ZnSnSe4 is a prospective material as absorber in thin film 
solar cells due to its many advantages including direct band gap, 
high absorption coefficient (~105 cm-1), low toxicity, and relative 
abundance (indium-free) of its elements.6,7 In addition, CZTSe 
films have promising thermoelectric properties (ZT value of 0.91 at 35 

860 K), making these materials suitable for high temperature 
applications.8 Several vacuum based expensive and low-throughput 
techniques such as co-evaporation, sputtering, and pulsed laser 
deposition have been reported for the fabrication of CZTSe thin 
films.4,9,10 On the other hand, solution-based methods offer low-40 

cost and high throughput techniques which are being explored as 
alternatives to the expensive vacuum-based processing 
techniques.5,11 A new solution method for the fabrication of CZTSe 
thin films is based on the synthesis of nanocrystals and disperses 
them in an “ink”.  45 

 
It is well known that the optical and electrical properties of 

nanoparticles are highly dependent on the structure and 

composition of nanoparticles, which in turn can be readily 
controlled by source materials, capping ligands, as well as reaction 50 

temperature.12-14 Wet chemical methods such as hot-injection and 
solvothermal methods have been reported for the synthesis of 
colloidal CZTSe nanoparticles.15,16 The choice of selenium 
precursor is very important in the synthesis of metal selenide 
nanoparticles. By controlling the precursor reactivity we can 55 

control the composition and size of the metal selenide 
nanoparticles.17 Selenium precursors, such as TOP-Se and 
selenium powder has been widely used in the synthesis of CZTSe 
nanoparticles. For example, Shavel et al. synthesized CZTSe 
nanoparticles using TOP-Se as selenium source.7 Wei et al. used 60 

selenium powder as selenium source to obtain CZTSe 
nanoparticles.18 However, both the precursors have some 
drawbacks such as TOP-Se resulted in non-stoichiometric CZTSe 
nanoparticles.7 On the other hand, selenium powder has poor 
solubility in organic solvents and makes it less reactive.19,20  65 

Consequently, the synthesis of high quality and stoichiometric 
CZTSe nanoparticles remains a big challenge.  

 
Herein, we report the synthesis of stoichiometric CZTSe 

nanoparticles using highly reactive bis-(triethylsilyl) selenide 70 

[(Et3Si)2Se] as selenium source. The structure, composition, 
morphology and optical properties of the as-prepared CZTSe 
nanoparticles have been investigated by using XRD, EDS, XPS, 
TEM, Raman and UV-NIR spectroscopy. Our synthetic method 
offers many advantages over the reported synthetic methods such 75 

as monodispersity, pure crystal phase and stoichiometry of the 
CZTSe nanoparticles. For example, when SeO2 and selenium 
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CZTSe nanoparticles synthesized using bis-(triethylsilyl) selenide as selenium source for the   

first time. The effect of reaction time and precursor injection order on the formation of      

stoichiometric CZTSe nanoparticles has been studied using Raman spectroscopy. 
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