

Preparation and Reactivity Towards Hydrazines of Bis(cyanamide) and Bis(cyanoguanidine) Complexes of the Iron Triad

Journal:	Dalton Transactions		
Manuscript ID:	DT-ART-02-2014-000394.R1		
Article Type:	Paper		
Date Submitted by the Author:	27-Feb-2014		
Complete List of Authors:	Albertin, Gabriele; Università Ca' Foscari Venezia, Dipartimento di Scienze Molecolari e Nanosistemi Antoniutti, Stefano; Università Ca' Foscari Venezia, Dipartimento di Scienze Molecolari e Nanosistemi Caia, Alfonso; Università Ca' Foscari Venezia, Castro, Jesús; Universidade de Vigo, Departamento de Química Inorgánica		

SCHOLARONE™ Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Preparation and Reactivity Towards Hydrazines of Bis(cyanamide) and Bis(cyanoguanidine) Complexes of the Iron Triad

Gabriele Albertin,** Stefano Antoniutti, Alfonso Caia and Jesús Castro

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Bis(diethylcyanamide) [Fe(N≡CNEt₂)₂L₄](BPh₄)₂ **1a** and bis(cyanoguanidine) complexes [Fe{N≡CN(H)C(NH₂)=NH}₂L₄](BPh₄)₂ **1b** [L = P(OEt)₃] were prepared by allowing iron(II) chloride to react with an excess first of P(OEt)₃ and then of the appropriate cyanamide, followed by addition of an excess of NaBPh₄. Instead, bis(complexes) of ruthenium and osmium [M(N≡CNEt₂)₂L₄](BPh₄)₂ **2a**, **3a** and [M{N≡CN(H)C(NH₂)=NH}₂L₄](BPh₄)₂ **2b**, **3b** (M = Ru **2**, Os **3**) were prepared by reacting hydrides MH₂L₄ first with either triflic acid HOTf or methyltriflate MeOTf and then with an excess of the appropriate cyanamide. Hydride-diethylcyanamide [MH(N≡CNEt₂)L₄]BPh₄ **4a**, **5a** and hydride-cyanoguanidine complexes [MH{N≡CN(H)C(NH₂)=NH}L₄](BPh₄)₂ **4b**, **5b** (M = Ru **4**, Os **5**) were also obtained by reacting MH₂L₄ first with one equivalent of HOTf or MeOTf and then with the appropriate cyanamide. Treatment of bis(cyanamide) and bis(cyanoguanidine) complexes **1–3** with hydrazines RNHNH₂ afforded hydrazinecarboximidamide derivatives [M{η²-N(H)=C(NE₂)N(R)NH₂}L₄](BPh₄)₂ **6a–12a** and [M{η²-N(H)=C[N=C(NH₂)₂]N(R)NH₂}L₄](BPh₄)₂ **6b–12b** (M = Fe **6–8**, Ru **9**, **10**, Os **11**, **12**; R = H **6**, **9**, **11**, Me **7**, **10**, **12**, Ph **8**). A reaction path involving nucleophilic attack by hydrazine on the cyanamide carbon atom is proposed. All the complexes were characterised by spectroscopy and X-ray orystal structure determination of [Os{η²-NH=C[N=C(NH₂)₂]N(CH₃)NH₂}{P(OEt)₃}{[BPh₄)₂ **12b**.

Introduction

The chemistry of transition metal complexes containing either cyanamides N≡CNR₂ (R = H, alkyl, aryl) or the related cyanoguanidine N≡CN(H)C(NH₂)=NH as ligands¹⁻⁸ has been ²⁵ far less developed than that of organonitriles RCN, ^{9,10} in spite of the synthetical and biological interest of these aminofunctionalised nitrile species. They are in fact used as precursors in the synthesis ¹¹ of polymers, fertilisers, pesticides and pharmaceuticals, and have biological importance ^{96,12} as ³⁰ substrates of both Mo and V nitrogenases and cyanamide hydrate and as a histamine H₂-receptor antagonist.

Relatively few papers on the synthesis and reactivity of cyanamide and cyanoguanidine complexes of transition metals have recently been reported, ¹⁻⁸ mainly involving molybdenum, ⁷ platinum⁶ and copper⁵ as metal centres. There are interesting studies on nucleophilic addition to the metal-activated CN triple bond of cyanoguanidine, reported for Cu, Ni and Pt, ¹³ and amination of Pt-bonded cyanoguanidine. ^{6f}

We are interested in the chemistry of azo complexes of the iron triad and have reported the synthesis of not only diazene and hydrazine derivatives, 14 but also amidrazone complexes obtained by nucleophilic attack of hydrazine on coordinate nitrile. 15 Recently, extension to cyanamide ligands allowed us to prepare diethylcyanamide and cyanoguanidine complexes of Ru and Os stabilised by half-sandwich *p*-cymene fragments. 16

Now, as a continuation of the above studies, we report the preparation of the first bis(diethylcyanamide) and bis(cyanoguanidine) complexes of the iron triad and their reactivity with hydrazines, affording new triaza derivatives.

50 Experimental

General comments

All reactions were carried out in an inert atmosphere (argon) by means of standard Schlenk techniques or in an inertatmosphere glove box. Once isolated, the complexes were 55 found to be relatively stable in air. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. RuCl3•3H2O and OsO₄ were Pressure Chemical Co. (USA) products, used as received. Triethylphosphite P(OEt)₃ was an Aldrich product, 60 purified by distillation under nitrogen. Hydrazine NH₂NH₂ was prepared by decomposition of hydrazine cyanurate (Fluka) by following the reported method. 17 Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on 65 a Perkin-Elmer Spectrum-One FT-IR spectrophotometer. NMR spectra were obtained on an AVANCE 300 Bruker spectrometer (¹H, 300 MHz; ³¹P, 121.52 MHz; ¹³C, 75.48 MHz) at temperatures between +20 and -80 °C, unless otherwise noted. ¹H and ¹³C { ¹H} spectra are referred to internal 70 tetramethylsilane; ³¹P{¹H} chemical shifts are reported with respect to 85% H₃PO₄; downfield shifts are considered positive; *J* values are given in Hz. COSY, HMQC and HMBC NMR experiments were performed with standard programs. The iNMR software package¹⁸ was used to process NMR data. The conductivity of 10⁻³ mol dm⁻³ solutions of the complexes in CH₃NO₂ at 25 °C was measured on a Radiometer CDM 83. Elemental analyses were determined in the Microanalytical Laboratory of the Dipartimento di Scienze del Farmaco, University of Padova (Italy).

10 Synthesis of complexes

Hydrides $RuH_2[P(OEt)_3]_4$ and $OsH_2[P(OEt)_3]_4$ were prepared following the known method. ^{19,20}

$[Fe(N \equiv CNEt_2)_2 \{P(OEt)_3\}_4](BPh_4)_2$ 1a

An excess of P(OEt)₃ (12.5 mmol, 2.1 cm³) was added to a 15 solution of anhydrous FeCl₂ (2.5 mmol, 0.32 g) in 25 cm³ of ethanol and the reaction mixture refluxed for 90 min. An excess of diethylcyanamide N=CNEt₂ (12.5 mmol, 1.45 cm³) was added to the solution brought to room temperature and the mixture stirred for 3 h. The addition of an excess of NaBPh₄ 20 (6.2 mmol, 2.12 g) in ethanol (5 cm³) to the resulting solution caused the separation of a yellow solid, which was filtered and crystallised from dichloromethane CH2Cl2 and ethanol; yield \geq 75%. (¹H NMR (CD₂Cl₂, 25 °C) δ : 7.73-6.90 (m, 40H, Ph), 4.16 (s), 4.03 (m) (24H, CH₂ phos), 3.88 (q, 8H, CH₂ NEt), 25 1.38, 1.30 (t, 36H, CH₃ phos), 1.21 (t, 12H, CH₃ NEt); ³¹P{ ¹H} NMR (CD₂Cl₂, 25 °C) δ: A₂B₂ spin syst, δ_A 155.4, δ_B 142.3, $J_{AB} = 142.8$. IR (KBr)/cm⁻¹: 2264 (m) $v_{C=N}$. Λ_{M}/S cm² mol⁻¹ = 115. Found: C, 63.48; H, 7.86; N, 3.51. C₈₂H₁₂₀B₂FeN₄O₁₂P₄ (1555.21) requires C, 63.33; H, 7.78; N, 3.60%.)

30 $[Fe{N=CN(H)C(NH_2)=NH}_2{P(OEt)_3}_4](BPh_4)_2$ 1b

An excess of P(OEt)₃ (12.5 mmol, 2.1 cm³) was added to a solution of anhydrous FeCl₂ (2.5 mmol, 0.32 g) in ethanol (15 cm³) and the reaction mixture was refluxed for 90 min. An excess of cyanamide N=CNH₂ (12.5 mmol, 0.53 g) in ethanol 35 (5 cm³) was added to the solution brought to toom temperature and the mixture stirred for 3 h. Alternatively, an excess of cyanoguanidine N=CN(H)C(NH₂)=NH (6.0 mmol, 0.50 g) in ethanol (5 cm³) was added to the solution brought to toom temperature and the mixture stirred for 3 h. The addition of an 40 excess of NaBPh₄ (6.2 mmol, 2.12 g) in ethanol (5 cm³) caused the separation of a yellow solid, which was filtered and crystallised from CH₂Cl₂ and ethanol; yield ≥80%. (¹H NMR (CD₂Cl₂, 25 °C) δ: 7.40-6.94 (m, 40H, Ph), 4.24 (br, 8H, NH+NH₂), 4.09, 3.98 (m, 24H, CH₂), 1.32, 1.26 (t, 36H, CH₃); 45 (-70 °C) 5.14, 3.53 (br, 4H, NH), 3.34 (br, 4H, NH₂). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ : A₂B₂, δ _A 129.7, δ _B 121.8, J_{AB} = 59.5. IR (KBr)/cm⁻¹: 3440, 3350 (s) v_{NH} ; 2247 (s) $v_{C=N}$; 1631 (s) δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 122. Found: C, 59.95; H, 7.04; N, 7.25. $C_{76}H_{108}B_2FeN_8O_{12}P_4$ (1527.08) requires C, 59.78; H, 7.13; N, 50 7.34.%.)

In a 25-cm³ three-necked round-bottomed flask were placed 0.20 g (0.26 mmol) of RuH₂[P(OEt)₃]₄ and 7 cm³ of toluene.

55 An equimolar amount of triflic acid HOSO₂CF₃ (HOTf) (0.26

mmol, 23 µL) was added to the solution cooled to -196 °C and the reaction mixture brought to room temperature and stirred for 1 h. Another equimolar amount of HOTf (0.26 mmol, 23 μL) was further added to the solution cooled to -196 °C and the 60 reaction mixture, brought to room temperature, stirred for 1 h. An excess the appropriate cyanamide N≡CNEt₂ (0.78 mmol, 90 μ L) or N=CNH₂ (1.6 mmol, 67 mg) in ethanol (5 cm³) was added and the resulting solution stirred for 2 h. The solvent was removed under reduced pressure giving an oil, which was 65 triturated with ethanol (3 cm³) containing an excess of NaBPh₄ (0.78 mmol, 0.27 g). A white solid slowly separated out by cooling the resulting solution to -25 °C, which was filtered and crystallised from CH₂Cl₂ and ethanol; yield ≥65%. (2a: ¹H NMR [(CD₃)₂CO, 25 °C] δ: 7.33-6.70 (m, 40 H, Ph), 4.32, 4.25 70 (m, 24 H, CH₂ phos), 3.37 (q, 8 H, CH₂ NEt), 1.40, 1.38 (t, 36 H, CH₃ phos), 1.35 (t, 12 H, CH₃ NEt). ³¹P{¹H} NMR [(CD₃)₂CO, 25 °C] δ : A₂B₂, δ _A 130.0, δ _B 120.5, J_{AB} = 60.8. IR (KBr)/cm⁻¹: 2264 (m) $v_{C_{\blacksquare N}}$. Λ_{M}/S cm² mol⁻¹ = 125. Found: C, $61.31; \ H, \ 7.68; \ N, \ 3.39. \ C_{82}H_{120}B_2N_4O_{12}P_4Ru \ (1600.44)$ 75 requires C, 61.54; H, 7.56; N, 3.50%. **2b**: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.38-6.86 (m, 40 H, Ph), 4.16 (br, 8 H, NH+NH₂), 4.03, 3.98 (m, 24 H, CH₂), 1.29, 1.26 (t, 36 H, CH₃); (-30 °C) 4.46 (br, 4 H, NH), 3.65 (br, 4 H, NH₂); (-70 °C) 5.10, 3.56 (br, 4 H, NH), 3.25 (br, 4 H, NH₂). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C) 80 δ: 165-122.5 (m, Ph), 162.22 (s, CNH₂), 121.9 (t, C≡N), 63.10 (m, CH₂), 16.41 (m, CH₃). ${}^{31}P{}^{1}H}$ NMR (CD₂Cl₂, 25 °C) δ : A_2B_2 , δ_A 131.1, δ_B 121.7, $J_{AB} = 60.8$. IR (KBr)/cm⁻¹: 3435, 3356 (s), 3233 (w) v_{NH} ; 2246 (s) $v_{C=N}$; 1630 (s) δ_{NH_2} . Λ_M/S cm² $\text{mol}^{-1} = 119$. Found: C, 57.85; H, 6.82; N, 7.26. 85 C₇₆H₁₀₈B₂N₈O₁₂P₄Ru (1572.30) requires C, 58.06; H, 6.92; N, 7.13%.)

$[Os(N\equiv CNEt_2)_2\{P(OEt)_3\}_4](BPh_4)_2$ 3a and $[Os\{N\equiv CN(H)C(NH_2)=NH\}_2\{P(OEt)_3\}_4](BPh_4)_2$ 3b

An equimolar amount of CH₃OSO₂CF₃ (0.23 mmol, 26 μL) 90 was added to a solution of OsH₂[P(OEt)₃]₄ (0.23 mmol, 0.20 g) in toluene (7 cm³) cooled to -196 °C. The reaction mixture was left to reach the room temperature, stirred for 1 h, and then cooled again to -196 °C. An equimolar amount of HOTf (0.23 mmol, 20 µL) was added and the reaction mixture brought to 95 room temperature and stirred for 1 h. An excess of the appropriate cyanamide N≡CNEt₂ (0.70 mmol, 81 µL) or N≡CNH₂ (1.4 mmol, 59 mg) in ethanol (5 cm³) was added and the resulting solution stirred for 3 h. The solvent was removed under reduced pressure giving an oil, which was triturated with 100 ethanol (3 cm³) containing an excess of NaBPh₄ (0.70 mmol, 0.24 g). A white solid slowly separated out from the resulting solution cooled to -25 °C, which was filtered and crystallised from CH₂Cl₂ and ethanol; yield ≥85%. (3a: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.32-6.86 (m, 40 H, Ph), 4.10, 4.02 (m, 24 H, CH₂ 105 phos), 3.09 (q, 8 H, CH₂ NEt), 1.34, 1.31 (t, 36 H, CH₃ phos), 1.20 (t, 12 H, CH₃ NEt). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : 165-122 (m, Ph), 119.0 (t, $C \equiv N$), 63.48, 63.29 (t, CH_2 phos), 46.43 (s, CH₂ NEt), 16.45, 16.26 (t, CH₃ phos), 113.64 (s, CH₃ NEt). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : A₂B₂, δ _A 82.5, δ _B 75.7, ₁₁₀ $J_{AB} = 44.0$. IR (KBr)/cm⁻¹: 2275 (m) $\nu_{C ■ N}$. Λ_{M}/S cm² mol⁻¹ = 120. Found: C, 58.11; H, 7.28; N, 3.24. C₈₂H₁₂₀B₂N₄O₁₂OsP₄ (1689.60) requires C, 58.29; H, 7.16; N, 3.32%. **3b**: ¹H NMR $[(CD_3)_2CO, 25 \, ^{\circ}C] \, \delta$: 7.34-6.78 (m, 40 H, Ph), 4.27, 4.17 (m,

24 H, CH₂), 4.20 (br, 8 H, NH+NH₂), 1.37, 1.34 (t, 36 H, CH₃); (CD₂Cl₂, -30 °C) 4.49 (br, 4 H, NH), 3.66 (br, 4 H, NH₂); (CD₂Cl₂, -70 °C) 4.96, 3.52 (br, 4 H, NH), 3.19 (br, 4 H, NH₂). 31 P{ 1 H} NMR (CD₂Cl₂, -70 °C) δ: A₂B₂, δ_A 88.5, δ_B 79.8, 5 J_{AB} = 43.5. IR (KBr)/cm⁻¹: 3447, 3351, 3239 (s) v_{NH} ; 2256 (s) v_{CmN} ; 1633 (s) δ_{NH_2} . Λ_{M} /S cm² mol⁻¹ = 117. Found: C, 55.17; H, 6.42; N, 6.63. C_{76} H₁₀₈B₂N₈O₁₂OsP₄ (1661.46) requires C, 54.94; H, 6.55; N, 6.74%.)

$[RuH(N\equiv CNEt_2)\{P(OEt)_3\}_4]BPh_4 \qquad and \\ \text{10} [RuH\{N\equiv CN(H)C(NH_2)=NH\}\{P(OEt)_3\}_4]BPh_4 \quad 4b$

An equimolar amount of HOTf (0.26 mmol, 23 µL) was added to a solution of RuH₂[P(OEt)₃]₄ (0.26 mmol, 0.20 g) in toluene (7 cm³) cooled to -196 °C and the reaction mixture brought room temperature and stirred for 1 h. An excess of the 15 appropriate cyanamide N≡CNEt₂ (0.52 mmol, 60 µL) or N=CNH₂ (1.04 mmol, 44 mg in 3 cm³ of ethanol) was added and the resulting solution stirred for 2 h. The solvent was removed under reduced pressure giving an oil, which was triturated with ethanol (2 cm³) containing an excess of NaBPh₄ 20 (0.52 mmol, 0.18 g). A white solid slowly separated out by cooling the resulting solution to -25 °C, which was filtered and crystallised from ethanol; yield ≥75%. (4a: ¹H NMR [(CD₃)₂CO, 25 °C] δ: 7.34-6.78 (m, 20 H, Ph), 4.25 (m, 24 H, CH₂ phos), 3.56 (q, 4 H, CH₂ NEt), 1.38, 1.32 (t, 36 H, CH₃ 25 phos), 1.32 (t, 6 H, CH₃ NEt), -7.9 to -8.6 (m, 1 H, RuH). $^{31}P\{^{1}H\}$ NMR [(CD₃)₂CO, 25 °C] δ : ABC₂, δ _A 151.9, δ _B 149.5, $\delta_{\rm C}$ 140.4, $J_{\rm AB} = 63.4$, $J_{\rm AC} = 46.1$, $J_{\rm BC} = 42.5$. IR (KBr)/cm⁻¹ 2257 (s): $v_{C=N}$. Λ_M/S cm² mol⁻¹ = 53. Found: C, 53.54; H, 7.62; N, 2.45. C₅₃H₉₁BN₂O₁₂P₄Ru (1184.07) requires C, 53.76; H, 30 7.75; N, 2.37%. **4b**: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.36-6.87 (m, 20 H, Ph), 4.15 (m, 4 H, NH+NH₂), 3.99 (m), 3.88 (qnt) (24 H, CH₂) 1.29, 1.26, 1.19 (t, 36 H, CH₃), -8.0 to -8.4 (m, 1 H, RuH). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 150.35, δ _B 147.15, $\delta_{\rm C}$ 143.5, $J_{\rm AB}$ = 61.1, $J_{\rm AC}$ = 43.9, $J_{\rm BC}$ = 40.6. IR 35 (KBr)/cm⁻¹: 3429, 3378, 3334 (s) v_{NH} ; 2253 (s) v_{CmN} ; 1631 (s) δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 59. Found: C, 51.18; H, 7.19; N, 4.67. $C_{50}H_{85}BN_4O_{12}P_4Ru$ (1170.01) requires C, 51.33; H, 7.32; N, 4.79%.)

$[OsH(N \equiv CNEt_2)\{P(OEt)_3\}_4]BPh_4 \qquad 5a \qquad and$ ${OsH\{N \equiv CN(H)C(NH_2) = NH\}}\{P(OEt)_3\}_4]BPh_4 \quad 5b$

An equimolar amount of CH₃OSO₂CF₃ (0.23 mmol, 26 μL) was added to a solution of OsH₂[P(OEt)₃]₄ (0.23 mmol, 0.20 g) in toluene (7 cm³) cooled to -196 °C. The reaction mixture was left to reach the room temperature, stirred for 1 h and then an 45 excess of the appropriate cyanamide N=CNEt₂ (0.46 mmol, 50 μL) or N≡CNH₂ (0.92 mmol, 39 mg in 3 cm³ of ethanol) was added. The solution was stirred for 2 h and then the solvent removed under reduced pressure giving an oil, which was triturated with ethanol (2 cm³) containing an excess of NaBPh₄ 50 (0.52 mmol, 0.18 g). A white solid slowly separated out by cooling the resulting solution to -25 °C, which was filtered and crystallised from ethanol; yield ≥73%. (5a: ¹H NMR [(CD₃)₂CO, 25 °C] δ: 7.34-6.78 (m, 20 H, Ph), 4.10 (m), 3.97 (qnt) (24 H, CH₂ phos), 3.21 (q, 4 H, CH₂ NEt), 1.31, 1.30, 55 1.28 (t, 36 H, CH₃ phos), 1.25 (t, 6 H, CH₃ NEt), -8.92 to -9.48 (m, 1 H, OsH). ${}^{31}P\{{}^{1}H\}$ NMR [(CD₃)₂CO, 25 °C] δ : AB₂C, δ _A 107.7, $\delta_{\rm B}$ 106.2, $\delta_{\rm C}$ 97.0, $J_{\rm AB}$ = 31.7, $J_{\rm AC}$ = 29.3, $J_{\rm BC}$ = 43.2. IR

(KBr)/cm⁻¹: 2275 (s) ν_{CmN} , 1945 (m) ν_{OsH} . Λ_{M} /S cm² mol⁻¹ = 56. Found: C, 49.82; H, 7.08; N, 2.31. C₅₃H₉₁BN₂O₁₂OsP₄ 60 (1273.23) requires C, 50.00; H, 7.20; N, 2.20%. **5b**: ¹H NMR [(CD₃)₂CO, 25 °C] δ: 7.34-6.77 (m, 20 H, Ph), 4.23 (br, 4 H, NH+NH₂), 4.21 (m), 3.96 (qnt) (24 H, CH₂) 1.28, 1.27, 1.23 (t, 36 H, CH₃), -8.92 to -9.47 (m, 1 H, RuH); (CD₂Cl₂, -70 °C) 5.36 (br, 2 H, NH), 2.89 (br, 2 H, NH₂). ³¹P{¹H} NMR 65 [(CD₃)₂CO, 25 °C] δ: AB₂C, δ_A 109.0, δ_B 107.3, δ_C 98.4, J_{AB} = 30.4, J_{AC} = 29.5, J_{BC} = 41.9. IR (KBr)/cm⁻¹: 3423, 3390 (s) ν_{NH} ; 2253 (s) ν_{Cm} ; 1950 (m) ν_{OsH} ; 1640 (s) δ_{NH₂}. Λ_{M} /S cm² mol⁻¹ = 53. Found: C, 47.76; H, 6.72; N, 4.53. C₅₀H₈₅BN₄O₁₂OsP₄ (1259.17) requires C, 47.69; H, 6.80; N, 70 4.45%.)

$[Fe\{\eta^2-NH=C(NEt_2)N(R)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2$ 6a-8a (R = H 6, Me 7, Ph 8)

An excess of the appropriate hydrazine RNHNH₂ (0.36 mmol) was added to a solution of bis(cyanamide) complex 1a (0.13 75 mmol, 0.20 g) in CH₂Cl₂ (5 cm³) cooled to -196 °C. The reaction mixture was left to reach the room temperature and stirred for 4 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 cm³) containing an excess of NaBPh₄ (0.42 mmol, 0.14 g). A 80 white solid slowly separated out by cooling the resulting solution to -25 °C, which was filtered and crystallised from CH_2Cl_2 and ethanol; yield $\geq 78\%$. (6a: ¹H NMR (CD_2Cl_2 , 25 °C) δ: 7.34-6.91 (m, 40 H, Ph), 5.38 (t br, 2 H, NH₂), 4.05 (m, 24 H, CH₂ phos), 3.06 (qnt, 1 H, =NH), 2.87 (q, 4 H, CH₂ 85 NEt), 1.35, 1.33 (t, 36 H, CH₃ phos), 1.01 (t, 6 H, CH₃ NEt). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 164.1, δ _B 162.5, δ _C 142.0, $J_{AB} = 116.4$, $J_{AC} = 147.6$, $J_{BC} = 120.3$. IR (KBr)/cm⁻¹: 3434, 3378 (s) v_{NH} ; 1619, 1603 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻ ¹ = 128. Found: C, 61.87; H, 7.60; N, 3.72. 90 C₇₇H₁₁₄B₂FeN₄O₁₂P₄ (1489.11) requires C, 62.11; H, 7.72; N, 3.76%. **7a**: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.34-6.89 (m, 40 H, Ph), 5.62 (t, 2 H, NH₂), 4.06 (m, 24 H, CH₂ phos), 3.86 (s br, 1 H, =NH), 3.05 (q, 4 H, CH₂ NEt), 2.89 (s, 3 H, CH₃N), 1.34, 1.33 (t, 36 H, CH₃ phos), 1.16 (t, 6 H, CH₃ NEt). ³¹P{¹H} NMR 95 (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 163.2, δ _B 162.1, δ _C 141.7, J_{AB} = 112.8, $J_{AC} = 147.6$, $J_{BC} = 119.7$. IR (KBr)/cm⁻¹: 3310, 3299 (w) v_{NH} ; 1616 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 124. Found: C, 62.54; H, 7.67; N, 3.78. $C_{78}H_{116}B_2FeN_4O_{12}P_4$ (1503.14) requires C, 62.33; H, 7.78; N, 3.73%. 8a: ¹H NMR (CD₂Cl₂, 100 25 °C) δ: 7.32-6.87 (m, 45 H, Ph), 5.04 (br, 2 H, NH₂), 4.76 (br, 1 H, NH), 4.15, 4.03 (m, 24 H, CH₂ phos), 3.07 (br, 4 H, CH₂ NEt), 1.31 (m, 36 H, CH₃ phos), 1.20 (br, 6 H, CH₃ NEt). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 148.7, δ _B 143.4, δ _C 134.0, $J_{AB} = 140.0$, $J_{AC} = 126.5$, $J_{BC} = 142.0$. IR (KBr)/cm⁻¹: $_{105}$ 3429, 3387 (m) v_{NH} . Λ_{M}/S cm² mol⁻¹ = 122. Found: C, 63.46; H, 7.58; N, 3.45. C₈₃H₁₁₈B₂FeN₄O₁₂P₄ (1565.21) requires C, 63.69; H, 7.60; N, 3.58%.)

$[Fe\{\eta^2\text{-NH=C}[N\text{=}C(NH_2)_2]NHNH_2\}\{P(OEt)_3\}_4](BPh_4)_2 \quad \begin{array}{ccc} 6b \\ and & [Fe\{\eta^2\text{-}110]NH\text{-}C[N\text{=}C(NH_2)_2]N(Me)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2 & 7b \end{array}$

The complexes were prepared like the related **6a**, **7a** by reacting bis(cyanoguanidine) complex **1b** with the appropriate hydrazine RNHNH₂ for 5 h; yield \geq 60%. **(6b**: ¹H NMR (CD₂Cl₂, 25 °C) δ : 7.35-6.92 (m, 40 H, Ph), 5.32 (t, 2 H,

NH₂N), 4.00 (m, 24 H, CH₂), 3.84 (br, 4 H, NH₂C), 2.23 (br, 1 H, NH), 1.31 (t br, 36 H, CH₃). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ_{A} 162.0, δ_{B} 159.4, δ_{C} 143.3, J_{AB} = 114.3, J_{AC} = 121.3, J_{BC} = 134.9. IR (KBr)/cm⁻¹: 3434, 3400, 3366 (s), 3320 s (w) v_{NH}; 1626 (s) v_{C=N}, δ_{NH_2} . Λ_{M} /S cm² mol⁻¹ = 120. Found: C, 60.12; H, 7.51; N, 5.58. C₇₄H₁₀₈B₂FeN₆O₁₂P₄ (1475.04) requires C, 60.26; H, 7.38; N, 5.70%. **7b**: ¹H NMR (CD₂Cl₂, 25 °C) δ : 7.36-6.91 (m, 40 H, Ph), 5.47 (t, 2 H, NH₂N), 4.03 (m, 24 H, CH₂), 3.87 (br, 4 H, NH₂C), 3.42 (br, 1 H, NH), 3.01 (s, 3 H, CH₃N), 1.30 (t, 36 H, CH₃ phos). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ_{A} 164.5, δ_{B} 162.7, δ_{C} 142.7, J_{AB} = 114.0, J_{AC} = 146.5, J_{BC} = 115.6. IR (KBr)/cm⁻¹: 3412, 3378, 3345 (s), 3340 (w) v_{NH}; 1627, 1614 (s) v_{C=N}, δ_{NH_2} . Λ_{M} /S cm² mol⁻¹ = 128. Found: C, 60.35; H, 7.37; N, 5.61. Is $C_{75}H_{110}B_2FeN_6O_{12}P_4$ (1489.07) requires C, 60.49; H, 7.45; N, 5.64%)

$\begin{array}{lll} [Ru\{\eta^2\text{-NH}=C(NEt_2)NHNH_2\}\{P(OEt)_3\}_4](BPh_4)_2 & 9a & and \\ [Ru\{\eta^2\text{-NH}=C(NEt_2)N(Me)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2 & 10a \\ \end{array}$

An excess of the appropriate hydrazine RNHNH₂ (0.30 mmol) 20 was added to a solution of bis(cyanamide) complex 2a (0.12 mmol, 0.20 g) in 1,2-dichloroethane (7 cm³) and the reaction mixture refluxed for 30 min. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 cm³) containing an excess of NaBPh₄ (0.36 mmol, 25 0.12 g). By cooling the resulting solution to -25 °C, a white solid slowly separated out which was filtered and crystallised from CH₂Cl₂ and ethanol; yield ≥65%. (9a: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.33-6.87 (m, 40 H, Ph), 6.14 (br, 1 H, NH), 5.54 (q br, 2 H, NH₂), 4.04 (m, 24 H, CH₂ phos), 3.45 (m, 1 H, NH), 30 2.92 (q, 4 H, CH₂ NEt), 1.34, 1.33, 1.31 (t, 36 H, CH₃ phos), 1.05 (t, 6 H, CH₃ NEt). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ: ABC₂, δ_A 135.1, δ_B 133.7, δ_C 119.3, $J_{AB} = 72.7$, $J_{AC} = 63.4$, $J_{\rm BC} = 57.6$. IR (KBr)/cm⁻¹: 3429, 3311 (m) $v_{\rm NH}$; 1617, 1598 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 116. Found: C, 60.43; H, 7.37; N, 35 3.58. C₇₇H₁₁₄B₂N₄O₁₂P₄Ru (1534.34) requires C, 60.28; H, 7.49; N, 3.65%. **10a**: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.34-6.86 (m, 40 H, Ph), 5.70 (q br, 2 H, NH₂), 4.33 (br, 1 H, NH), 4.05 (m, 24 H, CH₂ phos), 3.04 (q, 4 H, CH₂ NEt), 2.87 (s, 3 H, CH₃N), 1.34, 1.33, 1.31 (t, 36 H, CH₃ phos), 1.15 (t, 6 H, CH₃ 40 NEt). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ_{A} 134.3, δ_{B} 133.1, $\delta_{\rm C}$ 118.7, $J_{\rm AB} = 72.4$, $J_{\rm AC} = 63.5$, $J_{\rm BC} = 57.3$. IR (KBr)/cm⁻¹: 3429 (m), 3395, 3295 (w) $v_{\rm NH}$; 1613 (s) $v_{\rm C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 121. Found: C, 60.34; H, 7.60; N, 3.50. C₇₈H₁₁₆B₂N₄O₁₂P₄Ru (1548.36) requires C, 60.50; H, 7.55; N, 45 3.62%.)

$[Ru\{\eta^2-NH=C[N=C(NH_2)_2]N(Me)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2$

This compound was prepared exactly like the related **10a** starting from bis(cyanoguanidine) complex **2b** and using methylhydrazine as a reagent; yield \geq 65%. (¹H NMR (CD₂Cl₂, 25 °C) δ : 7.35-6.90 (m, 40 H, Ph), 5.62 (q, 2 H, NH₂N), 4.02 (m, 24 H, CH₂), 3.78 (br, 4 H, NH₂C), 3.05 (s, 3 H, CH₃N), 1.32, 1.30 (t, 36 H, CH₃ phos). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C) δ : 165-122 (m, Ph), 164.04 (s, C=NH), 63.35, 60.0 (m, CH₂), 55 40.58 (s, CH₃N), 16.34 (m, CH₃ phos). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 135.6, δ _B 133.2, δ _C 119.2, J_{AB} = 70.6, J_{AC} = 63.3, J_{BC} = 57.1. IR (KBr)/cm⁻¹: 3445, 3357 (s) v_{NH}; 1635,

1617 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 125. Found: C, 58.58; H, 7.35; N, 5.37. $C_{75}H_{110}B_2N_6O_{12}P_4Ru$ (1534.30) requires C, 60 58.71; H, 7.23; N, 5.48%.)

$\begin{array}{ll} [Os\{\eta^2\text{-NH}=C(NEt_2)NHNH_2\}\{P(OEt)_3\}_4](BPh_4)_2 & 11a & and \\ [Os\{\eta^2\text{-NH}=C(NEt_2)N(Me)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2 & 12a \\ \end{array}$

An excess of the appropriate hydrazine RNHNH₂ (0.36 mmol) was added to a solution of bis(cyanamide) complex 3a (0.12 65 mmol, 0.20 g) in 1,2-dichloroethane (7 cm³) and the reaction mixture refluxed for 1 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 cm³) containing an excess of NaBPh₄ (0.36 mmol, 0.12 g). By cooling the resulting solution to -25 °C, a white 70 solid slowly separated out which was filtered and crystallised from CH_2Cl_2 and ethanol; yield $\geq 70\%$. (11a: ¹H NMR (CD_2Cl_2 , 25 °C) δ: 7.32-6.89 (m, 40 H, Ph), 5.84 (m br, 2 H, NH₂), 5.58 (m br, 1 H, NH), 4.03 (m, 24 H, CH₂ phos), 3.85 (m, 1 H, NH), 2.79 (q, 4 H, CH₂ NEt), 1.33, 1.32, 1.30 (t, 36 H, CH₃ phos), 75 0.98 (t, 6 H, CH₃ NEt). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C) δ: 165-122 (m, Ph), 159.37 (s, C=NH), 63.46 (m, CH₂ phos), 46.44 (s, CH₂ NEt), 16.45, 16.31, 16.26 (t, CH₃ phos), 13.65 (s, CH₃ NEt). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ_A 86.6, δ_B 83.3, $\delta_{\rm C}$ 83.0, $J_{\rm AB} = 40.1$, $J_{\rm AC} = 42.0$, $J_{\rm BC} = 38.9$. IR $_{80}$ (KBr)/cm⁻¹: 3435 (m), 3306, 3260 (w) ν_{NH} ; 1628, 1605 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 122. Found: C, 56.76; H, 7.17; N, 3.36. C₇₇H₁₁₄B₂N₄O₁₂OsP₄ (1623.50) requires C, 56.96; H, 7.08; N, 3.45%. **12a**: ¹H NMR (CD₂Cl₂, 25 °C) δ: 7.33-6.88 (m, 40 H, Ph), 6.20 (br, 2 H, NH₂), 5.08 (br, 1 H, NH), 4.03 (m, 85 24 H, CH₂ phos), 3.05 (m, 4 H, CH₂ NEt), 2.78 (s, 3 H, CH₃N), 1.33, 1.31, 1.29 (t, 36 H, CH₃ phos), 1.14 (t, 6 H, CH₃ NEt). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 85.9, δ _B 82.6, δ _C 82.4, $J_{AB} = 41.8$, $J_{AC} = 41.1$, $J_{BC} = 41.0$. IR (KBr)/cm⁻¹: 3434 (m), 3283 (w) v_{NH} ; 1614 (s) $v_{C=N}$, δ_{NH_2} . Λ_M/S cm² mol⁻¹ = 118. 90 Found: C, 57.00; H, 7.22; N, 3.49. C₇₈H₁₁₆B₂N₄O₁₂OsP₄ (1637.52) requires C, 57.21; H, 7.14; N, 3.42%.)

$[Os\{\eta^2\text{-NH=C}[N\text{=}C(NH_2)_2]N(Me)NH_2\}\{P(OEt)_3\}_4](BPh_4)_2\\ 12b$

This compound was prepared exactly like the related **11a** starting from bis(cyanoguanidine) complex **3b** and using methylhydrazine as reagent; yield \geq 65%. (¹H NMR (CD₂Cl₂, 25 °C) δ : 7.36-6.91 (m, 40 H, Ph), 6.17 (q, 2 H, NH₂N), 4.39 (s, 1 H, NH), 4.04 (m, 24 H, CH₂), 3.78 (s br, 4 H, NH₂C), 3.03 (s, 3 H, CH₃N), 1.30, 1.29 (t, 36 H, CH₃ phos). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C) δ : ABC₂, δ _A 87.1, δ _B 83.6, δ _C 82.4, J_{AB} = 40.7, J_{AC} = 40.0, J_{BC} = 44.1. IR (KBr)/cm⁻¹: 3440, 3402, 3355 (s) ν _{NH}; 1628, 1620 (s) ν _{C=N}, δ _{NH2}. Λ _M/S cm² mol⁻¹ = 123. Found: C, 55.33; H, 6.75; N, 5.07. C₇₅H₁₁₀B₂N₆O₁₂OsP₄ (1623.46) requires C, 55.49; H, 6.83; N, 5.18%.)

105 X-ray crystallography

Crystallographic data were collected on a Bruker Smart 1000 CCD diffractometer at CACTI (Universidade de Vigo) using graphite monochromated Mo-K α radiation (λ = 0.71073 Å), and were corrected for Lorentz and polarisation effects. The software SMART²¹ was used for collecting frames of data, indexing reflections, and the determination of lattice parameters, SAINT²² for integration of intensity of reflections and scaling, and SADABS²³ for empirical absorption

correction.

The crystallographic treatment was performed with the Oscail program.²⁴ The structure was solved by direct methods and refined by a full-matrix least-squares based on F^{2,25} Non-5 hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in idealised positions and refined with isotropic displacement parameters. Unfortunately, the quality of the best crystal obtained is limited, and values of 9.6% for R(int) and 14.6% for R(σ) were 10 obtained. However, there is not any doubt about the correct assignment of the atoms. Details of crystal data and structural refinement are given in Table 1, selected bond lengths and angles are shown in Table 2. CCDC 985290 contains the supplementary crystallographic data for this paper. These data 15 can be obtained free of charge from the Cambridge Crystallographic Data Centre www.ccdc.cam.ac.uk/data request/cif.

Results and Discussion

25

Preparation of bis(cyanamide) complexes of Fe

20 Iron(II) bis(diethylcyanamide) complex [Fe(N≡CNEt₂)₂L₄]-(BPh₄)₂ 1a [L = P(OEt)₃] was prepared by reacting anhydrous iron(II) chloride first with an excess of phosphite and then with an excess of cyanamide, as shown in Scheme 1.

FeCl₂
$$\xrightarrow{\text{exc. L}}$$
 $\xrightarrow{\text{EtOH}}$ $\xrightarrow{\text{or}}$ $\xrightarrow{\text{exc. N} \equiv \text{CNEt}_2}$ $\xrightarrow{\text{EtOH}}$ $\xrightarrow{\text{EtOH}}$ $\xrightarrow{\text{EtOH}}$ $\xrightarrow{\text{CNEt}_2}$ $\xrightarrow{\text{CNEt}_2}$ $\xrightarrow{\text{CNEt}_2}$ 1a (1)

Scheme 1. $L = P(OEt)_3$

The reaction of iron(II) chloride with phosphites was reported 26 to give a mixture of complexes, in which $[FeCl_5]^+$ and $FeCl_2L_4$ were predominant. The substitution of Cl^- and/or L by $N\equiv CNEt_2$ in these intermediates afforded the 30 bis(diethylcyanamide) cation 1a, which was isolated as BPh_4 salt and characterised.

Cyanamide N≡CNH₂ also reacted with phosphite-containing iron(II) complexes, but yielded the bis(cyanoguanidine) derivative [Fe{N≡CN(H)C(NH₂)=NH}₂L₄](BPh₄)₂ **1b** (Scheme 35 2). The formation of this complex is not very surprising, owing to the known ease of dimerizing of N≡CNH₂, affording cyanoguanidine, which acts as a ligand in the complex. Dimerisation of may be promoted by the coordination of one cyanamide [Fe]-N≡CNH₂ followed by nucleophilic attack on 40 its C≡N carbon atom of a second cyanamide affording, after tautomerisation, a N-bonded imine-cyanoguanidine complex [Fe]-N(H)=C(NH₂)N(H)C≡N. The linkage isomerisation of this ligand gave the N-nitrile-bonded derivative. The same complex **1b** was in fact prepared by reacting iron(II) chloride 45 first with phosphite and then with an excess of cyanoguanidine, as shown in Scheme 2.

$$\text{FeCl}_2 \xrightarrow{\text{exc. L}} \text{ if eClLs}^{\dagger} \text{ or } \text{ exc.} \text{ N$\stackrel{?}{\equiv}$ CN(H)$ C N C NH2} \text{ exc.} \text{ N$\stackrel{?}{\equiv}$ CN(H)$ C(NH2)=NH} \text{ l. } \text{ i. } \text{$$

Scheme 2. $L = P(OEt)_3$

Preparation of bis(cyanamide) complexes of Ru and Os

50 The easy synthesis of iron complexes 1a and 1b prompted us to extend study to ruthenium and osmium, but a different route had to be followed for them, involving dihydrides MH₂L₄ as precursors.

$$\begin{array}{c} L_{III} \\ L_{III}$$

Scheme 3. M = Ru 2, Os 3; X = H for Ru, Me for Os; $L = P(OEt)_3$

Sequential treatment of RuH₂L₄ first with one equivalent of triflic acid, then with another, and lastly with an excess of the appropriate cyanamide, afforded bis(diethylcyanamide) $[Ru(N \equiv CNEt_2)_2L_4](BPh_4)_2$ 2a bis(cyanoguanidine) and 60 $[Ru\{N\equiv CN(H)C(NH_2)=NH\}_2L_4](BPh_4)_2$ **2b** derivatives, which were isolated in good yields and characterised (Scheme 3). The reaction of RuH₂L₄ with HOTf proceeded 15c,27 with the evolution of H₂ and formation of RuH(κ¹-OTf)L₄ [A], which further reacted with HOTf, yielding the cation ₆₅ $[Ru(\kappa^2-O_2SOCF_3)L_4]^+$ [**B**]. Substitution of the $\kappa^2-O_2SOCF_3$ ligand with the appropriate N=CNR1R2 in [B] afforded bis(diethylcyanamide) 2a and bis(cyanoguanidine) 2b derivatives.

A slight modification of this method was necessary to prepare osmium cyanamide complexes, involving treatment of OsH_2L_4 first with methyl triflate, then with triflic acid and lastly with an excess of the appropriate cyanamide, affording bis(diethylcyanamide) $[Os(N\equiv CNEt_2)_2L_4](BPh_4)_2$ **3a** and bis(cyanoguanidine) $[Os\{N\equiv CN(H)C(NH_2)\equiv NH\}_2L_4](BPh_4)_2$ 75 **3b** derivatives (Scheme 3). Methyl triflate MeOTf reacted with OsH_2L_4 , with the evolution of methane and formation 15a,28 of $OsH(\kappa^1-OTf)L_4$ [A], which further reacted with HOTf, yielding the cation $[Os(\kappa^2-O_2SOCF_3)L_4]^+$ [B]. Methyl triflate was used instead of triflic acid in the case of osmium, due to the stability of the η^2-H_2 intermediate $[OsH(\eta^2-H_2)L_4]^{+,27,28}$ which prevents formation of the key-intermediate $[Os(\kappa^2-O_2SOCF_3)L_4]^+$,

yielding the final derivatives 3a and 3b.

As observed for iron, the reaction with cyanamide $N=CNH_2$ of triflate intermediates of both Ru and Os afforded cyanoguanidine derivatives **2b** and **3b** through dimerisation of 5 the $N=CNH_2$ species. The same bis(cynoguanidine) complexes were also obtained with $N=CN(H)C(NH_2)=NH$ as reagent.

Bis(cyanamide) and bis(cyanoguanidine) complexes of transition metals are very rare and have only been described for nickel and copper triads. ^{1,6f} The use of tetrakis(phosphite) fragments [M{P(OEt)₃}₄]²⁺ allowed the synthesis of the first examples of bis(cyanamide) derivatives of the iron triad.

Dihydride complexes MH_2L_4 were used to prepare bis(cyanamide) complexes **2** and **3**, and prompted us also to prepare mono-cyanamide $[MH(N\equiv CNEt_2)L_4]BPh_4$ **4a**, **5a** and derivatives $[MH\{N\equiv CN(H)C(NH_2)\equiv NH\}_2L_4]BPh_4$ **4b**, **5b** by reacting hydride-triflate species $MH(\kappa^1\text{-OTf})L_4$ [A] with an excess of the appropriate cyanamide, as shown in Scheme 4. The reaction proceeded quickly, with substitution of the triflate ligand and formation of cyanamide cations **4** and **5**, which were isolated as BPh_4 salts in good yields.

$$\begin{array}{c} \text{exc. N} \equiv \text{CNEt}_2 \\ \\ \text{L}_{\text{Min}_{\text{Min}_{\text{Min}}}} \\ \text{Aa, 5a (II)} \\ \\ \text{exc. N} \equiv \text{CNH}_2 \text{ or} \\ \\ \text{exc. N} \equiv \text{CN(H)C(NH}_2) = \text{NH} \\ \\ \text{Ab, 5b (II)} \\ \\ \text{NH} \\ \end{array}$$

Scheme 4. M = Ru 4, Os 5; $L = P(OEt)_3$

Characterisation of cyanamide derivatives

25 Good analytical data were obtained for both mono-[MH(N≡CNR1R2)L₄]BPh₄ **4**, **5** and bis(cyanamide)/ (cyanoguanidine) complexes [M(N≡CNR1R2)₂L₄](BPh₄)₂ **1–3**, which were all isolated as white or yellow solids stable in air and in solution of polar organic solvents, in which they behave 30 as 1:1 (**4**, **5**) or 2:1 (**1–3**) electrolytes.²⁹ Infrared and NMR data support the proposed formulations for the complexes, which were also indirectly confirmed by X-ray crystal structure determinations of complexes **12b**, **15a** and **17a** (see below).

The IR spectra of bis(diethylcyanamide) complexes [M(N≡CNEt₂)₂L₄](BPh₄)₂ **1a**–**3a** showed one medium-intensity band at 2275–2264 cm⁻¹, attributed to the v_{CN} of the cyanamide ligands. The presence of only one band indicates that the two N≡CNEt₂ ligands are in a mutually *trans* position. However, this hypothesis contrasted with ³¹P NMR spectra which, in the temperature range +20 to -80 °C, were symmetric A₂B₂ multiplets, indicating the presence of two-by-two magnetically equivalent phosphine ligands. On this basis, *cis* geometry **I** can be proposed for bis(diethylcyanamide) complexes **1a**, **2a** and **3a**. The expected two absorptions in the IR spectra for the v_{CN} of the *cis*-cyanamide may have such close values that the instrument detected only one signal, with a slightly broad band.

The IR spectra of bis(cyanoguanidine) complexes $[M{N=CN(H)C(NH_2)=NH}_2L_4](BPh_4)_2$ **1b–3b** showed either three or four bands of medium to weak intensity in the region ₅₀ 3447–3233 cm⁻¹, attributed to the v_{NH} of the cyanoguanidine ligands. One medium-intensity band also appeared at 2256-2246 cm⁻¹ and was attributed to the v_{CN} of the same ligands. The presence of only one band indicated that the cyanoguanidine ligands were present in the amine form. A 55 strong absorption at 1633–1630 cm⁻¹ was also seen in the IR spectra, due to the δ_{NH2} of the nitrogenous ligand. Also in this case, the IR instrument probably did not resolve the v_{CN} absorptions, showing only one slightly broad band at 2256-2246 cm⁻¹ for the two *cis*-cyanamide ligands. At room 60 temperature, the ¹H NMR spectra of cyanoguanidine complexes 1b, 2b and 3b showed the characteristic signals of phosphites and BPh₄ anions, and a broad signal between 4.16 and 4.24 ppm attributable to either NH₂ or NH protons of the cyanoguanidine. However, lowering the sample temperatures 65 changed the profiles of the spectra and, at -70 °C, three broad signals appeared between 5.14 and 3.19 ppm, with an intensity ratio of about 1:1:2, which were attributed to the NH and NH₂ protons of the cyanoguanidine ligands. In the ¹³C NMR spectrum of 2b, a singlet at 162.2 ppm was attributed to the 70 amine -C(NH₂)=NH carbon resonance and a triplet at 121.9 ppm to the nitrile one, fitting the proposed formulation for the complexes. In the temperature range +20 to -80 °C, the ³¹P NMR spectra of complexes 1b, 2b and 3b were A₂B₂ multiplets, indicating the mutually cis position of the two 75 cyanoguanidine ligands (geometry I, Scheme 2).

The IR spectra of hydride-diethylcyanamide complexes [MH(N=CNEt₂)L₄]BPh₄ 4a, 5a showed the v_{CN} band at 2275– 2264 cm⁻¹, whereas those of hydride-cyanoguanidine derivatives $[MH{N=CN(H)C(NH_2)=NH}L_4]BPh_4$ **4b**, **5b** so showed v_{NH} absorptions between 3429 and 3334 cm⁻¹ and v_{CN} at 2253 cm⁻¹. The ¹H NMR spectra confirmed the presence of the nitrogenous ligands, showing the signals of ethyl substituents for N≡CNEt₂ compounds 4a and 5a, whereas three broad signals at 5.36–2.89 ppm, attributable to the NH and NH₂ 85 of cyanoguanidine, were observed in the low-temperature spectrum (-70 °C) of 5b. A low-frequency multiplet between -7.90 and -9.48 ppm, due to hydride resonance, was also observed in the spectra of complexes 4 and 5. In the temperature range +20 to -80 °C, the 31P NMR spectra of 90 complexes were either ABC₂ or AB₂C multiplets, indicating that the hydride and cynanamide or cyanoguanidine ligands were in a mutually *cis* position, as in geometry **II** (Scheme 4).

Reactivity with hydrazine

 $[M(N \equiv CNEt_2)_2L_4]^{2+}$ Bis(diethylcyanamide) 1a-3a and 95 bis(cyanoguanidine) complexes $[M\{N=CN(H)C(NH_2)=NH\}_2L_4]^{2+}$ 1b-3b reacted hydrazines RNHNH2 to give white solids, characterised as the hydrazinecarboximidamide complexes $M\{\eta^2 N(H)=C(NEt_2)N(R)NH_2\}L_4](BPh_4)_2$ **6a–12a** and $[M{\eta^2}$ $100 \text{ N(H)=C[N=C(NH_2)_2]N(R)NH_2}L_4](BPh_4)_2 \text{ 6b-12b} (Schemes)$ 5 and 6).

$$\begin{array}{c|c} & & & & \\ & &$$

Scheme 5. M = Fe 6–8, Ru 9, 10, Os 11, 12; R = H 6, 9, 11, Me 7, 10, 12, Ph 8; L = P(OEt)₃

Scheme 6. M = Fe 6, 7, Ru 9, 10, Os 11, 12; R = H 6, 9, 11, Me 7, 10, 12; L = P(OEt)₃

The formation of azametallocycle³⁰ compounds **6–12** may be explained (Scheme 7) through substitution of one cyanamide by RNHNH₂ giving the $[M(N\equiv CNR1R2)(RNHNH_2)L_4]^{2+10}$ intermediate [C], in which one end of the hydrazine can attack the carbon atom of the coordinate cynamide giving the five-membered azametallocycle. Direct nuclephilic attack at the CN group of one cyanamide or cyanoguanidine, yielding η^1 -hydrazinecarboximidamide [D] in Scheme 7, should be ruled 15 out insofar as the bifunctional nucleophile RNHNH₂ cannot attack the C atom by more sterically encumbered end.

Scheme 7. $L = P(OEt)_3$

Nucleophilic attack on coordinate dialkyl cyanamide or cyanoguanidine has been reported with amine, imine or alcohol groups, ^{6f,g,13,31} but none with hydrazine. The coordination of two N≡CNR1R2 groups to the tetrakis(phosphite) fragment [M{P(OEt)₃}₄]²⁺ allowed an easy reaction with hydrazine, yielding chelate triazametallocycle complexes 6–12. However, crucial for the formation of the hydrazinecarboximidamide group through nucleophilic attack of RNHNH₂ on the nitrile carbon atom of N≡CNR1R2 was the presence of a labile ligand such as cyanamide itself, the easy substitution of which yielded the chelate azametallocycle.

The reaction of hydrazines on coordinate nitriles giving amidrazones was reported by us¹⁵ and, long ago, by Shaw *et al.*,³² who found the facile oxidation of such species. In our case, the chelation of the azo ligand prevents its oxidation in the complexes.

The related hydrazido-cyanamide complexes $[MH(N\equiv CNR1R2)L_4]BPh_4$ 4, 5 did not react with hydrazine in all conditions, probably because of the absence of a labile ligand, which prevented the formation of the chelate hydrazinecarboximidamide group.

The new azametallocycle complexes **6–12** were isolated as white (Ru, Os) or pale-yellow (Fe) solids, very stable in air and in solution of polar organic solvents, in which they behave as 2:1 electrolytes.²⁹ Their formulation is supported by analytical and spectroscopic (IR and NMR) data and by X-ray crystal structure determination of complex [Os{η²-NH=C[N=C(NH₂)₂]N(CH₃)NH₂} {P(OEt)₃}₄](BPh₄)₂ **12b**, the ORTEP of which is shown in Figure 1.

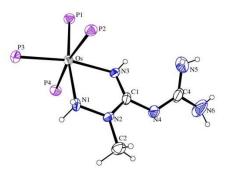


Figure 1. ORTEP³³ view of the cation of **12b**, drawn at 30% probability level. Ethoxy groups on all the phosphites were not drawn for clarity.

The asymmetric unit in 12b contains two tetraphenylborate anions and a bivalent cationic osmium complex. The osmium atom in the cationic complex is coordinated by four triethylphosphite ligands and a N,N'-bidentate 55 (diaminomethylene)-1-methyl-hydrazinecarboximidamide ligand with a chelating angle of 75.7(2)°. The overall geometry may be described as a slightly distorted octahedron. Another source of distortion in the octahedron, apart from the bite angle, is the slight bend of the mutually trans phosphorus atoms 60 toward the N,N'-bidentate ligand, no doubt due to the steric requirements of phosphites. Both effects give trans angles from 166.99(16) to 171.02(7)°, more than 10° deviated from regularity on average. The four phosphites are in two groups, those mutually trans, with Os-P bond lengths of 2.337(2) and 65 2.327(2) Å, and those trans to the nitrogen atoms, with slightly shorter Os-P bond lengths, 2.249(2) and 2.2710(18) Å. 15a The octahedron may be described as having the nitrogen atoms in a very regular equatorial plane, the dihedral angle between the RuPP and RuNN planes being only 2.6(2)°. The Os-N bond 70 lengths of 2.113(5) and 2.162(5) Å are only slightly shorter than those found in other tetraphosphite-osmium complexes cores. 14b, 15a with OsP₄N₂ The 1-methylhydrazinecarboximidamide moiety in the nitrogenated ligand is essentially planar, with rms deviation of only 0.0258 Å, so that 75 both N(2) and C(1) are sp² hybridised. The sums of the angles around these atoms are in fact 359.9 and 360.1° respectively. The N-(diaminomethylene) group is out-of-plane and twisted, forming a dihedral angle of 46.9(4)° with the first plane. The N(4)–C(4) bond distance of 1.291(11) Å clearly corresponds to 80 a double bond. All the other C-C and C-N bond lengths in the carboximidamide, between 1.300(8) and 1.371(9) Å, are shorter than values expected for single bonds, and are indicative of some kind of delocalisation.

The IR spectra of N,N-diethyl-1-hydrazinecarboximidamide so complexes $[M\{\eta^2\text{-NH=}C(NEt_2)N(R)NH_2\}L_4](BPh_4)_2$ **6a–12a** show the ν_{NH} of the NH and NH₂ groups as medium or weak

bands between 3435 and 3260 cm⁻¹, whereas δ_{NH_2} and/or $v_{C=N}$ appear as strong absorptions at 1627–1598 cm⁻¹. As well as the signals of phosphites and BPh₄⁻ anion, the ¹H NMR spectra show a quartet and a triplet of ethyl substituents NEt₂ and two ⁵ broad signals between 6.14 and 3.06 ppm, of intensity ratio 2:1, attributed to the amine NH₂ and imine =NH protons of the azametallocycle ligand. The spectra also display the signals of the substituent R of the hydrazine nitrogen atom, matching the presence of the azo ligand. The ³¹C NMR spectra of **11a** show the expected signals of the ligands; in particular, a singlet at 159.37 ppm was attributed to the imine HN=C carbon resonance of the carboximidamide ligand, whereas the ³¹P spectra are ABC₂ multiplets, matching the proposed formulation.

The IR spectra N-carbamimidoyl-1hydrazinecarboximidamide derivatives $M\{\eta^2 NH=C[N=C(NH_2)_2]NRNH_2\}L_4](BPh_4)_2$ **6b**, **7b**, **10b**, **12b** showed several bands in the 3445-3320 cm⁻¹ region, attributed to the v_{NH} of the NH and NH₂ groups of the azometallacycle $_{20}$ ligand. The δ_{NH_2} is observed as a strong absorption at 1635– 1617 cm⁻¹. However, the presence of this ligand was confirmed by ¹H NMR spectra, which showed three broad signals between 6.17 and 3.42 ppm, of intensity ratio 2:4:1, attributed to the NH_2 , $[N=C(NH_2)_2]$ and =NH groups. The spectra also show the 25 signals of the substituent to the N(R) nitrogen atoms, either as singlets at 3.03-3.05 ppm for R = Me (7b, 10b, 12b) or as a hump at 2.23 ppm for R = H(6b). In the ^{31}C NMR spectrum of 10b, the resonance of the imine N=C carbon atoms appears at 164.04 ppm and that of the methyl substituent N(CH₃) at 40.58 30 ppm, fitting the proposed formulation. In the temperature range +20 to -80 °C, the ³¹P NMR spectra of complexes **6b**, **7b**, **10b**, 12b appear as ABC2 multiplets, indicating that a geometry like

Conclusions

This paper reports the preparation of the first bis(dialkylcyanamide) [M(N≡CNEt₂)₂L₄](BPh₄)₂ and bis(cyanoguanidine) [M{N≡CN(H)C(NH₂)=NH}₂L₄](BPh₄)₂ complexes of the iron triad. Among the properties shown by these complexes, is the reaction with hydrazine, which proceeds with nucleophilic attack on the cyanamide carbon atom, affording chelate η²-hydrazinecarboximidamide derivatives [M{η²-N(H)=C(NEt₂)N(R)NH₂}L₄](BPh₄)₂.

that found in the solid state occurs in solution.

Acknowledgements

Thanks are due to Mrs. Daniela Baldan for technical assistance.

45 Notes and references

- ^a Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Dorsoduro 2137, 30123 Venezia, Italy. E-mail: albertin@unive.it
- ^b Departamento de Química Inorgánica, Universidade de Vigo,
 ⁵⁰ Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo (Galicia), Spain.
 - N. A. Bokach and V. Yu. Kukushkin, Coord. Chem. Rev., 2013, 257, 2293.
- 2 H. Bock, Angew. Chem., Int. Ed. Engl., 1962, 1, 550.
- 55 3 E. O. Fischer, W. Kleine, U. Schubert and D. Neugebauer, J. Organomet. Chem., 1978, 149, C40.

- 4 M. H. Chisholm, J. C. Huffman and N. S. Marchant, J. Am. Chem. Soc., 1983, 105, 6162.
- (a) M. S. Begley, P. Hubberstey and P. H. Walton, J. Chem. Soc., Dalton Trans., 1995, 957; (b) A. S. Batsanov, P. Hubberstey, C. E. Russel and P. H. Walton, J. Chem. Soc., Dalton Trans., 1997, 2667; (c) A. S. Batsanov, M. S. Begley, W. W. George, P. Hubberstey, M. Munakata, C. E. Russel and P. H. Walton, J. Chem. Soc., Dalton Trans., 1999, 4251; (d) J. K. Bera, M. Nethaji
- and A. G. Samuelson, *Inorg. Chem.*, 1999, 38, 1725; (e) S.-M. Kuang, D. G. Cuttell, D. R. McMillin, P. E. Fanwick and R. A. Walton, *Inorg. Chem.*, 2002, 41, 3313; (f) L.-L. Zheng, J.-D. Leng, W.-T. Liu, W.-X. Zhang, J.-X. Lu and M.-L. Tong, *Eur. J. Inorg. Chem.*, 2008, 4616; (g) H. Hadadzadeh, A. R. Rezvani, and H.
 - Esfandiari, *Polyhedron*, 2008, 27, 1809; (h) L.-C. Kang, X. Chen, X.-S. Wang, Y.-Z. Li, Y. Song, J.-L. Zuo and X.-Z. You, *Dalton Trans.*, 2011, 40, 5200.
- (a) M. F. C. Guedes da Silva, E. M. P. R. P. Branco, Y. Wang, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, R. Bertani, R. A. Michelin, M. Mozzon, F. Benetollo and G. Bombieri, J. Organomet. Chem., 1995, 490, 89; (b) M. F. C. Guedes da Silva, C. M. P. Ferreira, E. M. P. R. P. Branco, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, R. A. Michelin, U. Belluco, R. Bertani, M. Mozzon, G. Bombieri, F. Benetollo and V. Yu. Kukushkin, Inorg. Chim. Acta, 1997, 265,
- 267; (c) C. M. P. Ferreira, M. F. C. Guedes da Silva, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, V. Yu. Kukushkin and R. A. Michelin, *Inorg. Chem.*, 2001, 40, 1134; (d) C. M. P. Ferreira, M. F. C. Guedes da Silva, T. Duarte, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, R. A. Michelin and V. Yu. Kukushkin, *Inorg. Chim.*
- Acta, 2002, 334, 395; (e) C. M. P. Ferreira, M. F. C. Guedes da Silva, R. A. Michelin, V. Yu. Kukushkin, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, Dalton Trans., 2003, 3751; (f) A. G. Tskhovrebov, N. A. Bokach, M. Haukka and V. Y. Kukushkin, Inorg. Chem., 2009, 48, 8678; (g) M. N. Kopylovich, J. Lasri, M.
- F. C. Guedes da Silva, A. J. L. Pombeiro, Eur. J. Inorg. Chem., 2011, 377.
- 7 (a) S. M. P. R. M. Cunha, M. F. C. Guedes da Silva and A. J. L. Pombeiro, *J. Chem. Soc., Dalton Trans.*, 2002, 1971; (b) L. M. D. R. S. Martins, E. C. B. A. Alegria, D. L. Hughes, J. J. R. Fraúto
- da Silva and A. J. L. Pombeiro, *Dalton Trans.*, 2003, 3743; (c) S. M. P. R. M. Cunha, M. F. C. Guedes da Silva and A. J. L. Pombeiro, *Inorg. Chem.*, 2003, 42, 2157; (d) Y.-L. Tsai, F. H. Stephens, K. Meyer, A. Mendiratta, M. D. Gheorghiu and C. C. Cummins, *Organometallics*, 2003, 22, 2902.
- 100 8 (a) A. Schäfer, E. Herdtweck and G. D. Frey, *Inorg. Chim. Acta*, 2006, **359**, 4885; (b) J. Xiang, W.-L. Man, S.-M. Yiu, S.-M. Peng and T.-C. Lau, *Chem. Eur. J.*, 2011, **17**, 13044; (c) C. Harb, P. Kravtsov, M. Choudhuri, E. R. Sirianni, G. P. A. Yap, A. B. P. Lever and R. J. Crutchley, *Inorg. Chem.*, 2013, **52**, 1621.
- 105 9 (a) R. A. Michelin, M. Mozzon and R. Bertani, *Coord. Chem. Rev.*, 1996, **147**, 299; (b) V. Yu. Kukushkin and A. J. L. Pombeiro, *Chem. Rev.*, 2002, **102**, 1771.
- A. J. L. Pombeiro and V. Yu. Kukushkin, in Comprehensive Coordination Chemistry, 2nd edn.; J. A. McCleverty and T. J. Meyer, Eds., Elsevier Science: New York, 2004, vol. I.
- 11 (a) P. Ray, Chem. Rev., 1961, 61, 313; (b) Cyanamide; Cyanamid Canada Inc.: Montreal, Canada; (c) V. H. Michaud, W. Goll, B. Hammer, J. von Seyerl, W. Sturm, S. Weiss and R. Youngman, Chem. Ztg., 1988, 112, 287; (d) R. K. Ray, M. K. Bandyopadhyay
- and G. B. Kauffman, *Polyhedron*, 1989, **8**, 757; (e) B. Dey, S. R. Choudhury, S. Das, A. D. Jana, L.-P. Lu, M.-L. Zhu, A. Dutta and S. Mukhopadhyay, *Polyhedron*, 2008, **27**, 2899; (f) C. R. McColl, *Aust. J. Exp. Agric.*, 1986, **26**, 505.
- 12 (a) R. W. Miller and R. R. Eady, *Biochim. Biophys. Acta*, 1988, 952, 290; (b) U. H. Maier-Greiner, B. M. Obermaier-Skrobranek, L. M. Estermaier, W. Kammerloher, C. Freund, C. Wülfing, U. I. Burkert, D. H. Matern, M. Breuer and M. Euliz, *Proc. Natl. Acad. Sci. USA*, 1991, 88, 4260.
- (a) M. M. Bishop, A. H. W. Lee, L. F. Lindoy and P. Turner,
 Polyhedron, 2003, 22, 735; (b) M. M. Bishop, S. J. Coles, L. F. Lindoy and A. Parkin, *Inorg. Chim. Acta*, 2006, 359, 3565; (c) M.

- M. Bishop, L. F. Lindoy, M. McPartlin, A. Parkin, O. T. Thorn-Seshold and P. Turner, Polyhedron, 2007, 26, 415.
- (a) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, G. Pelizzi and P. Ugo, *Inorg. Chem.*, 1996, 35, 6245; (b) G. Albertin, S. Antoniutti, A. Bacchi, D. Barbera, E. Bordignon, G. Pelizzi and P. Ugo, Inorg. Chem., 1998, 37, 5602; (c) G. Albertin, S. Antoniutti, E. Bordignon and F. Menegazzo, J. Chem. Soc., Dalton Trans., 2000, 1181; (d) G. Albertin, S. Antoniutti, E. Bordignon and B. Carrera, Inorg. Chem., 2000, 39, 4646; (e) G. Albertin, S.
- Antoniutti, A. Bacchi, M. Boato and G. Pelizzi, J. Chem. Soc., Dalton Trans., 2002, 3313; (f) G. Albertin, S. Antoniutti and M. T. Giorgi, Eur. J. Inorg. Chem., 2003, 2855; (g) G. Albertin, S. Antoniutti, A. Bacchi, C. D'Este and G. Pelizzi, Inorg. Chem., 2004, 43, 1336; (h) G. Albertin, S. Antoniutti, M. Bortoluzzi, J.
- Castro-Fojo and S. Garcia-Fontán, *Inorg. Chem.*, 2004, 43, 4511; (i) G. Albertin, S. Antoniutti, A. Bacchi, F. De Marchi and G. Pelizzi, Inorg. Chem., 2005, 44, 8947; (j) G. Albertin, S. Antoniutti, M. Bedin, J. Castro and S. Garcia-Fontán, Inorg. Chem., 2006, 45, 3816; (k) G. Albertin, S. Antoniutti, A. Bacchi,
- A. Celebrin, G. Pelizzi and G. Zanardo, Dalton Trans., 2007, 661; (1) G. Albertin, S. Antoniutti and J. Castro, J. Organomet. Chem., 2012, 697, 6; (m) G. Albertin, S. Antoniutti, L. Bonaldo, A. Botter and J. Castro, Inorg. Chem., 2013, 52, 2870.
- (a) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, P. M. Dolcetti and G. Pelizzi, J. Chem. Soc., Dalton Trans., 1997, 4435; (b) G. Albertin, S. Antoniutti, E. Bordignon and S. Pattaro, J. Chem. Soc., Dalton Trans., 1997, 4445; (c) G. Albertin, S. Antoniutti, A. Bacchi, M. Bergamo, E. Bordignon and G. Pelizzi, Inorg. Chem., 1998, 37, 479.
- 30 16 G. Albertin, S. Antoniutti and J. Castro, Eur. J. Inorg. Chem., 2009, 5352.
- 17 E. Nachbaur and G. Leiseder, Monatsh. Chem., 1971, 102, 1718.
- 18 G. Balacco, http://www.inmr.net/
- (a) D. H. Gerlach, W. G. Peet and E. L. Muetterties, J. Am. Chem. Soc., 1972, 94, 4545; (b) D. H. Gerlach and W. G. Peet, Inorg. Synth., 1974, 15, 38.
 - G. Albertin, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1989, 2353.
- SMART Version 5.054, Instrument control and data collection software; Bruker Analytical X-ray Systems Inc.: Madison, Wisconsin, USA, 1997.
- 22 SAINT Version 6.01, Data Integration software package; Bruker Analytical X-ray Systems Inc.: Madison, Wisconsin, USA, 1997.
- G. M. Sheldrick, SADABS. An empirical absorption correction program for area detector data; University of Göttingen, Germany, 1996.
- 24 P. McArdle, J. Appl. Cryst., 1995, 28, 65.
- 25 G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 26 (a) S. D. Ittel, A. D. English, C. A. Tolman and J. P. Jesson, Inorg. Chim. Acta, 1979, 33, 101; (b) G. Albertin, P. Agnoletto and S. Antoniutti, Polyhedron, 2002, 21, 1755.
- 27 P. Amendola, S. Antoniutti, G. Albertin and E. Bordignon, *Inorg.* Chem., 1990, 29, 318.
- G. Albertin, S. Antoniutti, D. Baldan and E. Bordignon, Inorg. Chem., 1995, **34**, 6205,
- 29 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 30 K. M. Watson and D. G. Neilson, in The Chemistry of Amidines and Imidates, ed. S. Patai, Wiley, London, 1975, p. 491.
- (a) A. M. Bianucci, F. Demartin, M. Manassero, N. Masciocchi, M. L. Ganadu, L. Naldini and A. Panzanelli, Inorg. Chim. Acta, 1991, 182, 197; (b) A. J. Blake, P. Hubberstey, U. Suksangpanya and C. L. Wilson, J. Chem. Soc., Dalton Trans., 2000, 3873; (c) P. A. M. Williams, E. G. Ferrer, N. Baeza, O. E. Piro, E. E. Castellano and E. J. Baran, Z. Anorg. Allg. Chem., 2005, 631,
- R. Mason, K. M. Thomas, A. R. Galbraith, B. L. Shaw and C. M. Elson, J. Chem. Soc., Chem. Commun., 1973, 297.
- 33 L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565.

Table 1. Crystal data and structure refinement

Identification code	12b	
Empirical formula	$C_{75}H_{110}B_2N_6O_{12}P_4Os$	
Formula weight	1623.39	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 17.0333(13) Å	
omit con unifolisions	b = 20.4889(16) Å	
	c = 24.4972(19) Å	
	$\alpha = 90^{\circ}$	
	β = 90°	
	$\gamma = 90^{\circ}$	
Volume	8549.4(11) Å ³	
Z.	4	
Density (calculated)	1.261 Mg/m^3	
Absorption coefficient	1.623 mm ⁻¹	
F(000)	3376	
Crystal size	$0.36 \times 0.15 \times 0.14 \text{ mm}$	
Θ range for data collection	1.30 to 28.04°	
Index ranges	-22≤h≤21	
8	-27≤k≤27	
	-31≤l≤18	
Reflections collected	57250	
Independent reflections	20361, [R(int) = 0.0964]	
Reflections observed (>2σ)	9855	
Data completeness	0.994	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6536	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	20361 / 0 / 914	
Goodness-of-fit on F ²	0.954	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0509, R_2 = 0.0870$	
R indices (all data)	$R_1 = 0.1590, wR_2 = 0.1185$	
Absolute structure parameter	-0.016(7)	
Largest diff. peak and hole	1.288 and -1.396 e Å ⁻³	

Table 2. Selected bond lengths [Å] and angles [°] for 12b

Os-N(3)	2.113(5)	Os-N(1)	2.162(5)
Os-P(1)	2.249(2)	Os-P(3)	2.2710(18)
Os-P(2)	2.327(2)	Os–P(4)	2.337(2)
N(1)-N(2)	1.428(7)	N(2)-C(1)	1.371(9)
N(2)-C(2)	1.436(8)	C(1)-N(3)	1.300(8)
C(1)-N(4)	1.346(8)	N(4)–C(4)	1.291(11)
C(4)–N(5)	1.357(12)	C(4)–N(6)	1.364(12)
-() (-)	,	-() (-)	,
N(3)-Os- $N(1)$	75.7(2)	N(3)-Os-P(1)	94.07(16)
N(1)-Os- $P(3)$	91.28(14)	P(1)-Os- $P(3)$	98.90(8)
N(3)-Os- $P(2)$	85.57(15)	N(1)-Os- $P(2)$	87.72(16)
P(1)-Os- $P(2)$	91.68(8)	P(3)-Os- $P(2)$	95.02(7)
N(3)-Os- $P(4)$	85.84(15)	N(1)-Os- $P(4)$	87.64(16)
P(1)-Os- $P(4)$	91.53(8)	P(3)-Os- $P(4)$	92.77(8)
N(1)–Os– $P(1)$	169.81(15)	N(3)-Os- $P(3)$	166.99(16)
P(2)-Os- $P(4)$	171.02(7)	N(2)-N(1)-Os	112.0(4)
C(1)-N(2)-N(1)	116.2(5)	C(1)-N(2)-C(2)	124.7(6)
N(1)-N(2)-C(2)	119.0(6)	N(3)-C(1)-N(4)	126.9(7)
N(3)-C(1)-N(2)	118.5(6)	N(4)-C(1)-N(2)	114.6(7)
C(1)-N(3)-Os	117.5(5)	C(4)-N(4)-C(1)	123.0(9)
N(4)-C(4)-N(5)	123.9(9)	N(4)-C(4)-N(6)	118.4(11)
N(5)-C(4)-N(6)	117.6(11)		

GRAPHICAL ABSTRACT

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The preparation of bis(diethylcyanamide) $[M(N=CNEt_2)_2L_4](BPh_4)_2$ and bis(cyanoguanidine) complexes $[M\{N=CN(H)C(NH_2)=NH\}_2L_4](BPh_4)_2$ $[L=P(OEt)_3]$ of Fe(II), Ru(II) and Os(II) is described as well as their reactivity with hydrazines RNHNH₂ $(R=H, CH_3, C_6H_5)$, affording chelate hydrazinecarboximidamide derivatives $[M\{\eta^2-N(H)=C(NEt_2)N(R)NH_2\}L_4](BPh_4)_2$.